CN112079394B - 一种花状纳米磁性Fe3O4材料的制备方法和应用 - Google Patents

一种花状纳米磁性Fe3O4材料的制备方法和应用 Download PDF

Info

Publication number
CN112079394B
CN112079394B CN202010722662.5A CN202010722662A CN112079394B CN 112079394 B CN112079394 B CN 112079394B CN 202010722662 A CN202010722662 A CN 202010722662A CN 112079394 B CN112079394 B CN 112079394B
Authority
CN
China
Prior art keywords
flower
nano magnetic
magnetic
preparation
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010722662.5A
Other languages
English (en)
Other versions
CN112079394A (zh
Inventor
赵田
董茗
赵珞然
朱和鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Technology
Original Assignee
Hunan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Technology filed Critical Hunan University of Technology
Priority to CN202010722662.5A priority Critical patent/CN112079394B/zh
Publication of CN112079394A publication Critical patent/CN112079394A/zh
Application granted granted Critical
Publication of CN112079394B publication Critical patent/CN112079394B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • H01F1/0313Oxidic compounds
    • H01F1/0315Ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种花状纳米磁性Fe3O4材料的制备方法和应用,所述花状纳米磁性Fe3O4材料的原料以重量份计,包括三价铁盐30份,乙二醇100~500份,聚乙烯吡络烷酮1~30份。本发明利用微波辐射加热法,在特定条件下制得了有规则花状形貌的的Fe3O4材料,其具有很高的电磁屏蔽效能和电磁波吸收能力。本发明的整个反应体系简单可控,工艺重复性高,产物的产率高,工艺过程操作简便,能耗较低,设备便宜,可以大规模生产,推进纳米磁性Fe3O4材料在催化材料、杀菌材料、生物材料、光学材料、信息材料等领域的应用。

Description

一种花状纳米磁性Fe3O4材料的制备方法和应用
技术领域
本发明涉及磁性纳米材料技术领域,更具体地,涉及一种花状纳米磁性Fe3O4材料的制备方法和应用。
背景技术
Fe3O4是一种非常重要的磁性材料,其结构为立方相反尖晶石结构。在Fe3O4晶体中,Fe阳离分别处于氧四而体间隙位置(A位)和氧八而体的间隙位置((B位)。由于A位间隙比B位小,A位全是半径较小的Fe3+,而B位由Fe3+和另一些Fe3+占据。位于B位的Fe2+和Fe3+之间的电子传递使得Fe3O4具有独特的电学和磁学性能,因而被广泛用作磁流体、磁记录材料等。
纳米尺度的Fe3O4具有与生物组织的相容性以及与尺寸和形貌有关的电学和磁学性能,在磁性墨水、电子与生物敏感材料、高密度磁记录介质和生物医药等领域具有广泛的应用。
Fe3O4纳米微粒具有单磁畴结构并且矫顽力很高,用做磁记录材料可以提高信噪比,改善图象质量,且廉价易得,可降低生产成木;同时Fe3O4纳米粒子还具有较高的饱和磁化强度,故常被用来制备磁流体,既有固体的强磁性又有液体的流变性,并且流动性和分布可由外加磁场实施定向和定位控制,因此在航空技术、快速印刷等领域得到广泛应用。
近年来制备纳米Fe3O4中包括沉淀法(共沉淀法、氧化沉淀法、还原沉淀法、交流电沉淀法和络合物分解法)、水热法、水解法、微乳液法、固相法、球磨法、超声波法、热解法、水溶液吸附分散法等,这些方法制备的绝大多数为圆颗粒状或者棒状的纳米Fe3O4,容易团聚,比表面积小,表面光滑的形貌结构限制对电磁波的吸收能力,影响了纳米Fe3O4的电磁屏蔽效应。并且,这些方法普遍存在着一些问题,比如操作复杂,反应分多步进行,且很难可控合;制备工艺重复性差,产率低等等,影响纳米Fe3O4在磁性墨水、电子与生物敏感材料、高密度磁记录介质和生物医药等领域的广泛应用。
发明内容
本发明要解决的技术问题是针对现有技术制备的圆形颗粒纳米Fe3O4易团聚,比表面积小以及形貌结构导致的对电磁波吸收能力有限,以及的操作复杂、重复性差、不宜大规模生产不足,提供一种花状纳米磁性Fe3O4材料的制备方法。
本发明的目的通过以下技术方案予以实现:
一种花状纳米磁性Fe3O4材料的制备方法,制备步骤包括:
S1.将三价铁盐和聚乙烯吡络烷酮与部分乙二醇配置成一定浓度的溶液;
S2.将另一部分的乙二醇溶液在搅拌条件下利用微波加热至120~160℃;
S3.将S1配置的溶液加入S2中加热的乙二醇溶液中,保持温度并以恒定的速率搅拌,反应后得到黑色固体;
S4.将S3所得的黑色固体清洗干净,干燥得到花状纳米磁性Fe3O4材料。
进一步地,所述花状纳米磁性Fe3O4材料的原料以重量份计,包括三价铁盐30份,乙二醇100~500份,聚乙烯吡络烷酮1~30份。
本发明以三价铁盐为原料,乙二醇作为溶剂和还原剂,聚乙烯吡络烷酮(PVP)作为分散剂快速制取花状结构的纳米Fe3O4材料。其中,乙二醇溶剂可以将三价铁盐还原为Fe3O4,同时,乙二醇会发生部分聚合,生成聚乙二醇会逐渐增大反应体系的粘稠度,并限制Fe3O4微粒的生长,对于生成纳米级别的Fe3O4有利。
进一步地,所述三价铁盐包括氯化铁、硫酸铁、硝酸铁的一种或多种。
进一步地,所述聚乙烯吡络烷酮的平均分子量为8000~40000。
进一步地,步骤S1所述溶液的浓度为15~25mg/mL。
进一步地,步骤S2所述微波加热的功率为400~800W。普通的加热方式,像油浴加热,烘箱加热等方法都是通过介质的导热要实现温度的上升和保持。这些方式加热时间比较长,加热是从外到里依次传导,所以对于整个体系来说,加热是不均匀的,也不够高效。而微波加热的方式是直接作用于溶剂分子,加热迅速且均匀,可以在很短的时间内实现反应,极大地加速了反应进程,并能够通过微波对其形貌进行控制调节。
进一步地,所述搅拌的速率为900~1200r/min。
进一步地,步骤S3所述反应时间为10~20min。
进一步地,步骤S4所述黑色固体清洗所用试剂为有机试剂;所述有机试剂包括无水乙醇、丙酮、丙二醇的一种或多种。
进一步地,步骤S4所述干燥的温度为60~70℃,时间为12~18h。
根据上述制备得到花状纳米磁性Fe3O4材料在催化材料、杀菌材料、生物材料、光学材料、信息材料的领域中的应用。
与现有技术相比,有益效果是:
本发明以三价铁盐为原料,乙二醇作为溶剂和还原剂,聚乙烯吡络烷酮(PVP)作为分散剂,通过微波辐射方法快速制取了花状结构的纳米Fe3O4材料。本发明制备的花状结构的纳米磁性Fe3O4材料,呈现出有序的花状结构外观,其具有极大地电磁波吸收能力,所得的花状结构的纳米磁性Fe3O4材料的电磁波吸收值是商用150目Fe3O4磁粉的3倍以上。
本发明所述制备方法极大地缩短了反应时间,由原来传统加热方式所需要的数十小时,缩短到了现在的10~20min。同时,本发明的整个反应体系简单可控,工艺重复性高,产物的产率高,工艺过程操作简便,能耗较低,设备便宜,可以大规模生产,推进纳米磁性Fe3O4材料在催化材料、杀菌材料、生物材料、光学材料、信息材料等领域的应用。
附图说明
图1是本发明制备的纳米磁性Fe3O4电镜扫描图;
图2是本发明制备的纳米磁性Fe3O4电镜扫描图;
图3是本发明制备的纳米磁性Fe3O4电镜扫描图;
图4是本发明制备的纳米磁性Fe3O4电镜扫描图;
图5是本发明制备的纳米磁性Fe3O4电镜扫描图;
图6是本发明制备的纳米磁性Fe3O4电镜扫描图;
图7是本发明制备的纳米磁性Fe3O4电镜扫描图;
图8是本发明制备的纳米磁性Fe3O4电镜扫描图;
图9是本发明制备的纳米磁性Fe3O4与商用商用150目磁粉电磁波吸收对比图。
具体实施方式
下面结合实施例进一步解释和阐明,但具体实施例并不对本发明有任何形式的限定。若未特别指明,实施例中所用的方法和设备为本领常规方法和设备,所用原料均为常规市售原料。
实施例1
本实施例提供一种纳米磁性Fe3O4材料的制备方法,步骤包括:
S1.将三价铁盐和聚乙烯吡络烷酮与部分乙二醇配置成15~25mg/mL的溶液;
S2.将另一部分的乙二醇溶液使用400~800W的微波加热至120~160℃,不断以900~1200r/min的速度进行搅拌;
S3.将S1配置的溶液倒入S2中搅拌加热的乙二醇溶液中,保持120~160℃温度并以恒定的速率搅拌,反应10~20min离心过滤得到黑色固体;
S4.将S3所得的黑色固体用无水乙醇、丙酮、丙二醇洗涤干净,在60~70℃干燥12~18h得到花状纳米磁性Fe3O4材料。
所述三价铁盐包括氯化铁、硫酸铁、硝酸铁的一种或多种。
所述聚乙烯吡络烷酮(PVP)的平均分子量为8000~40000。
所述乙二醇的纯度为分析纯级别。
实施例2~16
本实施例根据实施例1所述方法,按照表1所示原料及参数制备纳米磁性Fe3O4材料。
表1
实验例
1.电镜扫描
将实施例制备的纳米磁性Fe3O4材料进行电镜扫描,如图1~8,本发明制备的纳米磁性Fe3O4材料呈现出有序的花状结构的形貌,可以清晰的看到其花瓣的厚度在20nm以下。
2.电磁波吸收试验
将实施例9制备的花状纳米磁性Fe3O4材料与市面购买的商用150目磁粉进行电磁波吸收试验,如图9所示,本发明制备的花状纳米Fe3O4材料对于电磁波具有极强的吸收作用,具有很高的电磁屏蔽效能和电磁波吸收能力。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (4)

1.一种花状纳米磁性Fe3O4材料的制备方法,其特征在于,所述花状纳米磁性 Fe3O4材料的原料以重量份计,包括三价铁盐 30 份,乙二醇100~500 份,聚乙烯吡咯烷酮1~30 份,所述聚乙烯吡咯烷酮的平均分子量为8000~40000;所制备的纳米磁性Fe3O4材料呈现有序的花状结构的形貌,其花瓣的厚度在20nm以下;
制备步骤包括:
S1.将三价铁盐和聚乙烯吡咯烷酮与部分乙二醇配制成浓度为15~25 mg/mL 的溶液;
S2.将另一部分的乙二醇溶液在900~1200r/min搅拌速率下利用功率为 400~800W的微波加热至120~160℃;
S3.将S1配制的溶液加入S2中加热的乙二醇溶液中,保持温度并以恒定的速率搅拌,反应10~20min后得到黑色固体;
S4.将S3所得的黑色固体清洗干净,干燥得到花状纳米磁性Fe3O4材料。
2.根据权利要求1所述花状纳米磁性Fe3O4材料的制备方法,其特征在于,所述三价铁盐包括氯化铁、硫酸铁、硝酸铁的一种或多种。
3.根据权利要求1所述花状纳米磁性Fe3O4材料的制备方法,其特征在于,步骤S4所述黑色固体清洗所用试剂为有机试剂;所述有机试剂包括无水乙醇、丙酮、丙二醇的一种或多种。
4.根据权利要求1所述花状纳米磁性Fe3O4材料的制备方法,其特征在于,步骤S4所述干燥的温度为60~70℃,时间为12~18h。
CN202010722662.5A 2020-07-24 2020-07-24 一种花状纳米磁性Fe3O4材料的制备方法和应用 Active CN112079394B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010722662.5A CN112079394B (zh) 2020-07-24 2020-07-24 一种花状纳米磁性Fe3O4材料的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010722662.5A CN112079394B (zh) 2020-07-24 2020-07-24 一种花状纳米磁性Fe3O4材料的制备方法和应用

Publications (2)

Publication Number Publication Date
CN112079394A CN112079394A (zh) 2020-12-15
CN112079394B true CN112079394B (zh) 2024-01-23

Family

ID=73735601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010722662.5A Active CN112079394B (zh) 2020-07-24 2020-07-24 一种花状纳米磁性Fe3O4材料的制备方法和应用

Country Status (1)

Country Link
CN (1) CN112079394B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113860381B (zh) * 2021-10-09 2024-01-26 国家能源集团科学技术研究院有限公司 一种磁性异质体纳米材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717122B (zh) * 2009-12-04 2011-04-06 华中师范大学 一种微波法制备四氧化三铁纳米片的方法

Also Published As

Publication number Publication date
CN112079394A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
Shen et al. Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles
F Hasany et al. Magnetic iron oxide nanoparticles: chemical synthesis and applications review
Abbasi et al. Synthesis of CoFe 2 O 4 nanoparticles and investigation of the temperature, surfactant, capping agent and time effects on the size and magnetic properties
Mao et al. Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method
CN103058283B (zh) 一种尺寸、形貌和组成可调的铁氧化物颗粒的制备方法
Liang et al. Dispersibility, shape and magnetic properties of nano-Fe 3 O 4 particles
Liu et al. Ultrasonic-assisted ultra-rapid synthesis of monodisperse meso-SiO2@ Fe3O4 microspheres with enhanced mesoporous structure
CN104275196A (zh) 四氧化三铁/碳/硫化镉复合纳米材料及其制备方法
CN105802579A (zh) 一种具有电磁屏蔽功能的高饱和磁化强度纳米四氧化三铁/石墨烯复合材料及其制备方法
Yang et al. Microwave rapid synthesis of nanoporous Fe3O4 magnetic microspheres
CN112079394B (zh) 一种花状纳米磁性Fe3O4材料的制备方法和应用
CN106745305A (zh) 一种α‑Fe2O3磁性纳米粉体材料的制备方法
Zheng et al. Controllable synthesis of monodispersed iron oxide nanoparticles by an oxidation-precipitation combined with solvothermal process
CN101049977A (zh) 纳米Fe3O4的制备方法
Yan et al. Hydrothermal synthesis of monodisperse Fe3O4 nanoparticles based on modulation of tartaric acid
KR101994428B1 (ko) 그래핀-자성입자 복합체의 제조 방법
CN102295454B (zh) 一种制备铁氧体纳米粉体的微反应系统和制备方法
Rahimi et al. Preparation, characterization and photocatalytic properties of Ba-Cd-Sr-Ti doped Fe 3 O 4 nanohollow spheres on removal of Congo red under visible-light irradiation
Liu et al. Rapid synthesis and characterization of spinel manganese ferrite nanopowder by microwave-assisted hydrothermal method
RU2486033C1 (ru) Способ получения наноразмерных порошков твердого раствора железо-никель
Lin et al. Synthesis and magnetic characterization of magnetite obtained by monowavelength visible light irradiation
CN109110823B (zh) 一种磁场水热法合成CoFe2O4纳米粒子的方法
Hedayati et al. Auto combustion synthesis using grapefruit extract: photocatalyst and magnetic MgFe2O4-PbS nanocomposites
CN109741897A (zh) 一种利用乙酰丙酮类金属化合物制备有机溶剂基磁性液体的方法
CN112661195B (zh) 一种超小型磁性四氧化三铁纳米粒子的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant