CN112075060B - 一种移动通信设备的载波频率和时间偏移估计方法 - Google Patents

一种移动通信设备的载波频率和时间偏移估计方法 Download PDF

Info

Publication number
CN112075060B
CN112075060B CN202080001316.6A CN202080001316A CN112075060B CN 112075060 B CN112075060 B CN 112075060B CN 202080001316 A CN202080001316 A CN 202080001316A CN 112075060 B CN112075060 B CN 112075060B
Authority
CN
China
Prior art keywords
cfo
ssb
estimate
signal
ssbs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080001316.6A
Other languages
English (en)
Other versions
CN112075060A (zh
Inventor
张海明
招溢利
关文伟
陈浩贤
孙春华
曾江洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hong Kong Applied Science and Technology Research Institute ASTRI
Original Assignee
Hong Kong Applied Science and Technology Research Institute ASTRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/894,955 external-priority patent/US11206167B1/en
Application filed by Hong Kong Applied Science and Technology Research Institute ASTRI filed Critical Hong Kong Applied Science and Technology Research Institute ASTRI
Publication of CN112075060A publication Critical patent/CN112075060A/zh
Application granted granted Critical
Publication of CN112075060B publication Critical patent/CN112075060B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset

Abstract

所描述的是一种在移动通信系统中的无线电设备处执行载波频率偏移(CFO)估计和/或时间偏移(TO)估计的方法。该方法包括为在所述无线电设备处检测到的SS突发中的多个同步信号(SS)块(SSB)中的每一个,基于网络信息信号预测来确定CFO估计和/或TO估计。该方法包括在所述SSB突发中选择至少一些所述检测到的SSB,并且组合CFO估计和/或TO估计,以获得用于在所述无线电设备处的信号处理的改进CFO补偿和/或TO补偿。

Description

一种移动通信设备的载波频率和时间偏移估计方法
技术领域
本发明涉及一种用于载波频率偏移(CFO)估计和/或时间偏移(TO)估计的方法,其用于第五代(5G)移动通信网络的无线电设备以及使用网络信息信号预测和多波束估计结果合并的其他兼容通信系统。
背景技术
时间和频率同步在无线通信系统中对于减少信号失真和减轻干扰至关重要。通常,同步包括初始同步和运行时跟踪。5G新无线电(NR)通信网络由于高载波频率和大带宽而具有较大的频率和时间偏移。因此,5G NR网络中的无线电设备需要一种准确的TO和CFO估计方法,以减轻、补偿和/或校正偏移,并确保网络质量和可用性。
5G基站(BS)定期发送同步信号(SS)和物理广播信道(PBCH)信号,这些信号统称为SS/PBCH块(SSB)或SS块。通过接收和解码SSB,用户设备(UE)或网络嗅探设备可以完成小区搜索和MIB解码。小区搜索是UE或网络嗅探设备获取小区内时间和频率同步并获取有关小区的系统信息的过程。在5G NR中,在检测主要同步信号(PSS)和次要同步信号(SSS)以及接收MIB和系统信息块(SIB)方面,小区搜索概念类似于第四代(4G)长期演进(LTE)网络中的概念。
UE可以通过两种方法访问5G NR小区。在称为EUTRA-NR双连接(EN-DC)的非独立模式(NSA)中,UE首先连接到4G LTE小区,并通过来自LTE eNodeB(基站)的无线资源控制(RRC)重新配置消息,来获取有关5G NR小区的小区搜索信息,例如载波频率、PCI、随机访问信道(RACH)参数等。基于5G NR小区搜索信息,UE可以尝试同步并连接到5G NR小区。
在独立(SA)模式下,5G NR小区搜索过程遵循以下步骤:(i)UE调谐到特定载波频率;(ii)UE尝试检测PSS和SSS,并且如果UE未能检测到这些信号,则其尝试调谐到下一载波频率;一旦UE成功检测到PSS/SSS,则UE尝试对PBCH进行解码;并且,一旦UE成功解码了PBCH,它将尝试对5G NR gNodeB(基站)在物理下行共享信道(PDSCH)上发送的系统信息块(SIB)进行解码,系统信息块(SIB)包括RACH资源信息。5G NR同步过程基于波束管理,其中UE通过解码PBCH中可用于波束测量和波束确定的MIB以及PDSCH中可用于波束报告的SIB来获取基本系统信息。
UE解码PSS、SSS和PBCH解调参考符号(DMRS)信号,以获得PCI和波束管理信息。PSS、SSS和PBCH在SSB中传输,SSB在时域中由四个正交频分复用(OFDM)符号组成,包括一个PSS符号,一个SSS符号和两个PBCH符号,如图1所示,图1示出了SSB的资源分配。通过PSS/SSS实现符号级别和时隙级别的时间同步以及频率同步。
如图1所示,SSB在时域中包括四个OFDM符号,在频域中包括240个子载波。PSS总共有127个资源元素(RE),SSS也有127个RE,PBCH则有576个RE。
5G基站(BS)周期性发送SS突发(SS Burst,或同步信号突发)以实现波束扫描,每个SS突发携带有多个SSB,每个SSB通过预先确定的不同的波束方向被发送。在由BS执行的波束扫描机制下,UE进行测量并识别用于该UE的最佳波束。
如图2所示,一组SS突发被称为SS突发集合。SS突发和SS突发集合都可以包含一个或多个元素,而SS突发中SSB的最大数量L取决于频率和载波间隔,并且可以低至L=4(低于3GHz),L=8(3至6GHz)或高达L=64(6至52.6GHz)。基于周期性集合(即5/10/20/40/80/160ms),以规则的间隔向UE发送SS突发。每个SS突发中携带多个SSB(SS块)。集合多个SSB的SS突发分布于一个无线帧的某个半帧。UE对PBCH和DMRS进行解码,以确定SSB处于无线帧的哪一半。帧和时隙时序由SSB的标识符或索引定义,并由UE获取。
5G NR gNodeB(基站)在一个无线帧中为SSB定义了多个候选位置,并且每个候选位置对应一个预先确定方向的波束用于发送SSB。每个SSB可以通过称为SSB索引的唯一编号来标识。每个SSB的波束测量结果取决于UE在小区内的位置,并且波束确定和报告基于测量结果和SSB索引。UE测量在特定时间段(一个SSB突发的时间段)内检测到的每个SSB的PBCH DMRS的信号强度。根据测量结果,UE可以识别出具有最强信号强度的波束对应的SSB索引。该UE确定信号强度最强的SSB所对应的波束为最佳波束。
图3示出了两个UE,UE#1和UE#2,位于小区内的不同位置处,其试图确定最适合于该UE的波束及对应的SSB索引值。所发射的不同方向波束的数量取决于在SSB突发内要发射多少个SSB。每个SSB由其SSB索引(SSB0至SSBL-1)标识。每个SSB是通过沿特定方向发送的特定波束传输的。多个UE可以位于gNodeB周围的各个位置。每个UE在一个SSB突发期间测量其检测到的每个SSB的信号强度。根据测量结果,UE可以识别出具有最强信号强度的SSB并确定其索引值。具有最强信号强度的SSB所对应的波束是该UE的最佳波束。在图3中,可以看出,与UE#2相比,UE#1所检测到的各个SSB的波束的相对信号强度有所不同;对于UE#1和UE#2,具有索引值SSB1的SSB所对应的波束最适合UE#1,而具有索引值的SSB3的SSB所对应的波束最适合UE#2。
UE选择最佳波束并解码PBCH内容信息,例如信号帧号(SFN)、SSB索引、光栅偏移、默认下行链路(DL)数值、剩余的最小系统信息(RMSI)配置,DMRS位置等。成功解码PBCH使得UE能够接收随后的物理下行链路控制信道信号(PDCCH)和PDSCH,它们调度了RMSI和其他系统信息(OSI)。如上所述,UE通过从PDSCH检测PBCH中的MIB和SIB来获取基本系统信息。
图4示出了图4最上方所示的4G LTE SSB(SS块)与图4最下方所示的5G NR SSB(SS块)之间的一些高层调度差异。5G NR中SS块的时域传输模式比4G LTE的SS块复杂。在4GLTE中,SS和PBCH的时域和频域位置是固定的,并且每10毫秒定期发送一次。在5G NR中,SSB的时域和频域位置是灵活的,并且可能不频繁地每160ms发送一次。在5G NR中,SSB传输有许多不同的时域模式。
要理解的是,在相同时段内发送的SSB越多,获得更准确的同步信息的可能性越大。但是,在5G NR中,由于不存在频繁发送的小区特定参考信号(RS),因此希望通过使用尽可能多的RS,利用每个SSB进行准确的时间和频率偏移估计。
CN109561495公开了一种时频跟踪方法。对准共站点处的可用于时频估计的参考信号进行时频跟踪,获取时频偏移估计范围和与所有用于时频估计的参考信号相应的估计值。根据获取的时频偏移估计范围和所有参考信号相应的估计值,计算出时频偏移瞬时值。当采用上述方案时,可以将现有的参考信号有效地用于时频跟踪,并且可以扩大时频跟踪的参考信号范围,从而改进了仅基于TRS(跟踪参考信号)进行时频跟踪带来的性能差,并改进了跟踪范围和跟踪精度。本公开基于上述方法,仅采用了的常规波束选择方法。
WO2019032853公开了一种获取资源的方法,该资源用于访问网络中的目标小区。该方法包括检测与目标小区相关联的多个波束,并确定满足用于执行随机访问的阈值的多个检测到的波束中的一个或多个。该方法包括评估物理随机接入信道(PRACH)资源是否与一个或多个满足阈值的确定波束相关联,并选择表现出高于预定值的参考信号接收功率(RSRP)的评估波束之一。然后,选择与所选择的波束相关联的PRACH资源。本公开采用阈值来选择波束,但是仅选择一个波束。
US2019/0238208公开了UE接收训练信号的方法,该训练信号来自与gNodeB相关的多个收发点(TRP)。每个训练信号可以包括参考信号资源标识符(ID),以指示多个发送方向中的相应的TRP和相应的发送方向。UE可以针对多个发射方向中的每个发射方向,基于多个接收方向上的各个信号质量测量来确定平均信号质量测量。为了向gNodeB报告,UE可以选择平均信号质量测量的子集,以确保从子集中排除的平均信号质量测量小于或等于该子集中的平均信号质量测量的最小值。本公开使用了实现频率和时间偏移估计的常规方法。
所期望的是一种为移动通信网络无线电设备,特别是5G无线电设备,提供更准确的CFO和/或TO估计值的方法。
发明目的
本发明的目的是在某种程度上减轻或消除与已知的CFO和/或TO估计方法相关的一个或多个问题,所述已知的CFO和/或TO估计方法是在移动通信网络,特别是5G NR网络中,使用网络信息信号预测和多波束组合。
通过结合主要权利要求的特征来实现上述目的。从属权利要求公开了本发明的其他有利实施例。
本发明的另一个目的是提供一种方法,该方法除了使用SS信号之外,还使用更多信号作为参考信号,以确定5G无线电设备的更准确的CFO和TO值。
本发明的另一个目的是提供一种方法,该方法使用来自多个波束的值的组合来确定5G设备的更准确的CFO和TO值。
本发明的另一目的是提供一种方法,该方法确定5G无线电设备的更准确的CFO和TO估计值,该方法将来自所选波束的一个或多个有用的偏移估计值与相应的权重相结合以获得更准确的补偿值。
本领域技术人员将从以下描述中得出本发明的其他目的。因此,前述目的的陈述不是穷举性的,仅用于说明本发明的许多目的中的一些。
发明内容
本发明涉及一种在无线通信系统中的无线电设备处执行CFO估计和/或TO估计的方法。该方法包括为在所述无线电设备处接收到的SS突发中的多个SSB中的每个SSB,确定CFO估计和/或TO估计。该方法包括为至少一些所述检测到的SSB,组合来自所述SSB的PSS、SSS和PBCH的CFO估计和/或TO估计,以获得为所述无线电设备处的信号处理的改进CFO补偿和/或TO补偿。可以通过将每个SSB波束的参数值与阈值进行比较,然后选择等于或超过阈值的那些波束来选择一组所述SSB。波束的参数可以包括接收信号强度参数或参考信号接收功率参数。优选地,仅所选波束的CFO估计和/或TO估计被用于获得改进的CFO补偿和/或TO补偿,以用于在所述无线电设备处的信号处理。
在第一主要方面,本发明提供了一种在移动通信系统中的无线电设备处执行CFO估计和/或TO估计的方法,该方法包括:为在所述无线电设备处检测到的SS突发中的多个SSB中的每一个,根据网络信息信号预测,确定CFO估计和/或TO估计;为至少一些所述检测到的SSB,组合CFO估计和/或TO估计,以获得改进的CFO补偿和/或改进的TO补偿,以用于在所述无线电设备处的信号处理。
优选地,该方法包括,为所述多个SSB中的每一个,确定:(i)通过使用信号预测以添加的PBCH信号作为参考信号的频域CFO估计和频域TO估计;以及(ii)时域CFO估计和时域TO估计;并执行以下步骤:将为所述多个SSB中的至少一些,组合频域/时域的CFO和TO估计,以获得用于在所述无线电设备处进行信号处理的改进的CFO和TO补偿。
还优选地,该方法包括:在接收到SS突发集合中的下一个SS突发时,为每个SSB更新信号帧号(SFN)和相应的有效载荷。
优选地,无线电设备包括5G新无线电(NR)移动通信网络中的用户设备(UE)或网络嗅探设备。
在第二主要方面,本发明提供了一种在移动通信系统中的无线电设备,该无线电设备包括:存储机器可读指令的存储器;以及用于执行机器可读指令的处理器,使得当处理器执行机器可读指令时,其将无线电设备配置为:为在所述无线电设备处检测到的SS突发中的多个同步信号(SS)块(SSB)中的每一个,确定CFO估计和/或TO估计;为至少一些所述检测到的SSB,组合CFO估计和/或TO估计,以获得用于在所述无线电设备处的信号处理的改进CFO补偿和/或改进TO补偿。
在第三主要方面,本发明提供了一种存储机器可读指令的非暂时性计算机可读介质,其中,当机器可读指令由处理器执行时,它们将处理器配置为:为在无线电设备处检测到的SS突发中的多个同步信号(SS)块(SSB)中的每一个,根据网络信息信号预测确定CFO估计和/或TO估计;为至少一些所述检测到的SSB,组合CFO估计和/或TO估计,以获得用于在所述无线电设备处的信号处理的改进CFO补偿和/或改进TO补偿。
本发明内容并不一定公开定义本发明必不可少的所有特征。本发明可以存在于所公开特征的子组合中。
前面已经相当广泛地概述了本发明的特征,以便可以更好地理解以下本发明的详细描述。下文将描述构成本发明权利要求主题的本发明的附加特征和优点。本领域技术人员将认识到,所公开的概念和特定实施例可以容易地用作修改或设计用于实现本发明相同目的的其他结构的基础。
附图说明
从以下优选实施例的描述中,本发明的前述和其他特征将变得显而易见,所述优选实施例仅通过示例的方式结合附图提供,其中:
图1是示出用于SSB资源分配的示意图;
图2是示出SS突发集的结构的示意图;
图3示出了小区中不同UE处的SSB检测;
图4示出了4G LTE SSB(SS块)和5G NR SSB(SS块)之间的差异;
图5是根据本发明的一种改进的无线电设备的方框示意图;
图6是根据本发明的第一方法的流程图;
图7是根据本发明的改进方法的流程图;
图8是波束测量值处理的示意图;
图9是示出根据本发明的基于阈值的波束选择的图;
图10是根据本发明的另一种改进方法的流程图;以及
图11是示出每个SSB的时域和频域序列预生成方法的示意图。
具体实施方式
以下描述仅通过示例的方式对优选实施例进行描述,并且不限于实施本发明所必需的特征的组合。
在本说明书中,对“一个实施例”或“一实施例”的引用是指结合该实施例描述的特定特征,结构或特性包括在本发明的至少一个实施例中。说明书中各个地方出现的短语“在一个实施例中”不一定全部指的是同一实施例,也不是与其他实施例互斥的单独或替代的实施例。此外,描述了可以由一些实施例而不是其他实施例展现的各种特征。类似地,描述了可能是一些实施例但不是其他实施例的要求的各种要求。
应当理解,附图中所示的元件可以以各种形式的硬件,软件或其组合来实现。这些元件可以在一个或多个适当编程的通用设备上以硬件和软件的组合来实现,该通用设备可以包括处理器、存储器和输入/输出接口。
本说明书说明了本发明的原理。因此,将理解,本领域技术人员将能够设计出尽管未在本文中明确描述或示出但体现本发明的原理并且包括在其精神和范围内的各种布置。
此外,本文中引用本发明的原理、方面和实施例及其特定示例的所有陈述旨在包含其结构和功能等效物之内。另外,这样的等效物旨在包括当前已知的等效物以及将来开发的等效物,即,开发的执行相同功能的任何元件,而与结构无关。
因此,例如,本领域技术人员将理解,本文呈现的框图表示体现本发明原理的系统和设备的概念图。
附图中所示的各种元件的功能可以通过使用专用硬件以及能够与适当的软件相关联地执行软件的硬件来提供。当由处理器提供时,功能可以由单个专用处理器,单个共享处理器或多个单独的处理器提供,其中一些可以共享。而且,术语“处理器”或“控制器”的明确使用不应解释为专门指代能够执行软件的硬件,并且可以隐含地包括但不限于数字信号处理器(“DSP”)硬件、用于存储软件的只读存储器(“ROM”),随机存取存储器(“RAM”)和非易失性存储器。
在本文的权利要求中,表达为用于执行特定功能的装置的任何元件旨在涵盖执行该功能的任何方式,包括例如a)执行该功能的电路元件的组合或b)任何形式的软件,因此,包括固件,微代码等,包括与用于执行该软件以执行功能的适当电路的组合。由这样的权利要求书所定义的本发明在于以下事实:由各种所述装置提供的功能以权利要求书所要求的方式被组合在一起。因此认为可以提供那些功能的任何手段都等同于本文所示的手段。
在以下描述中对5G无线电设备的引用并不排除将本文所述的方法应用于兼容通信系统的无线电设备。
5G NR是第三代合作伙伴计划(3GPP)提出的新移动通信标准,它是对4G LTE-advance(LTE-A)标准的重大改进,4G LTE-advance(LTE-A)标准的重点是增强型移动宽带,超可靠、低延迟通信和大规模机器类型通信。为了实现这些目标,3GPP引入了统一的网络体系架构,其新的物理层设计可支持很高的载波频率,大的频率带宽以及诸如大规模多输入多输出(MIMO)和波束成形之类的新技术。这些重大修改增加了同步过程的挑战。实际上,定义很高的载波频率会导致CFO和TO的值很大,这需要一个精确且昂贵的振荡器来对准发射机和无线电设备以实现无干扰的通信。干扰源主要与OFDM系统的缺陷有关,这些缺陷受CFO和TO的影响,导致载波间干扰(ICI)和符号间干扰(ISI)。TO是由于传输延迟引起的,在该传输延迟中,传输的信号到达无线电设备的时间有所延迟。在这种情况下,无线电设备不知道发射机何时发送新的脉冲串。通常,考虑归一化的TO,其等于发射信号和接收信号之间的样本数。如果归一化的TO大于循环前缀(CP)长度,则可以观察到快速傅立叶变换(FFT)窗口的未对准,从而导致ISI和ICI。否则,只能观察到CFO。应该通过使用许多已知的同步算法之一,在预FFT同步阶段完成TO的估计和校正。自相关和互相关算法是公知的,并且在无线通信系统中使用。在第一种算法中,接收到的信号与相同信号的延迟版本相关。然而,在第二种算法中,接收到的信号与无线电设备已知模式的储存信号相关联以估计TO。除TO之外,发射机和无线电设备振荡器中的误差还导致CFO,CFO是时域采样上的线性相位,并且会导致子载波上的ICI。与TO相比,CFO的影响随时间增加,因为它直接与离散时间索引成正比。OFDM中的CFO通常被归一化为子载波间隔,即频率误差与子载波间隔之间的比率。另外,在发射机和无线电设备处的采样频率之间的失配是TO的另一个来源。
此外,3GPP引入了一种新的基于高维相控阵的机制来建立gNodeB和用户UE之间的高度定向的传输链接。这种机制要求通过一组称为波束管理的操作来实现发射机和无线电设备波束的精确对准。波束管理需要复杂的算法和gNodeB和UE的高级处理来执行各种控制任务,包括初始访问和波束跟踪,这增加了同步过程的挑战。
与确定CFO和/或TO估计的已知方法相反,本发明涉及用于5G无线电设备的CFO和/或TO估计的方法,其中整个SSB(SS块)都用作参考信号。优选地,本发明的方法包括多波束组合技术,以便获得更准确的TO和/或CFO估计值。
图5示出了根据本发明构思的改进的无线电设备装置100的示例性实施例。在所示的实施例中,无线电设备装置100可以包括通信设备,例如UE(在图5中用虚线表示),其通信地连接到在5G NR通信系统环境115中操作的gNodeB(基站(BS)103),尽管本发明的改进无线电设备装置100不限于在NR 5G通信系统中操作,而是可以包括用于4G蜂窝网络或任何合适的蜂窝网络的无线电设备装置。在另一个实施例中,无线电设备装置100可以包括通信地连接到gNodeB(BS)103或形成其一部分的网络嗅探设备。
无线电设备装置100可以包括用于执行其各种功能的多个功能块。例如,无线电设备装置100包括接收器模块110,其提供接收信号处理并被配置为将接收到的信号和/或从接收器中提取的信息提供给功能块模块120,例如可以包括各种数据接收器、控制元件、用户界面等。尽管接收器模块110被描述为提供接收信号处理,但是应当理解,该功能块可以被实现为提供发送和接收信号处理的收发器。与接收器110的特定配置无关,实施例包括与接收器模块110相关联地布置的信号检测模块130,以便于根据本发明的对接收到的信息和信道信号的准确处理和/或解码。可以经由天线模块105来接收信息和信道信号。
尽管信号检测模块130被示为被部署为接收器模块110的一部分(例如,包括无线电设备模块的控制和逻辑电路的一部分),但是根据本发明的构思,对这种部署配置没有限制。例如,信号检测模块130可以被部署为与接收器模块110不同但连接到接收器模块110的无线电设备装置100的功能块。例如,可以使用逻辑电路和/或可执行代码/存储在UCI无线电设备装置100的存储器140中的机器可读指令来实现信号检测模块130,机器可读指令供处理器150执行,从而执行本文所述的功能。例如,可执行代码/机器可读指令可以存储在适合于存储一个或多个指令集(例如,应用软件、固件、操作系统、小程序和/或类似物),数据(例如,配置参数、操作参数和/或阈值、收集的数据、处理的数据等)的一个或多个存储器140(例如,随机存取存储器(RAM)、只读存储器(ROM)、闪存、磁存储器、光存储器等)中。一个或多个存储器140可包括处理器可读存储器,用于可相对于一个或多个处理器150使用的处理器,可操作来执行信号检测模块130的代码段和/或利用由此提供的数据来执行信号检测模块130的功能。如本文所述。另外地或可替代地,信号检测模块130可以包括一个或多个专用处理器(例如,专用集成电路(ASIC)、现场可编程门阵列(FPGA)、图形处理单元(GPU)等)和/或被配置为执行如本文所述的信号检测模块130的功能。
在本发明的一个实施例中,信号检测模块130对在所述无线电设备100处检测到的SS突发中的多个SSB中的每个SSB执行CFO估计和/或TO估计的方法。信号检测模块130然后确定来自所检测的SSB的CFO估计和/或TO估计的组合CFO估计值和/或组合TO估计值。所得的组合CFO估计值和/或组合TO估计值被用于在无线电设备100处的信号处理。
更具体地,优选地,信号检测模块130确定频域CFO估计和频域TO估计,并且另外地或替代地,确定时域CFO估计和时域TO估计。信号检测模块130然后通过组合频域CFO估计以及通过组合用于所述至少一些所述检测到的SSB的频域TO估计来获得组合CFO估计值和组合TO估计值,另外或可替代地,通过组合时域CFO估计,并且通过组合针对所述至少一些所述检测到的SSB的时域TO估计,以获得针对所述无线电设备100处的信号处理的改进CFO和TO补偿。
更优选地,信号检测模块130为每个检测到的SSB确定频域CFO估计和频域TO估计以及时域CFO估计和时域TO估计,然后为至少一些所述检测到的SSB组合频域/时域CFO和TO估计,以获得改进CFO和TO补偿,以在所述无线电设备100处进行信号处理。
图6示出了根据本发明的用于确定改进的CFO和TO估计值的优选方法200。
参照图6,在方法200的第一步骤205中,信号检测模块130接收在无线电设备装置100处检测到的SS突发的SSB。在判定框210中,信号检测模块130确定所接收的SSB中的第一个的SSB索引号i是否小于可能的SSB索引值的最大值L。因此,如果i<L,则在步骤215中,信号检测模块130为具有SSB当前索引值i的SSB加载预生成的数据。
在步骤220中,信号检测模块130为包括所述SSB的PSS、SSS和PBCH信号生成频域信号,以为所述SSB提供频域预生成的信号。产生频域预生成的信号可以包括产生从解码的PDSCH取回的所保存的所解码的SIB信号的频域信号。
在步骤225中,信号检测模块130对频域预生成信号的每个PSS、SSS和PBCH执行频域CFO和TO估计,并且在步骤230中,其在存储器140中存储所得的频域CFO和TO估计值。
在步骤235中,信号检测模块130通过从频域预生成信号生成PSS、SSS和PBCH的时域信号,从频域预生成信号生成时域预生成信号。时域预生成信号可以包括生成从解码的PDSCH获取的所保存的所解码的SIB信号的时域信号。
在步骤240中,信号检测模块130对时域预生成信号的每个PSS、SSS和PBCH执行时域CFO和TO估计,并且在步骤245中,将得到的时域CFO和TO估计值存储在存储器中。
在步骤250中,信号检测模块130将SSB索引值增加1,并针对所接收的SSB中的下一个返回判定框210。对于每个下一个接收到的SSB重复步骤210至250,直到信号检测模块130在判定框210确定下一SSB索引值i=L。
响应于在判定框210处确定下一SSB索引值i=L,信号检测模块130在步骤255中从存储器140中检索所存储的频域PSS、SSS和PBCH CFO和TO估计值和时域PSS、SSS和PBCH CFO和TO估计值。
在步骤260A中,信号检测模块130从一些或所有检索出的频域PSS、SSS和PBCH CFO估计值生成组合频域CFO估计值,或者从一些或全部检索出的频域PSS、SSS和PBCH TO估计值生成组合频域TO估计值。然而,将理解,在一些实施例中,可以在步骤225处执行PSS、SSS和PBCH频域CFO/TO估计值的组合,因此,图6中描绘的步骤顺序对于本发明方法的性能不是必需的。
每个SSB通过频域PSS、SSS和PBCH CFO估计值得到该SSB优化的CFO估计值,然后选择一些或全部SSB组合获得频域CFO组合估计值。与获得优化的CFO估计值时,仅考虑来自PSS和SSS的估计结果的情况相比,添加PBCH作为参考信号以获得其CFO估计值可以改进估计结果。
可替代地,可以通过使用相应的权重值组合每个SSB的PSS、SSS和PBCH CFO估计值获得该SSB优化的CFO估计值,然后组合一些或所有SSB的SSB频域优化的CFO估计值,来获得组合频域CFO估计值,权重值导出自包括所述SSB的PSS信号、SSS信号和PBCH信号的各自测量信号强度,以获得SSB频域CFO估计值。为一些或所有SSB组合SSB频域CFO估计值可以包括确定所述SSB频域CFO估计值的算数平均值或中位值。
将理解的是,可以通过与用于组合频域CFO估计值相同的方法来获得组合频域TO估计值。
在步骤260B中,信号检测模块130从取回的一些或全部频域PSS、SSS和PBCH CFO估计值中生成组合的时域CFO估计值,或从取回的一些或全部频域PSS、SSS和PBCH TO估计值中生成组合的时域TO估计值。
将理解的是,可以通过与用于组合频域CFO估计值相同的方法来获得组合时域CFO估计值和组合时域TO估计值中的每一个。
在最后的可选步骤265中,可以通过对组合频域CFO估计值和组合时域CFO估计值进行组合来获得单个组合CFO估计值,或者可以通过对组合频域TO估计值和组合时域TO估计值进行组合来获得单个组合TO估计值。
现在参考图7,生成组合频域CFO估计值、组合频域TO估计值、组合时域CFO估计值和组合时域TO估计值的更优选方法300包括对来自与所述接收的SSB相关联的波束集合中的一些所选波束的组合CFO和TO估计值。方法300包括一组初始步骤,这些初始步骤包括图6的步骤205至250(在图7中由虚线框表示),为方便起见,在图7中不再对其进行详细描述或详细示出。在图7中描绘了完成方法300的一组步骤。
参照图7,响应于在图6的判定框210处,即确定下一个SSB索引值i=L,信号检测模块130在步骤305中为每个SSB的各个波束加载波束测量值。步骤305可以包括为每个SSB建立针对各个波束的波束测量值,但是在图6的方法200中可以包括波束测量步骤。如果图6的方法200中包含了波束测量步骤,而不是方法300步骤305的形成部分,则可以将方法200中的波束测量步骤实现为在步骤225和230之间的步骤226,并且步骤230被修改为包括将波束测量值与得到的频域CFO和TO估计值存储在存储器140中。
在任一情况下,如图8所示,波束测量过程400可以包括,对于每个SSB,在步骤405中,信号检测模块130在频域中测量每个SSB的每个PSS、SSS和PBCH的RSRP或RSSI值。波束测量过程可以包括信号检测模块130,在步骤415中,将相应的PSS RSRP/RSSI,SSS RSRP/RSSI和PBCH RSRP/RSSI值组合以为每个SSB提供单个波束测量值。
可以将根据本发明的方法应用于所接收的SS突发集合中的每个SS突发。在这种情况下,该方法可以包括接收系统并动态生成系统信息信号,该信号包括以下中的任意一个或多个:物理小区ID、从PBCH导出的主信息块(MIB)的时频资源块边界、SIB、SS突发信号、SS突发中每个SSB的波束索引,MIB的有效载荷位以及可选的SIB信号。该方法可以被修改为包括以下步骤:在接收到SS突发集合中的下一个SS突发时,更新每个SSB的系统帧号(SFN)和相应的有效载荷。这在图11中更充分地示出。频域预生成的信号包括每个SSB的PSS信号、SSS信号和PBCH信号,以及可选地,预生成SIB信号。图11所示的用于每个SSB的时间和频率序列的预生成方法包括PBCH有效载荷更新610,其包括为每个SSB的每个PBCH产生一组MIB有效载荷位,该组MIB有效载荷位包括周期性地更新的SFN相关位,以及波束索引关联位,其在SSB之间有所不同。然后,在620,为每个SSB分别生成用于PSS、SSS和PBCH的频域信号。在630,分别针对PSS、SSS和PBCH生成每个SSB的SSB时域序列。对于SIB,可以根据保存的SIB解码信息来生成频域和时域序列。
再次参考图7,并且在步骤305中将每个SSB各自所在波束的波束测量值加载到存储器140中,该方法包括信号检测模块130的步骤310,基于它们各自的波束测量值,选择一些波束(SSB)。为此,建立预定的、选定的或计算的阈值。在一些实施例的一个非限制性示例中,可以将阈值设置为配置选定数量的波束。例如,阈值可以被设置为“2”,使得选择两个最佳波束值进行组合。在一些其他实施例中,可以通过参考哪些波束具有比例如平均功率大的波束来设置阈值。如图9所示,仅选择波束测量值等于或高于阈值的那些波束,如图9中的虚线所示。
在步骤315A中,信号检测模块130从存储器140中检索仅针对所选波束,即仅针对所述所选波束的SSB的所存储的频域PSS、SSS和PBCH组合得到的CFO和TO估计值。
在步骤315B中,信号检测模块130从存储器140中检索仅针对所选波束所存储的时域PSS、SSS和PBCH组合得到的CFO和TO估计值。
在步骤320A中,信号检测模块130从针对所选波束的每个SSB的检索到的频域CFO估计值中生成组合频域CFO估计值;以及从针对所选波束的每个SSB的检索到的频域TO估计值中生成组合频域TO估计值。
在步骤320B中,信号检测模块130从针对所选波束的每个SSB的检索到的时域CFO估计值中生成组合时域CFO估计值;以及从针对所选波束的每个SSB的检索到的时域TO估计值中生成组合时域TO估计值。
在最后的可选步骤325中,可以通过对组合频域CFO估计值和组合时域CFO估计值进行组合,来获得单个组合CFO估计值,或者可以通过对组合频域TO估计值和组合时域TO估计值进行组合,来获得单个组合TO估计值。
将理解的是,在图6的步骤255至265中应用的方法还可以通常应用于图7的步骤315至325,但限于所选择的波束。
如图10所示,可以修改图7的方法300,以提供一种修改的方法500,该方法在确定CFO和TO估计值时利用权重值。
再次参考图10,修改的方法500包括信号检测模块130的步骤505,其为每个SSB的相应波束加载波束测量值。在下一步骤510中,信号检测模块130基于它们的相应波束测量值与预定的、选定的或计算的阈值进行比较来选择一些波束(SSB)。如图9所示,仅选择波束测量值等于或高于阈值的那些波束。
在下一步骤512中,信号检测模块130从存储器140加载每个SSB的权重值。
在步骤515A中,信号检测模块130从存储器140中检索仅针对所选波束,即仅针对所述所选波束的SSB的所存储的频域CFO和TO估计值。
在步骤515B中,信号检测模块130从存储器140中检索仅针对所选波束的SSB的所存储的时域CFO和TO估计值。
在步骤520A中,信号检测模块130从针对所选波束的每个SSB的检索到的频域CFO估计值和所选波束的相应的权重值中生成组合频域CFO估计值;以及从所选波束的每个SSB的检索到的频域TO估计值和所选波束的相应的权重值中生成组合频域TO估计值。
在步骤520B中,信号检测模块130从针对所选波束的每个SSB的检索到的时域CFO估计值和所选波束的相应的权重值中生成组合时域CFO估计值;以及从所选波束的每个SSB的检索到的时域TO估计值和所选波束的相应的权重值中生成组合时域TO估计值。
在最后的可选步骤525中,可以通过对组合频域CFO估计值和组合时域CFO估计值进行组合,来获得单个组合CFO估计值,以及可以通过对组合频域TO估计值和组合时域TO估计值进行组合,来获得组合TO估计值。
将理解的是,图6的步骤255至265中应用的方法通常可以应用于图10的步骤515至525,但是限于所选择的波束并且通过所选择的波束的权重值来修改。
生成频域和时域预生成信号的方法可以包括:从gNodeB接收系统信息集,获得PCI、MIB的时频资源块边界、SIB和SS突发信号、每个SSB的波束索引以及MIB和SIB信号的有效载荷位,并在时域和频域中动态生成系统信息信号。该方法可以包括基于MIB和SIB解码结果来确定是否更新时域和频域预生成的信号。这些方法步骤在处理SS突发集中的连续SSB突发时特别有用。
在频域中,可以通过使用基于信号预生成的互相关方法来计算不同子载波之间的相移值τT,来获得每个SSB的TO。
而且,在频域中,可以通过使用基于信号预生成的互相关方法来计算整数CFO
Figure BDA0002595177170000191
和分数CFO/>
Figure BDA0002595177170000192
来获得每个SSB的CFO。
在时域中,CFO和TO均可通过互相关方法获得。
可以通过基于联合符号的估计方法来获得每个SSB的波束测量值。
无线电设备装置可以包括新无线电(NR)5G无线通信网络中的UE或网络嗅探设备。网络嗅探设备可以包括gNodeB的一部分。
本发明还提供了一种存储机器可读指令的非暂时性计算机可读介质,其中,当机器可读指令由处理器执行时,它们将处理器配置为:对于在所述无线电设备处检测到的SS突发中的多个同步信号(SS)块(SSB)中的每一个,确定CFO估计和/或TO估计;对于所述检测到的SSB中的至少一些,组合CFO估计和/或TO估计以获得用于在所述无线电设备处的信号处理的改进CFO补偿和/或改进TO补偿。
上述装置可以至少部分地以软件实现。本领域技术人员将理解,可以至少部分地使用通用计算机设备或使用定制设备来实现上述装置。
这里,本文描述的方法和设备的方面可以在包括通信系统的任何设备上执行。可以将该技术的程序方面视为通常以可执行代码和/或在某种类型的机器可读介质上体现的可执行代码和/或相关数据的形式的“产品”或“制造品”。“存储”类型的介质包括移动台、计算机、处理器等的任何或全部存储器,或其相关模块,例如各种半导体存储器、磁带驱动器、磁盘驱动器等,它们可以在以下位置提供存储:随时进行软件编程。软件的全部或部分有时可以通过Internet或其他各种电信网络进行通信。例如,这样的通信可以使得能够将软件从一个计算机或处理器加载到另一计算机或处理器中。因此,可以承载软件元件的另一种类型的介质包括光波、电波和电磁波,例如通过有线和光学座机网络并通过各种空中链路跨本地设备之间的物理接口使用的波。诸如有线或无线链路,光学链路等之类的携带此类波的物理元件也可以被视为承载软件的介质。如本文所使用,除非限于有形的非暂时性“存储”介质,否则诸如计算机或机器“可读介质”的术语是指参与向处理器提供指令以供执行的任何介质。
尽管已经在附图和前面的描述中详细示出和描述了本发明,但是本发明应被认为是示例性的,而不是限制性的,应理解,仅示出和描述了示例性实施例,并且不以任何方式限制本发明的范围。可以理解,本文描述的任何特征可以与任何实施例一起使用。说明性实施例并不彼此排斥,也不排斥本文未列举的其他实施例。因此,本发明还提供了包括上述一个或多个说明性实施例的组合的实施例。在不脱离本发明的精神和范围的情况下,可以对本发明进行修改和变化。因此,仅应施加所附权利要求书所指示的这种限制。
在所附权利要求和本发明的先前描述中,除非上下文由于表达语言或必要的暗示而另外需要,否则词语“包括”或诸如“包括”或“包含”的变体以包括性含义使用。即,在本发明的各种实施例中,即指定所陈述的特征的存在但不排除其他特征的存在或增加。
应当理解,如果在本文中引用了任何现有技术出版物,则这种引用并不意味着承认该出版物构成了本领域公知常识的一部分。

Claims (19)

1.一种在移动通信系统中的无线电设备处执行载波频率偏移CFO估计和/或时间偏移TO估计的方法,所述方法包括:
为在所述无线电设备处检测到的SS突发中的多个同步信号SS块SSB中的每一个,基于网络信息信号预测来确定CFO估计和/或TO估计;以及
为至少一些所述检测到的SSB,组合所述CFO估计和/或所述TO估计,以获得用于在所述无线电设备处的信号处理的改进CFO补偿和/或改进TO补偿;
其中选择所述多个检测到的SSB中的至少一些,以用于组合所述CFO估计和/或所述TO估计的方法包括:
(a)确定与SSB相关联的波束参数值;
(b)将确定的参数值与预定的、选定的或计算的阈值进行比较;
(c)如果确定的参数值小于阈值,则忽略与波束相关联的所述SSB的任何CFO和/或TO估计;如果确定的参数值等于或大于阈值,则选择SSB用于组合CFO估计和/或TO估计的步骤;以及
(d)针对所述多个SSB中的每个SSB重复步骤(a)至(c)。
2.根据权利要求1所述的方法,其中,所述方法包括为每个所述检测到的SSB确定:(i)频域CFO估计和频域TO估计;和/或(ii)时域CFO估计和时域TO估计;并至少执行以下步骤之一:
为所述至少一些所述检测到的SSB,组合所述频域CFO和所述频域TO估计,以获得用于在所述无线电设备处的信号处理的改进频域CFO和TO补偿;和/或
为所述至少一些所述检测到的SSB,组合所述时域CFO和所述时域TO估计,以获得用于在所述无线电设备处的信号处理的改进时域CFO和TO补偿。
3.根据权利要求2所述的方法,其中,为所述至少一些所述检测到的SSB,组合频域/时域CFO和TO估计,以获得改进CFO和TO补偿的步骤包括:将所述CFO和TO估计与相应的权重值进行组合。
4.根据权利要求1所述的方法,其中,为所述无线电设备处检测到的所述SS突发中的多个SSB中的每一个SSB,从相应的SSB的主要同步信号PSS、次要同步信号SSS以及物理广播信道PBCH信号中确定所述CFO估计和所述TO估计。
5.根据权利要求4所述的方法,其中,组合步骤包括:为相应的SSB的PSS、SSS和PBCH信号分别估计的CFO和/或TO,组和得到该SSB最佳CFO和/或TO。
6.根据权利要求1所述的方法,其中,与SSB相关联的波束参数包括参考信号接收功率RSRP或接收信号强度指示符RSSI。
7.根据权利要求6所述的方法,其中,确定波束的RSRP或RSSI的值的方法包括:在频域中,测量每一个波束相关联的PSS、SSS和PBCH信号的RSRP值或RSSI值。
8.根据权利要求7所述的方法,其中,与波束相关联的PSS、SSS和PBCH信号的RSRP值或RSSI值被组合,以提供组合RSRP值或组合RSSI值,作为用于每个SSB的波束测量值,其中,该方法包括将波束测量值与阈值进行比较。
9.根据权利要求8所述的方法,其中,与PSS、SSS和PBCH信号相关联的波束的RSRP值或RSSI值由各个信号相应的权重值组合得出。
10.根据权利要求9所述的方法,其中,所述相应的权重值是从由PSS、SSS和PBCH信号占用的资源数目比例得出的。
11.根据权利要求10所述的方法,其中,为所述至少一些所述SSB的频域/时域CFO和TO估计进行组合以获得改进的CFO和TO补偿的步骤包括对所述SSB的CFO和TO使用相应的权重值进行组和。
12.根据权利要求2所述的方法,其中,对在SSB突发中的SSB的频域CFO估计和频域TO估计是从频域预生成信号中得出的,所述频域预生成信号包括用于所述SSB的SSS信号、PSS信号和PBCH信号,以及可选地,从物理下行链路共享信道PDSCH信号中获得的系统信息块SIB信号。
13.根据权利要求12所述的方法,其中,生成所述频域预生成信号包括:为所述SSB的所述SSS信号、所述PSS信号和所述PBCH信号中的每一个生成频域信号;以及可选地,为所述SIB生成频域信号,其中全部PBCH/PDSCH信号被用作参考信号。
14.根据权利要求13所述的方法,其中,在所述SSB突发中的SSB的时域CFO估计和时域TO估计是从由所述频域预生成信号生成的时域预生成信号导出的。
15.根据权利要求1所述的方法,包括以下步骤:从所述移动通信网络的网络节点接收系统信息;以及动态生成系统信息信号,所述系统信息信号包括以下任意一项或多项:物理小区ID、从PBCH导出的主信息块MIB的时频资源块边界、SIB、SS突发信号、SS突发中的每一个SSB的波束索引、以及MIB和SIB信号的有效载荷位。
16.根据权利要求15所述的方法,包括以下步骤:在接收到SS突发集合中的下一个SS突发时,为每个SSB更新PBCH有效载荷中的系统帧号SFN。
17.根据权利要求1所述的方法,其中,所述无线电设备包括5G新无线电NR移动通信网络中的用户设备UE或网络嗅探设备。
18.一种移动通信系统中的无线电设备,所述无线电设备包括:
存储机器可读指令的存储器;以及
用于执行机器可读指令的处理器,使得当所述处理器执行机器可读指令时,其将无线电设备配置为:
为在所述无线电设备处检测到的SS突发中的多个同步信号SS块SSB中的每一个,基于网络信息信号预测来确定CFO估计和/或TO估计;以及
为至少一些所述检测到的SSB,组合所述CFO估计和/或所述TO估计,以获得用于在所述无线电设备处的信号处理的改进CFO补偿和/或改进TO补偿;
其中选择所述多个检测到的SSB中的至少一些,以用于组合所述CFO估计和/或所述TO估计的方法包括:
(a)确定与SSB相关联的波束参数值;
(b)将确定的参数值与预定的、选定的或计算的阈值进行比较;
(c)如果确定的参数值小于阈值,则忽略与波束相关联的所述SSB的任何CFO和/或TO估计;如果确定的参数值等于或大于阈值,则选择SSB用于组合CFO估计和/或TO估计的步骤;以及
(d)针对所述多个SSB中的每个SSB重复步骤(a)至(c)。
19.一种存储机器可读指令的非暂时性计算机可读介质,其中,当所述机器可读指令由处理器执行时,它们将所述处理器配置为:
为在无线电设备处检测到的SS突发中的多个同步信号SS块SSB中的每一个,基于网络信息信号预测来确定CFO估计和/或TO估计;以及
为至少一些所述检测到的SSB,组合所述CFO估计和/或所述TO估计,以获得用于在所述无线电设备处的信号处理的改进CFO补偿和/或改进TO补偿;
其中选择所述多个检测到的SSB中的至少一些,以用于组合所述CFO估计和/或所述TO估计的方法包括:
(a)确定与SSB相关联的波束参数值;
(b)将确定的参数值与预定的、选定的或计算的阈值进行比较;
(c)如果确定的参数值小于阈值,则忽略与波束相关联的所述SSB的任何CFO和/或TO估计;如果确定的参数值等于或大于阈值,则选择SSB用于组合CFO估计和/或TO估计的步骤;以及
(d)针对所述多个SSB中的每个SSB重复步骤(a)至(c)。
CN202080001316.6A 2020-06-08 2020-06-09 一种移动通信设备的载波频率和时间偏移估计方法 Active CN112075060B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/894,955 US11206167B1 (en) 2020-06-08 2020-06-08 Method for carrier frequency and time offset estimation for mobile communications equipment
US16/894,955 2020-06-08
PCT/CN2020/095180 WO2021248331A1 (en) 2020-06-08 2020-06-09 A method for carrier frequency and time offset estimation for mobile communications equipment

Publications (2)

Publication Number Publication Date
CN112075060A CN112075060A (zh) 2020-12-11
CN112075060B true CN112075060B (zh) 2023-06-27

Family

ID=73656029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080001316.6A Active CN112075060B (zh) 2020-06-08 2020-06-09 一种移动通信设备的载波频率和时间偏移估计方法

Country Status (1)

Country Link
CN (1) CN112075060B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258984B (zh) * 2021-04-29 2022-08-09 东方红卫星移动通信有限公司 多用户自适应频偏消除方法、装置、存储介质及低轨卫星通信系统
CN113473575B (zh) * 2021-06-10 2022-08-16 展讯通信(上海)有限公司 通信处理方法、装置、存储介质、芯片及模组设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108429710A (zh) * 2017-02-14 2018-08-21 三星电子株式会社 用于提供时间偏移和频率偏移估计的设备和方法
CN109803369A (zh) * 2017-11-17 2019-05-24 展讯通信(上海)有限公司 联合时频估计及补偿方法、装置及用户设备
CN110519196A (zh) * 2019-08-13 2019-11-29 深圳磊诺科技有限公司 搜索物理小区标识的方法、计算机可读存储介质及小基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108429710A (zh) * 2017-02-14 2018-08-21 三星电子株式会社 用于提供时间偏移和频率偏移估计的设备和方法
CN109803369A (zh) * 2017-11-17 2019-05-24 展讯通信(上海)有限公司 联合时频估计及补偿方法、装置及用户设备
CN110519196A (zh) * 2019-08-13 2019-11-29 深圳磊诺科技有限公司 搜索物理小区标识的方法、计算机可读存储介质及小基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAN1.RP-171137 "Status Report of WI on New Radio Access Technology *
rapporteur: NTT DOCOMO".《3GPP tsg_ran\TSG_RAN》.2017, *

Also Published As

Publication number Publication date
CN112075060A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
US10231221B2 (en) Preamble sets matched to uplink transmission conditions
JP6419817B2 (ja) それぞれ同期信号および関連情報を送信し、検出するためのネットワークノード、ワイヤレスデバイス、およびそれらにおける方法
KR101048360B1 (ko) 이동국 및 무선기지국
US20190327762A1 (en) User terminal and radio communication method
US11303412B2 (en) Methods and apparatuses for downlink tracking reference signal configuration
CN112335186B (zh) 波束管理
RU2741615C2 (ru) Пользовательский терминал и способ радиосвязи
CN109792675B (zh) 终端以及无线通信方法
JP6312740B2 (ja) セル測定とシステム情報識別とを結合した方法
CN112075060B (zh) 一种移动通信设备的载波频率和时间偏移估计方法
CN113647121B (zh) 一种利用多个参考符号在设备到设备通信链路中处理接收信道信号的方法
TW201931891A (zh) 接收訊號強度指示測量之方法及其使用者設備
JP7051812B2 (ja) 情報指示装置、方法及び通信システム
CN110741581B (zh) 一种在设备到设备通信链路中处理接收信道信号的方法
US20210306985A1 (en) Multi-Source Quasi Collocation of Reference Signals
WO2021042397A1 (en) Method of processing received channel signal in device to device communications link
CN111294917B (zh) 基于pdcch估计定时偏差的方法、装置、存储介质及用户设备
US11206167B1 (en) Method for carrier frequency and time offset estimation for mobile communications equipment
CN110100473B (zh) 在nr中快速接入相邻小区同步信号
US10986669B2 (en) Physical random access channel scheme for wireless networks using an analog bloom filter
JP5710991B2 (ja) 移動通信システム及び基地局
JP5511005B2 (ja) 受信装置および受信方法、並びにプログラム
WO2022265547A1 (en) Network node and method for restraining false preambles
WO2023200445A1 (en) Apparatus and method of cell detection
CN116325671A (zh) 一种使用参考信号的ofdm通信系统大频偏估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40062924

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant