CN112076795B - 一种磁性In-MOF基光催化剂的制备方法及应用 - Google Patents

一种磁性In-MOF基光催化剂的制备方法及应用 Download PDF

Info

Publication number
CN112076795B
CN112076795B CN202010921123.4A CN202010921123A CN112076795B CN 112076795 B CN112076795 B CN 112076795B CN 202010921123 A CN202010921123 A CN 202010921123A CN 112076795 B CN112076795 B CN 112076795B
Authority
CN
China
Prior art keywords
magnetic
mof
based photocatalyst
dmf
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010921123.4A
Other languages
English (en)
Other versions
CN112076795A (zh
Inventor
李庆
樊增禄
张洛红
武占省
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Polytechnic University
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN202010921123.4A priority Critical patent/CN112076795B/zh
Publication of CN112076795A publication Critical patent/CN112076795A/zh
Application granted granted Critical
Publication of CN112076795B publication Critical patent/CN112076795B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/33Indium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种磁性In‑MOF基光催化剂的制备方法,具体为:在封闭条件下,将三水合硝酸铟、有机配体H3L、Fe3O4磁性纳米粒子、模板剂六次甲基四胺溶于N,N‑二甲基甲酰胺溶液中持续搅拌,并用浓硝酸溶液调节pH,在溶剂热条件下反应,即可得到磁性In‑MOF基光催化剂,本发明采用后过渡系金属铟(III)离子与三角形有机配体H3L、Fe3O4纳米粒子,通过配位自组装构筑出磁性In‑MOF基光催化材料,其具有良好的热稳定性,在245℃以下可保持骨架的稳定,在光催化降解水中活性翠兰KN‑G时表现出良好的光催化降解效率、水稳定性、易回收和可循环使用性能。

Description

一种磁性In-MOF基光催化剂的制备方法及应用
技术领域
本发明属于光催化材料技术领域,具体涉及一种磁性In-MOF基光催化剂的制备方法,还涉及该磁性In-MOF基光催化剂的应用。
背景技术
随着人类社会快速迈向工业化以及人口的激增,有机污染物例如有机染料地排放导致的水质恶化和水资源短缺,已发展成为严峻的环境污染问题。全球每年有大约有8×105吨商品化染料被生产出来,它们中的大约2%在生产过程中被直接排放到环境中。在使用过程中,仅仅在纺织品染色环节,就有大约超过10%用量的染料被排放到水中,产生明显的高色度,遮蔽太阳光线,阻碍甚至中断水生植物的光合作用,毁坏水生生态系统。工业用染料具有高化学稳定性,高芳香性带来的生物毒性,对水生生物和人类会产生致畸和致癌等危害,几乎无法被传统的生物方法降解。研究开发新颖、有效的方法或材料来解决行业的染料污染问题是十分迫切的,也符合“十三五”发展规划中提出的加强生态环境保护,把我国建设成为生态环境良好的国家的基本要求。
一系列的半导体光催化剂(如金属氧化物、硫属化合物和其他金属盐)以及它们的复合材料已经被用于染料的光催化降解。然而,很高的能带间隙值(Eg)使其几乎只能对占太阳光频约5%的紫外光做出响应。即使是能利用可见光的光催化剂,仍旧存在重金属离子溢出,带来二次污染;电子-空穴对具有高闭合性特征,导致光电流量子产率较低;较高的表面能,使催化剂在使用时极易发生团聚而降低效能等问题。金属-有机框架(MOFs)材料是由金属离子/金属簇与有机配体(可功能性修饰)通过配位键结合形成的一种新型的固态多孔材料。归功于其极大比表面积的、可修饰的内部空间,孔道/空腔形状和尺寸的可设计性,以及活性金属中心的多样/可调节性,MOFs作为光降解催化剂已经被应用于催化降解水中的有机污染物。通过后修饰对MOFs进行后修饰使之获得高可见光响应性和磁性,可以实现MOFs复合材料对活性染料的高效可见光催化降解,以及从水体环境的快速分离,显著提升其可循环使用性能。
发明内容
本发明的目的是提供一种磁性In-MOF基光催化剂的制备方法,该In-MOF基光催化剂具有良好的热稳定性及良好的光催化降解效率。
本发明的另一目的是提供上述磁性In-MOF基光催化剂在降解水中活性翠兰KN-G中的应用。
本发明所采用的技术方案是,一种磁性In-MOF基光催化剂的制备方法,具体为:
在封闭条件下,将三水合硝酸铟、有机配体H3L、Fe3O4磁性纳米粒子、模板剂六次甲基四胺溶于N,N-二甲基甲酰胺溶液中持续搅拌,并滴加浓硝酸溶液将反应体系的pH调节至4.0-6.0,在溶剂热条件下反应,得到磁性In-MOF基光催化剂。
本发明的特点还在于,
溶剂热反应温度为100-120℃,所需反应时间为72-120小时。
三水合硝酸铟、有机配体H3L、六次甲基四胺、Fe3O4磁性纳米粒子和N,N-二甲基甲酰胺的摩尔比为2-4:1:0.2-0.5:1-3:300-500;浓硝酸溶液的质量分数为65%。
三角形的有机配体H3L的制备方法,具体按照以下步骤:
步骤a,将4-氨基-2-甲基苯甲酸溶于DMF中,在冰水浴条件下持续磁力搅拌至完全溶解,得到混合液;
每1mol的4-氨基-2-甲基苯甲酸对应65mL的DMF;
步骤b,将均苯三甲酰氯溶于DMF中,搅拌至溶解,并在15min内缓慢滴加至步骤a的混合液中,之后在10min内滴加三乙胺,在冰水浴中反应3h,之后在室温下反应24h,得到反应液;
每1mol的均苯三甲酰氯对应100mL的DMF、0.36mol的三乙胺
步骤c,在持续磁力搅拌下向反应液中加入蒸馏水,30min后用布氏漏斗减压抽滤脱除DMF和蒸馏水,即依次用蒸馏水和甲醇洗涤并抽滤,将得到的白色固体进行干燥,得到三角形有机配体H3L。
本发明所采用的另一技术方案是,该磁性In-MOF基光催化剂能于对水体中纺织工业用酞菁染料活性翠兰KN-G进行光催化降解。
本发明的有益效果是,
本发明采用后过渡系金属铟(III)离子与三角形有机配体H3L、Fe3O4纳米粒子,通过配位自组装构筑出基于In-MOF的磁性光催化材料,该材料对可见光的吸收波长范围为400-800nm,具有出色的可见光响应能力。本发明的磁性In-MOF基光催化剂具有良好的热稳定性,在245℃以下可保持骨架的稳定,在光催化降解水中活性翠兰KN-G时表现出良好的光催化降解效率、水稳定性、易回收和可循环使用性能。另外,其制备方法简单,应用于光催化降解的反应条件温和,易回收且无二次污染。
附图说明
图1为所制备的磁性In-MOF基光催化剂的热失重曲线图;
图2为所制备的In-MOF、磁性In-MOF基光催化剂及Fe3O4纳米粒子的红外光谱图;
图3为所制备的In-MOF、磁性In-MOF基光催化剂及Fe3O4纳米粒子的单颗晶体X-射线粉末衍射模拟图和大量晶体样品的实际测试X-射线粉末衍射图;
图4为所制备的磁性In-MOF基光催化剂的扫描电镜图;
图5为所制备的磁性In-MOF基光催化剂的紫外-可见漫反射谱图;
图6为水中不同浓度的活性翠兰KN-G液体的紫外-可见吸收光谱图;
图7为水中不同浓度活性翠兰KN-G液体的紫外-可见吸收光谱的吸光度Y与对应的浓度X的标准曲线;
图8为磁性In-MOF基光催化剂用于光催化降解水中初始浓度为47.54mg/L的活性翠兰KN-G的水溶液的紫外-可见吸收光谱图;
图9为图8中活性翠兰KN-G液体的紫外-可见吸光光谱图对应的浓度比值C/C0对时间t的曲线图(C0为初始浓度,C为实时浓度);
图10为图8中活性翠兰KN-G液体的紫外-可见吸光光谱图对应的浓度比值C/C0的对数值对时间t的曲线图;
图11为所制备的磁性In-MOF基光催化剂在5次连续的对47.54mg/L的活性翠兰KN-G的水溶液的光催化降解循环中的光催化降解效率图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种磁性In-MOF基光催化剂的制备方法,具体为:
在封闭条件下,将三水合硝酸铟In(NO3)2·3H2O、有机配体H3L、Fe3O4磁性纳米粒子、模板剂六次甲基四胺溶于N,N-二甲基甲酰胺溶液中持续搅拌,并滴加浓硝酸溶液将反应体系的pH调节至4.0-6.0,在溶剂热条件下反应,得到上述磁性In-MOF基光催化剂;
溶剂热反应温度为100-120℃,所需反应时间为72-120小时;
三水合硝酸铟、有机配体H3L、六次甲基四胺、Fe3O4磁性纳米粒子和N,N-二甲基甲酰胺的摩尔比为2-4:1:0.2-0.5:1-3:300-500;浓硝酸溶液的质量分数为65%;
进一步优选为,三水合硝酸铟、有机配体H3L、模板剂六次甲基四胺、Fe3O4纳米粒子和N,N-二甲基甲酰胺的摩尔比为3:1:0.4:1:400,具体为每0.06mmol(21.29mg)三水合硝酸铟、0.02mmol(12.22mg)有机配体H3L、0.008mmol(1.12mg)六次甲基四胺和0.02mmol(4.63mg)Fe3O4,对应6.2mL的N,N-二甲基甲酰胺;溶剂热反应温度为105℃,反应时间为96h。
三角形的有机配体H3L(4,4',4”-[苯三酰三(羰基苯)]-3,3',3”-三甲基-三苯甲酸)的制备方法,具体按照以下步骤:
步骤a,将4-氨基-2-甲基苯甲酸溶于DMF中,在冰水浴条件下持续磁力搅拌至完全溶解,得到混合液;
每1mol的4-氨基-2-甲基苯甲酸对应65mL的DMF;
步骤b,将均苯三甲酰氯溶于DMF中,搅拌至溶解,并在15min内缓慢滴加至步骤a的混合液中,之后在10min内滴加三乙胺,在冰水浴中反应3h,之后在室温下反应24h,得到反应液;
每1mol的均苯三甲酰氯对应100mL的DMF、0.36mol的三乙胺
步骤c,在持续磁力搅拌下向反应液中加入蒸馏水,30min后用布氏漏斗减压抽滤脱除DMF和蒸馏水,即依次用蒸馏水和甲醇洗涤并抽滤,将得到的白色固体进行干燥,得到三角形有机配体H3L;
干燥温度为70℃,干燥时间为8h;
本发明的磁性In-MOF基光催化剂能用于对水体中纺织工业用酞菁染料活性翠兰KN-G进行光催化降解。
磁性In-MOF基光催化剂作为光催化剂降解水中活性翠兰KN-G的应用。具体为:将含有活性翠兰KN-G的染料溶液倒入石英管反应器中,加入磁性In-MOF基光催化剂,在暗箱中隔绝光线持续搅拌1-3h,使染料与催化剂之间达到吸附-脱附平衡,然后在300W氙灯的照射下持续2-10h,至光催化降解完成。
进一步优选为,染料水溶液中活性翠兰KN-G的浓度控制在0.5-100mg/L,60mL该浓度的染料水溶液中加入磁性In-MOF基光催化剂5-20mg;光催化降解完成后,用磁铁吸引分离出磁性In-MOF基光催化剂,再次依照前述方法循环利用。
三角形有机配体H3L的分子结构式如下:
Figure BDA0002666765880000071
本发明所提供的磁性In-MOF基光催化剂,具备了在氙灯模拟的可见光照射下高效可见光催化降解水中活性翠兰KN-G的三个重要条件:其一,该磁性光催化剂的紫外-可见漫反射(UV-Vis DRS)谱图表明其对可见光的吸收波长范围为400-800nm,覆盖了整个可见光区;其二,该磁性光催化剂的In-MOF骨架具有二重穿插嵌套的三维立体结构,其骨架内部去质子后的芳香族H3L配体高度有序排列,利于增强光吸收和π电子供应效应,促进光生电子的产生和转移,提升光生电子-空穴的分离效率,提升光催化效能。其三,该Fe3O4基磁性In-MOF光催化剂内存在广泛融合的Fe-O金属簇,可以直接吸收可见光进而将能量转移至In-MOF骨架,提升可见光催化效能;Fe3O4纳米粒子的存在,使得固体光催化剂可以在磁铁的作用下与水体系快速分离,避免催化剂流失,提升循环使用能力。
本发明中所涉及的红外光谱测试:将磁性In-MOF基光催化剂与溴化钾粉末按1:100(质量比)均匀混合并研磨,压制成薄片后在红外光谱仪上测试。
本发明所涉及的热失重曲线的测试:将自然晾干的磁性In-MOF基光催化剂,称取8~20mg放入氧化铝坩埚,在热失重分析仪上进行测试。
本发明所涉及的光催化降解测试:将磁性In-MOF基光催化剂在活性翠兰KN-G的染料溶液中达到吸附-脱附平衡后,在300W氙灯照射下,每隔一段时间取出上清液置于比色皿中,在紫外-可见分光光度计上进行测试。
实施例1
将有机配体H3L(0.04mmol,24.44mg)、In(NO3)2·3H2O(0.08mmol,25.51mg),六次甲基四胺(0.008mmol,1.12mg)和0.04mmol(9.26mg)Fe3O4,在10.0mL的N,N-二甲基甲酰胺中混合,滴加质量分数为65%的浓硝酸溶液,调节反应体系的pH值为5.0,封入25mL的小玻璃瓶中。在110℃下进行溶剂热反应80小时,自然冷却至室温,得到该磁性In-MOF基光催化剂。
图1为所制备的磁性In-MOF基光催化剂的热失重曲线图,图1的热失重曲线表明,在流动氮气下,以10℃/min升温,30-800℃范围内磁性In-MOF基光催化剂经历了3个主要的失重阶段。30-106℃之间约11.87%的失重率应该来自于其孔道/空腔内吸附的水分子和空气的离去,107-240℃之间约36.51%的失重率,来自磁性In-MOF基光催化剂空腔内客体DMF溶剂分子的离去;241-496℃之间,34.62%的失重率来自磁性In-MOF骨架的坍塌和部分有机配体的分解;剩余的17%的质量为未分解的配体、灰分和In、Fe的氧化物。热失重分析的结果表明,磁性In-MOF基光催化剂具有良好的热稳定性。
采用本发明的方法,在不添加Fe3O4磁性纳米粒子的情况下,按照相同的工艺,制备In-MOF;图2为所制备的In-MOF、磁性In-MOF基光催化剂及Fe3O4纳米粒子的红外光谱图。图2的谱图表明,3260cm-1附近的特征峰是由In-MOF和磁性In-MOF基光催化剂的有机配体上酰胺基团的伸缩振动引起的;1392cm-1附近的伸缩振动峰归属于In-MOF和磁性In-MOF基光催化剂骨架芳环上羰基基团的非对称伸缩振动。磁性In-MOF基光催化剂在572cm-1处的特征峰来自于In-MOF空腔/孔道内Fe3O4纳米粒子中Fe-O键的伸缩振动,而在纯Fe3O4纳米粒子中该Fe-O键的特征峰出现在568cm-1处。
图3为所制备的In-MOF、磁性In-MOF基光催化剂及Fe3O4纳米粒子的单颗晶体X-射线粉末衍射模拟图(理论值)和大量晶体样品的实际测试X-射线粉末衍射图(实际值),图3的谱图表明,In-MOF和磁性In-MOF基光催化剂大量样品的X射粉末线衍射谱图衍射峰实际值(即2θ角值)与In-MOF单晶衍射测试得到的理论值基本吻合,说明大量合成的In-MOF和磁性In-MOF基光催化剂的空间结构与单晶测试所用单颗晶体的空间结构是一致的,个别衍射峰的强度的差异与样品的择优取向有关。此外,磁性In-MOF基光催化剂在62.5°、56.9°、42.9°、35.2°和30.5°角度处衍射峰位置与Fe3O4纳米粒子在62.4°、57.4°、43.1°、35.4°和30.3°处衍射峰位置几乎完全一致,说明了磁性In-MOF基光催化剂的空腔/孔道内存在着磁性Fe3O4纳米粒子。
图4为所制备的磁性In-MOF基光催化剂的扫描电镜图。图4的谱图表明,磁性In-MOF基光催化剂晶体的外观形貌呈现多棱角的长条形,单颗晶体尺寸约为80×40×20μm3
图5为所制备的磁性In-MOF基光催化剂的紫外-可见漫反射谱图。图5的紫外-可见漫反射曲线表明,以白色的硫酸钡白板为空白对照,在200~800nm范围内,磁性In-MOF基光催化剂对可见光的吸收波长范围为400-800nm,覆盖了整个可见光区。
将实施例1制备的磁性In-MOF基光催化剂在可见光催化降解活性翠兰KN-G时,染料水溶液的浓度范围为0.5mg/L~100mg/L。采用蒸馏水配制9个浓度分别为0.5、2.5、5.0、10、20、40、60、80和100mg/L的活性翠兰KN-G水溶液作为实验组,以蒸馏水作为空白对照,采用紫外-可见分光光度计分别测试不同浓度的活性翠兰KN-G水溶液在其最大吸收波长662nm处的吸光度值,如图6所示,随着所配制的染料活性翠兰KN-G的浓度逐渐升高,其在662nm处的吸光度值也随之升高;并以活性翠兰KN-G水溶液的浓度为X轴,对应的吸光度值为Y轴,绘制出标准曲线,如图7所示,染料的吸光度值Y与其浓度X之间呈现出标准的一次函数关系曲线,R2为0.9998。
将实施例1制备的磁性In-MOF基光催化剂用于可见光催化降解浓度为47.54mg/L的活性翠兰KN-G。称取实施例1制备的磁性In-MOF基光催化剂10mg,置于100mL的石英管反应器中,向其中倒入60mL一定浓度的活性翠兰KN-G水溶液,室温下转移至暗箱中,并在磁力搅拌下放置约2h至染料分子与光催化剂之间达到吸附-脱附平衡。取出4mL活性翠兰KN-G上清液测试其吸光度值,通过标准曲线确定其浓度为47.54mg/L,然后在磁力搅拌下开启300W氙灯照射,并设置未加入其它光催化剂的47.54mg/L的活性翠兰KN-G水溶液作为空白对照样,每隔一定时间取出4mL上清液(测试完成后迅速倒回石英管中),使用紫外-可见分光光度计测试其紫外-可见吸收光谱图,如图8所示,随着光照时间的延长,活性翠兰KN-G在662nm处的吸光度值快速下降,8h后其特征吸收峰几乎完全消失。通过图7的标准曲线读取活性翠兰KN-G的浓度随时间的变化值,以该时间的浓度C与初始浓度C0的比值C/C0为Y轴,以时间为X轴,得到磁性In-MOF基光催化剂对活性翠兰KN-G的光催化降解效率,如图9所示,在8h之内,磁性In-MOF基光催化剂对活性翠兰KN-G的可见光催化降解效率为95.36%;而未加入光催化剂的空白对照样中,染料的浓度仅发生了微小的可忽略的变化,这表明了磁性In-MOF基光催化剂对活性翠兰KN-G具有显著的可见光催化降解效能。此外,如图10所示,以ln(C/C0)为Y轴、时间为X轴作图,得到的光催化降解速率常数(即图10中直线的斜率)为0.309h-1(R2=0.991)。
循环利用磁性In-MOF光催化剂对活性翠兰KN-G进行连续循环的可见光催化降解;
降解实验完成后,用磁铁在石英管底部吸引住磁性In-MOF基光催化剂,倒出石英管中的染料水溶液残夜,分离出光催化剂并再次重复实施例4中的光催化降解实验操作。如图11所示,在接下来的4次连续光催化降解循环实验中,循环使用的磁性In-MOF基光催化剂对活性翠兰KN-G的光催化降解效率分别为93.63%、89.99%、87.20%和81.03%,实验结果表明,磁性In-MOF基光催化剂在可见光催化降解活性翠兰KN-G的过程中表现稳定,催化降解效果良好。
实施例2
本发明一种磁性In-MOF基光催化剂的制备方法,具体为:
在封闭条件下,将三水合硝酸铟In(NO3)2·3H2O、有机配体H3L、Fe3O4磁性纳米粒子、模板剂六次甲基四胺溶于N,N-二甲基甲酰胺溶液中持续搅拌,并滴加浓硝酸溶液将反应体系的pH调节至4.0,在溶剂热条件下反应,得到上述磁性In-MOF基光催化剂;
溶剂热反应温度为110℃,所需反应时间为72小时;
三水合硝酸铟、有机配体H3L、六次甲基四胺、Fe3O4纳米粒子和N,N-二甲基甲酰胺的摩尔比为2:1:0.2:1:500;浓硝酸溶液的质量分数为65%;
三角形的有机配体H3L(4,4',4”-[苯三酰三(羰基苯)]-3,3',3”-三甲基-三苯甲酸)的制备方法,具体按照以下步骤:
步骤a,将4-氨基-2-甲基苯甲酸溶于DMF中,在冰水浴条件下持续磁力搅拌至完全溶解,得到混合液;
每1mol的4-氨基-2-甲基苯甲酸对应65mL的DMF;
步骤b,将均苯三甲酰氯溶于DMF中,搅拌至溶解,并在15min内缓慢滴加至步骤1.1的混合液中,之后在10min内滴加三乙胺,在冰水浴中反应3h,之后在室温下反应24h,得到反应液;
每1mol的均苯三甲酰氯对应100mL的DMF、0.36mol的三乙胺
步骤c,在持续磁力搅拌下向反应液中加入蒸馏水,30min后用布氏漏斗减压抽滤脱除DMF和蒸馏水,即依次用蒸馏水和甲醇洗涤并抽滤,将得到的白色固体进行干燥,得到三角形有机配体H3L;
干燥温度为70℃,干燥时间为8h;
实施例3
本发明一种磁性In-MOF基光催化剂的制备方法,具体为:
在封闭条件下,将三水合硝酸铟In(NO3)2·3H2O、有机配体H3L、Fe3O4磁性纳米粒子、模板剂六次甲基四胺溶于N,N-二甲基甲酰胺溶液中持续搅拌,并滴加浓硝酸溶液将反应体系的pH调节至6.0,在溶剂热条件下反应,得到上述磁性In-MOF基光催化剂;
溶剂热反应温度为120℃,所需反应时间为120小时;
三水合硝酸铟、有机配体H3L、六次甲基四胺、Fe3O4纳米粒子和N,N-二甲基甲酰胺的摩尔比为4:1:0.5:3:500;浓硝酸溶液的质量分数为65%;
三角形的有机配体H3L(4,4',4”-[苯三酰三(羰基苯)]-3,3',3”-三甲基-三苯甲酸)的制备方法,具体按照以下步骤:
步骤a,将4-氨基-2-甲基苯甲酸溶于DMF中,在冰水浴条件下持续磁力搅拌至完全溶解,得到混合液;
每1mol的4-氨基-2-甲基苯甲酸对应65mL的DMF;
步骤b,将均苯三甲酰氯溶于DMF中,搅拌至溶解,并在15min内缓慢滴加至步骤1.1的混合液中,之后在10min内滴加三乙胺,在冰水浴中反应3h,之后在室温下反应24h,得到反应液;
每1mol的均苯三甲酰氯对应100mL的DMF、0.36mol的三乙胺
步骤c,在持续磁力搅拌下向反应液中加入蒸馏水,30min后用布氏漏斗减压抽滤脱除DMF和蒸馏水,即依次用蒸馏水和甲醇洗涤并抽滤,将得到的白色固体进行干燥,得到三角形有机配体H3L;
干燥温度为70℃,干燥时间为8h。

Claims (3)

1.一种磁性In-MOF基光催化剂的制备方法,其特征在于,具体为:
在封闭条件下,将三水合硝酸铟、有机配体H3L、Fe3O4磁性纳米粒子、模板剂六次甲基四胺溶于N,N-二甲基甲酰胺溶液中持续搅拌,并滴加浓硝酸溶液将反应体系的pH调节至4.0-6.0,在溶剂热条件下反应,得到磁性In-MOF基光催化剂;
所述溶剂热反应温度为100-120℃,所需反应时间为72-120小时;
所述三角形的有机配体H3L的制备方法,具体按照以下步骤:
步骤a,将4-氨基-2-甲基苯甲酸溶于DMF中,在冰水浴条件下持续磁力搅拌至完全溶解,得到混合液;
每1mol的4-氨基-2-甲基苯甲酸对应65mL的DMF;
步骤b,将均苯三甲酰氯溶于DMF中,搅拌至溶解,并在15min内缓慢滴加至步骤a的混合液中,之后在10min内滴加三乙胺,在冰水浴中反应3h,之后在室温下反应24h,得到反应液;
每1mol的均苯三甲酰氯对应100mL的DMF、0.36mol的三乙胺
步骤c,在持续磁力搅拌下向反应液中加入蒸馏水,30min后用布氏漏斗减压抽滤脱除DMF和蒸馏水,即依次用蒸馏水和甲醇洗涤并抽滤,将得到的白色固体进行干燥,得到三角形有机配体H3L。
2.根据权利要求1所述的一种磁性In-MOF基光催化剂的制备方法,其特征在于,所述三水合硝酸铟、有机配体H3L、六次甲基四胺、Fe3O4磁性纳米粒子和N,N-二甲基甲酰胺的摩尔比为2-4:1:0.2-0.5:1-3:300-500;所述浓硝酸溶液的质量分数为65%。
3.如权利要求1-2中任意一项所述方法制备的磁性In-MOF基光催化剂,其特征在于,该磁性In-MOF基光催化剂能于对水体中纺织工业用酞菁染料活性翠兰KN-G进行光催化降解。
CN202010921123.4A 2020-09-04 2020-09-04 一种磁性In-MOF基光催化剂的制备方法及应用 Active CN112076795B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010921123.4A CN112076795B (zh) 2020-09-04 2020-09-04 一种磁性In-MOF基光催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010921123.4A CN112076795B (zh) 2020-09-04 2020-09-04 一种磁性In-MOF基光催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN112076795A CN112076795A (zh) 2020-12-15
CN112076795B true CN112076795B (zh) 2022-11-29

Family

ID=73732001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010921123.4A Active CN112076795B (zh) 2020-09-04 2020-09-04 一种磁性In-MOF基光催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN112076795B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521269A (zh) * 2013-11-04 2014-01-22 北京化工大学 一种具有磁性核金属有机骨架材料、制备及应用
CN108745418A (zh) * 2018-05-24 2018-11-06 浙江工商大学 一种异质结mof催化剂及其制备方法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521269A (zh) * 2013-11-04 2014-01-22 北京化工大学 一种具有磁性核金属有机骨架材料、制备及应用
CN108745418A (zh) * 2018-05-24 2018-11-06 浙江工商大学 一种异质结mof催化剂及其制备方法及应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"磁性Fe3O4@MOF复合材料的制备及对阳离子艳红5GN的物理吸附和光催化降解;李世奇等;《纺织科学与工程学报》;20200430;第37卷(第2期);第26页右栏倒数第1段-第27页左栏第1段、第1.2节 *
A two-fold interpenetrated (3,6)-connected metal–organic framework;Xiaokai Song et al.;《New Journal of Chemistry》;20100726;第34卷;第2398页实验部分 *
Conformational control of ligands to create a finite metal–organic cluster and an extended metal–organic framework;Lalit Rajput et al.;《CrystEngComm》;20121004;第15卷;摘要、第260页试验部分 *
水稳定型In/Zr-有机骨架材料的设计、合成与光催化降解有机染料;李庆;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20190415(第4期);第49页第2-3段、第2.1.2节 *

Also Published As

Publication number Publication date
CN112076795A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
Zhu et al. Enhanced photocatalytic NO removal and toxic NO2 production inhibition over ZIF-8-derived ZnO nanoparticles with controllable amount of oxygen vacancies
CN108786923B (zh) 一种核壳结构可见光催化剂的制备方法
CN112076796B (zh) 一种磁性Cu-MOF基光催化剂的制备方法及应用
CN108993604B (zh) 高可见光活性AgIn5S8/UIO-66-NH2复合材料及其制备方法和应用
CN109395761B (zh) 一种氮掺杂BiOIO3光催化剂的制备方法及其应用
Chen et al. Bi12SiO20/g-C3N4 heterojunctions: Synthesis, characterization, photocatalytic activity for organic pollutant degradation, and mechanism
Khajeh et al. Ternary NiCuZr layered double hydroxide@ MIL-101 (Fe)-NH2 metal-organic framework for photocatalytic degradation of methylene blue
CN112138702A (zh) 三维/二维Ni-Co双金属氧化物/g-C3N4纳米复合材料及其制备方法与应用
Wu et al. Mechanochemical syntheses of a series of bismuth oxyhalide composites to progressively enhance the visible-light responsive activities for the degradation of bisphenol-A
CN106693996B (zh) 硫化铋-铁酸铋复合可见光催化剂的制备方法及其应用
CN111068715A (zh) Ag/Bi2O3/CuBi2O4纳米纤维复合光催化剂的制备方法
CN107983373A (zh) 一种微波原位快速制备炭负载BiOBr可见光催化剂的方法
CN111004397B (zh) 一类富电子体系的金属有机框架分子材料及其在光催化还原重金属离子中的应用
CN112076794B (zh) 基于三角形有机配体的Cu-MOF材料及制备方法和应用
CN111909383B (zh) 一种吸附刚果红的铜基mof的制备方法及其应用
Li et al. Fe-MIL tuned and bound with Bi 4 O 5 Br 2 for boosting photocatalytic reduction of CO 2 to CH 4 under simulated sunlight
Song et al. Active site regulated Z-scheme MIL-101 (Fe)/Bi 2 WO 6/Fe (III) with the synergy of hydrogen peroxide and visible-light-driven photo-Fenton degradation of organic contaminants
Qu et al. A new visible-light-induced Z-scheme photocatalytic system: Er3+: Y3Al5O12/(MoS2/NiGa2O4)-(BiVO4/PdS) for refractory pollutant degradation with simultaneous hydrogen evolution
Yan et al. Cobalt phthalocyanine sensitized MOF on MOF: UiO-66@ MIL-88B (Fe)/CoTAPc, photocatalytic activity in the degradation of acid black 210
CN112076795B (zh) 一种磁性In-MOF基光催化剂的制备方法及应用
CN112076793B (zh) 基于三元羧酸配体的In-MOF材料及制备方法和应用
CN112691704A (zh) 一种花球状Cu-MOF-74/GO可见光催化剂及其制备方法
CN101240164B (zh) 一种甲醛诱导合成敏感光致变色wo3纳米粉体的方法
CN109833887A (zh) 一种可见光降解有机染料复合催化剂的制备方法
Yuan et al. Ce-MOF modified Ceria-based photocatalyst for enhancing the photocatalytic performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant