CN112074884A - 提供一种数字式交叉路口的系统和方法 - Google Patents

提供一种数字式交叉路口的系统和方法 Download PDF

Info

Publication number
CN112074884A
CN112074884A CN201980014582.XA CN201980014582A CN112074884A CN 112074884 A CN112074884 A CN 112074884A CN 201980014582 A CN201980014582 A CN 201980014582A CN 112074884 A CN112074884 A CN 112074884A
Authority
CN
China
Prior art keywords
intersection
control unit
state
local
plan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980014582.XA
Other languages
English (en)
Inventor
让-皮埃尔·巴赫瓦纳尼
大卫·G.·汤普森
泰勒·R.W.·艾伯特
马修·M.·伊格诺尔
约翰·E.·普林斯
柯蒂斯·N.·麦克布莱德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maiwei Vision Technology Co ltd
Original Assignee
Maiwei Vision Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maiwei Vision Technology Co ltd filed Critical Maiwei Vision Technology Co ltd
Publication of CN112074884A publication Critical patent/CN112074884A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/097Supervising of traffic control systems, e.g. by giving an alarm if two crossing streets have green light simultaneously
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/02Detecting movement of traffic to be counted or controlled using treadles built into the road
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/042Detecting movement of traffic to be counted or controlled using inductive or magnetic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/087Override of traffic control, e.g. by signal transmitted by an emergency vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/095Traffic lights
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Abstract

提供了一种数字式交叉路口系统。该系统可以包括至少一高可靠设备,该设备与控制进入或穿过所述交叉路口的允许移动的设备相对应。该系统还可以包括:一本地控制单元,设置为生成和输出一交叉路口状态计划;以及一安全控制单元,设置为从所述本地控制单元接受所述交叉路口状态计划、验证所述状态计划并将所述状态计划提供给所述交叉路口中的任何感兴趣的设备,所述任何感兴趣的设备包括所述至少一高可靠设备。该系统可以可选地包括至少一传感器,该至少一传感器对应于能够收集与所述交叉路口或所述交叉路口周围的局部区域有关的信息或影响交叉路口的交通模式的设备或数据源,其中,所述本地控制单元还设置为接受来自所述至少一传感器的输入。

Description

提供一种数字式交叉路口的系统和方法
相关申请的交叉引用
本申请要求于2018年2月21日提交的美国临时专利申请62/633,519 的优先权,其内容在此并入作为参考。
技术领域
以下涉及用于提供一数字式交叉路口的系统和方法。
背景技术
标准道路的交叉路口通常由交通柜、多用途信号头和交叉路口内和周围的传感器组成,以供行人、车辆、紧急车辆和其他道路使用者使用。包括NEMA TS 1-1989R2005、NEMATS2-2016、TEES 2009和ITS柜 v01.02.17b在内的各种标准都从交通信号控制器、检测器机架、驱动信号头的负载开关以及监视单元的角度限定了交通柜,大多数标准是不可互换的,并且用不同的术语来区分每个标准定义的详细功能。
在每种情况下,交通信号控制单元负责根据检测器的输入和经常随时间变化的交通需求来设置允许的移动,检测器机架用作交叉路口传感器的接口,监单元检查机柜和信号头的安全运行。在许多情况下,监控器单元会确认交通控制单元的正常工作、确认机柜内电源的正常工作并检查交叉路口安装过程中技术人员定义的活动信号头状态是否发生冲突。
发现基于当前标准的交叉路口受到若干限制。共有的缺陷有:由于应用的物理布局产生的安装、维护和操作的固有成本,对新设备的扩展性有限,诊断故障的能力差以及无法采用新技术和制造技术。
在所有标准中,传感器和信号头驱动或通过直接到交通机柜的连接来驱动。来自交通机柜的每个直接连接均通过需要在交叉路口内地面上方或下方的通过导管布线,这需要大量挖沟。通常,当添加额外传感器或信号头时,或需要对现有传感器或信号头进行维护时,需要重新挖渠以解决塌陷或导管不足的问题。
基于当前标准的交叉路口还受到交叉路口可以具有的传感器和信号头的数量的限制,并且发现它们大大限制了交叉路口内的高可靠设备的范围。此外,交叉路口故障的远程诊断通常会受到阻碍,因为机柜内部和外部的设备对于诊断信息和日志的检索都不是固有可访问的。换句话说,目前设计和实施的交叉路口并不能固有地支持远程通信
交叉路口中每个物理设备的严格功能划分限制了交通组件制造商采用新技术和制造技术的能力,它们变得可有或者将功能组合到新物理设备中可以降低成本、简化设计或扩展交叉路口的功能。
下文的目的是解决上述缺点中的至少一个。
发明内容
根据本发明的一个方面,提供一种数字式交叉路口系统,包括:至少一高可靠(safety-critical)设备,其对应于控制进入或通过交叉路口的允许移动的设备;一本地控制单元,设置为生成并输出一交叉路口状态计划;一安全控制单元,设置为从所述本地控制单元接收所述交叉路口状态计划、验证所述状态计划并将该状态计划提供给所述交叉路口中任何感兴趣的设备,所述感兴趣的设备包括至少一高可靠设备。
在一个实施方式中,该系统可以进一步包括至少一传感器,该传感器对应于能够收集与所述交叉路口或所述交叉路口周围的局部区域有关的信息或能够影响交叉路口的交通模式的设备或数据源,其中,所述本地控制单元还配置为接受来自所述至少一传感器的输入。
在另一方面,提供一种用于使用数字式交叉路口系统实现交叉路口状态改变的方法,该方法包括:在一本地控制单元处接收来自所述交叉路口中一个或多个传感器的传感器数据,每个传感器对应于一个,所述设备或数据源能够收集与所述交叉路口或所述交叉路口周围的局部区域有关的信息或能够影响交叉路口的交通模式;并由所述本地控制单元输出一状态计划,并将该状态计划发送到一安全控制单元,该安全控制单元设置为从所述本地控制单元接受所述交叉路口状态计划、验证该状态计划,并将该状态计划提供给在所述交叉路口中任何感兴趣的设备,所述任何感兴趣的设备包括至少一高可靠设备,该高可靠设备与控制进入或通过交叉路口的允许移动的设备相对应。
在又一方面,提供了一种处理交叉路口状态计划的方法,该方法包括:在一安全控制单元处接收由一本地控制单元提供给所述安全控制单元的一状态计划,该安全控制单元设置为接受来自所述本地控制单元的所述交叉路口状态计划、验证所述状态计划并将所述状态计划提供给所述交叉路口中任何感兴趣的设备,所述感兴趣的设备包括至少一高可靠设备,该高可靠设备与控制进入或通过所述路口的允许移动的设备相对应;在所述安全控制单元确定所述状态计划是否安全;当所述状态计划不安全时,所述安全控制单元启动交叉路口故障,使所述交叉路口进入路口故障模式;当确定该状态计划安全时,所述安全控制单元批准该状态计划并将该状态计划作为下一状态发布。
在又一方面,提供了一种在数字式交叉路口系统中处理故障模式的方法,该方法包括:确定一高可靠装置有故障,该高可靠装置对应于控制进入或通过所述交叉路口的允许移动的装置;确定发生故障的高可靠设备是否正常运行;当高可靠设备正常工作时,将本地状态更改为本地故障状态;当高可靠设备不正常工作时,由所述数字式交叉路口中的一安全控制单元检测故障,该安全控制单元配置为从所述本地控制单元接受所述交叉路口状态计划、验证所述状态计划并提供所述状态计划到所述交叉路口中任何感兴趣的设备;所述安全控制单元进入交叉路口故障状态并通知所述交叉路口的任何感兴趣的设备交叉路口故障,使所述交叉路口进入交叉路口故障模式,其中,被通知设备进入交叉路口故障状态。
在又一方面,提供了一种配置本地控制单元的方法,该本地控制单元设置为在一数字式交叉路口系统中生成并输出一交叉路口状态计划,该方法包括:在所述数字式交叉路口中的所有设备之间建立可靠通信;向所述本地控制单元注册设备和至少一传感器;一旦所述安全控制单元处于就绪状态并且已经配置有一初始安全表,就向一安全控制单元注册所述本地控制单元,其中所述安全控制单元被重新配置为包括所述本地控制单元;向本地控制单元注册一交叉路口网关,该交叉路口网关与所述本地控制单元通信以允许所述本地控制单元与一通信网络通信;以及操作所述本地控制单元以生成并输出一交叉路口状态计划,以使所述高可靠设备接受所述交叉路口状态计划、验证所述状态计划并将所述状态计划提供给所述交叉路口中的任何感兴趣的设备,所述感兴趣的设备包括所述至少一高可靠设备。
在又一方面,提供了一种在数字式交叉路口中处理新的或修订的安全表的方法,该方法包括:在将一新的高可靠设备添加到所述数字式交叉路口或配置改变之后,一安全控制单元确定是否要添加新设备或要更新现有设备;对于要添加的新设备,增加现有状态向量以生成包括该新设备的一新状态向量;对于现有设备,用一个或多个模式改变来更新现有状态向量;将具有相关表标识符的新安全表发布到所述本地控制单元,以使所述本地控制单元能够发送具有下一个交叉口状态的新安全表;并从所述本地控制单元收到对所述新安全表的确认,并开始在所述安全控制单元上使用所述新安全表。
在其他方面,还可以实现计算机可读介质,其包括用于执行所述方法的计算机可执行指令。
附图说明
现在参考附图描述实施例,其中:
图1是启用数字控制和通信的交通交叉路口的示意图;
图2是用于部署一数字式交叉路口系统的一实施方式的示意图;
图3是启用数字控制和通信的、不带信号头的交通交叉路口的示意图;
图4是示出一交叉路口网络和一外部网络内的通信路径的流关系图;
图5是具有来自数字式交叉路口系统的相应实体的OSI(开发系统互连)层的示意图;
图6是在数字式交叉路口主核上运行的一组应用堆栈的一示例的示意性框图;
图7是集成有车辆信号头的数字式交叉路口主核的示意性框图;
图8是交叉路口状态改变的流程图;
图9是一个交叉路口故障模式的流程图;
图10是另一交叉路口故障模式的流程图;
图11是交叉路口故障模式恢复的流程图;
图12是用于配置本地控制单元(LCU)的流程图;
图13是示例性交叉路口的示意图;和
图14是用于配置安全控制单元(SCU)的流程图。
具体实施方式
下面提供了使用数字可寻址连接组件的传统交叉路口基础设施的重新设计。这使得结构上传统体系结构相比,能够提供奇偶校验或增强的功能,并且可以降低总拥有成本。下面还提供了一可扩展的平台,该平台可允许第三方来开发设备(例如传感器的扩展、高可靠设备、ACU 和LCU(参见下文))或充当输入或输出的应用,这些输入或输出在交叉路口进行无缝通信和交互,而不一定需要核心机柜硬件。此外,可以使用交叉路口中现有设备的输入/输出来构建设备和应用,但可以提供额外或改进的功能。也就是说,可以使用以下描述的系统和方法来构建全新的交叉路口,也可以使用混合了旧有基础结构和新基础结构的实施来构建,而第三方可以在以下所述的平台之上构建。
这样,交通交叉路口可以更轻松地集成到与互联网连接的基础设施中,例如自治式交通系统和智慧城市,同时为当前的物理故障管理单元 (MMU)设备提供等效安全性。可扩展的设计可以提供牢靠性、安全性和功能,所述功能可以扩展到为交叉路口提供其他功能的非核心设备。
现在参考附图,图1提供了一交通交叉路口10的示意图,在该交通交叉路口有一对道路彼此交叉。可以理解的是,图1中所示的交叉路口10仅是一个示例,而在此所讨论的原理同样可以适用于其他类型的交叉路口或交通流设备的出现,例如,分阶段进入入口、交通环岛等。在该示例中,交叉路口10包括在每个角落的信号头12。每个信号头12 包括一组交通灯,用于控制一个或多个方向上的交通。例如,典型的信号头12可以包括红色、黄色和绿色的光以及一额外的用于控制转向信号的转向灯。除了控制车辆交通(例如,控制车辆16通过交叉路口10 的运动)外,许多交叉路口10中还为行人14设有人行横道或其他信号控制装置18,用于穿过交叉路口10。在本例中,在交叉路口10处还例如设有一行人检测装置15,使得交叉路口10能够知道车辆和行人之间的潜在安全冲突。
交叉路口10还包括多个传感器(在图1中标识为“S”),其可以包括用于检测车辆或行人、获取数据、报告或传递数据等的附加硬件或其他组件。为了便于说明,图1使用符号来表示所示出的设备和组件的示例能力。在此示例中,加号或“+”表示安全的或高可靠的设备,“挂锁图标”表示安全或牢靠的设备。安全模块可由允许交叉路口10内的设备进行通信的某些组件使用(例如,在一个实施例中,系统可以在OSI 层5和6上操作安全模块)。交叉路口10外部的设备还可以具有一安全模块,以与交叉路口10内的设备通信。在此,具有安全模块的设备可以认为是“牢靠的”。可以理解的是,如图1所示,所示的设备和组件可以包括传感器、安全性和牢靠功能,或这些功能的任意组合。
在该示例中,感应环路存在/脉冲装置20在到达交叉路口10的一个途径处嵌入车道中,用于检测车辆16的存在或通过。还示出了埋设在交叉路口10的一个途径处的车道中的磁力存在/脉冲检测器22。在图1 所示的另一个例子中,示出了用于检测碰撞或其他车辆事故28的事故检测装置24、用于检测车辆16的存在或通过的车辆检测装置26以及允许紧急车辆32占先信号灯的紧急车辆占先传感器30。还示出了车辆到基础设施(V2I)接入点62,其允许车辆16与连接的设备和实体的一个或多个网络(诸如交通网络)通信。V2I组件正日益成为智能城市的核心组件,其使得车辆能够与基础设施进行通信。可以理解的是,取决于V2I的应用,这些组件可以认为是高可靠的。
为了说明起见,在该示例中,图1还包括一铁路公路交叉口34和栏杆36,它们也可以包括一个或多个铁路传感器38,以检测轨道车辆的接近以操作栏杆36。这样,可以理解,交叉路口10可以包括多个传感器、设备和装置,以不仅控制通过交叉路口10的流量,而且还从交叉路口10之内或附近以及交叉路口10之外的实体获取信息。
为了增强交叉路口10处的通信能力、可扩展性和互操作性,提供了一数字式交叉路口系统50。系统50被示为下面描述的模块的集合,其可以使用软件、硬件、软件和硬件的组合来实施,并且可以以任何合适的物理配置部署在交叉路口10中或附近。稍后参考图6和7描述这种合适配置的示例实施。
系统50包括一安全控制单元(SCU)52、一本地控制单元(LCU) 54、一交叉路口网关(IG)56和部署在交叉路口10处的可选的辅助控制单元(ACU)58。各种额外的传感器64可以经由LCU 54将数据提供给系统50,IG 56可以通过访问网络70来允许系统50与交叉路口10外部进行通信,在网络70中部署了一外部ACU 60。可以理解,术语“外部ACU 60”仅用于指位于远离被检查的特定交叉路口10的ACU 60,并且其本身可以是另一个路口中的本地ACU 54(例如,在更宽的交通网络范围内)。
ACU 58是设置为从传感器设备获取输入并且向LCU 54输出控制指令的设备(例如,具有在其上执行的软件应用)。即,在交叉路口处的任何传感器(如S所示)可以与ACU 58通信。如上所述,ACU 58、60 可以在交叉路口10的远端(60)或本地(58)。交叉路口10可以具有多个ACU 58。
LCU 54接受来自传感器设备(S)和ACU 58的输入,并将路口状态计划l’(t)输出到SCU52。在该配置中,路口10包含单个LCU 54。
SCU 52是一个模块,其从LCU 54获取交叉路口状态计划l’(t),以验证所述状态计划,并将该状态计划发布给交叉路口10中任何感兴趣的设备,该感兴趣的设备可以包括流量控制设备。流量控制设备是指影响行人、车辆或交叉路口10内其他实体的允许移动的任何设备,其安全性由安全模块(S)提供。流量控制设备可以如上所述包括,例如,信号头12、V2I单元62,行人信号18,铁路安全栏杆36等。
可以使用路由器或等效通信设备或节点来实现IG 56。在该示例中, IG 56实施为在OSI层4、5和6上运行的路由器,以提供一网关给交叉路口10外部的设备。IG56或单独的安全模块可以可选地通过异常和入侵检测提供保护并且是交叉路口10内的一可靠设备。IG56可以实施为具有智能路由器功能的实体,该实体允许交叉路口10外部的设备与交叉路口10内部的设备进行通信。交叉路口10可以具有多个IG 56。
传感器(S)是可以收集与交叉路口10或交叉路口10周围的局部区域有关的信息的任何设备或数据源,或者是可能(本地或远程)影响交通模式的设备/数据源。也就是说,本文描述的数字式交叉路口可以用作传感器数据的“导管”,该传感器数据可以与交通数据有关或可以不与交通数据有关,或者仅与交通数据松散地耦合(例如,在智能城市实施中)。例如,可以通过数字式交叉路口获取环境噪声水平的测量值。此外,许多数字式交叉路口可以充当遍布整个城市、地区、国家等的一系列地理分布的数据管道。交叉路口中的传感器示例包括感应环路检测器、磁传感器、视频图像处理器、微波雷达传感器、红外线传感器、激光雷达传感器、众包数据、无线设备传感器、车辆到车辆(V2V)和V2I、行人按钮和传感器、紧急车辆占先(EVP)传感器、公交信号优先(TSP) 传感器、天气预报数据、网络拥塞预测数据、铁路传感器等。这些类型的传感器中的一些在图1中示例性地示出并在上面介绍。
由于交叉路口10的性质,尤其是在车辆、行人和其他物体经过并穿越一个或多个道路(也可能有流动的车辆、行人等)的情况下,交叉路口10中的某些设备可能被视为“高可靠”。可以对车辆、自行车、行人等或基础设施本身造成安全风险的、网络上的任何设备/单元/组件给予此高可靠指定。这种潜力可能被视为运动流冲突,其中两个角色在交叉路口的路径同时发生冲突。可能会遇到此风险的其他方式是未能给网络上的另一个节点发出通知特定运动信号,或将错误数据提供给网络上的另一个节点。出现故障的高可靠设备可以在收到这样做的指示时进入交叉路口故障。还可以有激活交叉路口故障模式的方法,例如闪烁红灯。
高可靠组件包括但不限于:流量控制设备、SCU 52、LCU 54和在为了高可靠输入到LCU 54需要传感器输出时的ACU 58。
因此,在图1所示的配置中,提供了可寻址的交叉路口组件,其允许在私有安全网络内进行基于消息的通信。如下所述,在某些实施例中,该网络可以按子网划分。该体系结构还允许异常检测(日志和诊断)以及消息中介。
此外,IG 56提供的外部连接允许可靠的因特网连接以实现额外功能并访问云计算功能。例如,交叉路口监控、远程管理(交叉路口状态逻辑和时序计划的手动或自动重新配置)、自适应信号控制(实时更新) 和交叉路口操作模式更改(例如,进入紧急响应模式、激活占先功能等)。所述外部连接还提供对外部连接中断的容忍。例如,通过在网络中提供冗余(有线、无线、断开操作模式)。
可以假设设备内部网络的通信状态不安全,因此可以对所有消息进行数字签名,以证明消息始发者的身份和内容的完整性。如果需要,还可以将加密层应用于网络。可选的入侵检测系统可用于侦听网络消息,并识别失败的数字签名并发出警报。对于异常检测,机器学习可用于识别通信模式中的异常,以识别故障或异常运行状况。
可以理解,物理组件可以通过有线或无线连接。所提出的安全机制旨在满足有线/无线通信。
对于通信,可以利用某些消息,例如,通用故障、特定故障、诊断或状态消息、交叉路口验证消息、控制消息和输入消息。在这里,控制消息通常可以指任何ACU到LCU、LCU到SCU或SCU发出的流控制消息。
一些特定的故障可以包括:传感器报告或检测到的故障(例如,检测器卡住)、流量控制设备报告或检测到的故障(例如,信号头已发生故障)、识别出检测到的无效控制指令以及连接故障。
控制消息可以包括旨在管理交叉路口内的流动的任何消息,而输入消息可以包括例如指示交叉路口状态或事件的本地传感器、占先消息或指示对交叉路口10有影响的远程传感器64。
如将在下面更详细解释,交叉路口10可以采取某些操作模式,例如正常、交叉路口故障和诊断。在正常模式下,系统使用编程的信号控制算法并对输入做出响应,以调整时序或交叉路口状态。当交叉路口10 遇到破坏交叉路口功能的故障时,就会发生交叉路口故障。如果故障可以自动恢复,则系统将返回正常操作模式。恢复可能需要外部干预,这时系统才能恢复正常运行。
现在参考图2,示出了在特定交叉路口10处的系统50的配置的一个示例。在该示例中,SCU 52、LCU 54、本地ACU 58和IG 56在信号头12之一的特定物理设备、机柜或其他结构中组合在一起,其他信号头12具有它们自己的、在“主”信号头12处与SCU 52通信的ACU58。多个ACU58也可以彼此通信。可以理解,由于SCU 52、LCU 54和ACU 58可以实施为软件实体(例如,模块、服务或库),因此它们可以以不同的物理配置组合在一起。例如,一个以上的信号头12可以包括SCU 52、LCU 54和ACU 58,其中只有一个SCU 52和一个LCU 54在给定的交叉路口10是活动的。因此,可以在信号头本身内实现图2所示的组合,而无需独立的机柜或其他结构。在另一示例中,系统50可以以类似于传统交叉路口的方式来部署,该交叉路口有包含物理上不同的设备的机柜但是具有SCU 52、LCU 54和ACU 58功能。
如图3所示,交叉路口10也可以实施为不需要信号头12,例如,在自治或半自治交通网络中,其中多个车辆16经由V2I接入点62与系统50直接通信,和/或彼此通信。在没有信号头12的情况下,系统50 的组件可以容装在任何可用的壳体、机柜或其他结构中。在该示例中,由于车辆16的自治特性而消除了对信号头12的需求,因此,图3示出了非传统的“交叉路口”。这样,在此描述的数字式交叉路口可以用于采用信号头12等的传统交叉路口10,以及可以利用不同基础设施或不需要某些传统基础设施的未来的交叉路口。可以理解,在一些不需要传统基础设施的未来交叉路口中,本文所描述的实体(例如,SCU 52、LCU 54和ACU58)可以在物理上远离交叉路口和/或虚拟化。
图4的流关系图示出了交叉路口10与外部网络70之间的IG 56的作用。在图4中,可以理解,实线表示用于交叉路口操作的通信路径,而虚线表示可选的通信路径。IG 56从外部网络70接收来自ACU 60和传感器80的数据。在交叉路口10内,IG 56可以与ACU 58、LCU54、 SCU 52以及各种传感器64和流量控制设备82通信。交换的数据可以包括到例如应用层中的LCU的控制或编程指令。消息的协议和内容通常取决于交叉路口10中运行的特定交通控制应用。在自适应控制系统中,消息可以是争夺交通资源或网络级指令的参与者。在标准的传统半致动网络中,消息可以是关于要使用的偏移量或交通计划甚至新的交通计时计划的指令。在某些情形,消息还可以对应应用于来自非本地上游或下游传感器的消息的身份转换。
在一个非限制性示例中,数字式交叉路口系统50可以部署在如图5 所示的标准OSI(开发系统互连)堆栈100上,其中利用了四个OSI层。在物理层(01)处放置物理模块以及交叉路口和模块之间的连通性的一般拓扑。在通信层(02、03、04),定义了模块之间的通信协议。作为安全层(05、06),数字式交叉系统50中内置安全机制,适用于内部和外部模块。在应用/逻辑层(07),是基本的基本控制器逻辑、安全逻辑、状态和时序配置、输入/输出处理以及特定的应用实例,例如V2I、远程管理、占先等。
在图5中还示出与这些层相关联的实体。例如,IG 56在安全层(05、 06)、传输层(04)和网络层(03)操作。LCU 54、SCU 52、ACU 56 和流控制设备82在应用层(07)操作,并且对应负责控制、感测、信息和安全相关方面的设备/实体/模块。安全模块也是安全层(05、06) 的一部分,执行与安全相关的功能,例如身份验证、加密、入侵检测、异常检测等。
图6和7示出了交叉路口10中的设备的实施的示例。在该实施中,利用了数字式交叉路口主核(DIPC)110,其包括预定处理规范,(例如,最少)用于微处理器、存储器、存储装置的以及用于运行数字式交叉路口堆栈的支持性外围设备。可以理解,DIPC 110可以被实施为片上系统、模块、PCB(印刷电路板)子系统等。在该示例中,DIPC 110包括以下预定规范:处理体系结构、时间、内存、存储器、电源、加密加速器、 I/O(输入/输出)和可选的子系统。
预定要求的目的是支持诸如图6所示的应用堆栈。每个堆栈都可以在其自己的包容器中运行,该包容器与由在主机操作系统(OS)112中运行的包容器管理系统114提供的硬件许可隔离。在此示例中,核心堆栈包括一消息中介116,其是用于栈间通信的消息传递系统;一主题中介118,其是用于栈间通信的发布/订阅系统;一反向代理120,其负责认证管理和负载均衡;和一数据货币化模块122,其负责数据访问控制和货币化。该堆栈还可以包括用于交叉路口10中各种设备的一网关应用126、一安全控制应用128、一本地控制应用130、一辅助控制应用 132、一传感器应用134和一流控制应用136。
可以理解的是,高可靠设备可能有额外要求。例如,这样的高可靠设备可能最少需要加密支持,来进行许可和身份验证以及对安全密钥进行数据隔离。还可以包括防篡改能力和对旁道攻击的恢复能力。
交叉路口状态改变包括对行人、车辆或其他的允许移动的任何改变。现在参考图8,示出了这种交叉路口状态改变的流程图。在200,流逻辑以交叉路口状态I(t-1)开始。ACU58从202的S1,S2…Sq表示的传感器组接收传感器数据。ACU 58将控制指令(ACU1(t)、ACU2(t)… ACUq(t))输出到LCU 54。在208,LCU 54还可以从由S'表示的传感器组接收传感器数据。LCU 54输出一交叉路口状态计划I'(t),并将该状态计划提供给SCU 52。
SCU 52在212确定改状态计划I'(t)是否安全。如果不安全,则SCU 52在214发起交叉路口故障,这使得交叉路口在218进入交叉路口故障模式。例如,信号头12可以被置于“闪灯”,其效果是信号头12所有的红灯闪烁。可以理解,闪灯本身不是交叉路口10的故障模式,而是作为进入路口故障模式的结果的、交叉路口10的典型“状态”。另一方面,如果确定状态计划I'(t)安全,则SCU 56在214批准该状态计划,并将其发布为当前/下一个状态I(t)。I(t)在220分别发布给非高可靠消费者以影响设备特定的行为,并在224发布给高可靠消费者。高可靠消费者在226确定状态I(t)是否可以应用。如果是,则在228应用该状态。如果否,则在230拒绝该状态,并且可以在232发起局部故障状态。可以理解,局部故障状态对应设备故障,例如,灯泡烧坏。局部故障状态的一些示例包括:a)高可靠设备接收到交叉路口状态I(t),因为该设备遇到物理故障,因此无法应用该交叉路口状态;或者b)设备接收到交叉路口状态I(t),但指示设备进入未知状态,或c)设备接收到交叉路口状态I(t) 但未配置该设备。
图9和10示出了概括故障模式的流程图。首先参考图9,在250,一高可靠设备发生故障,然后在252引起逻辑确定该设备是否正常工作。如果是,则该设备在254将其状态改变为“本地故障”,并且该设备在 256向SCU 52通知。如果该设备不正常工作,则SCU 52在260处检测到该本地故障(例如,通过任一方向上的通信失败)。在258,SCU 52 进入“交叉路口故障”状态,并在步骤262向高可靠设备和交叉路口10 感兴趣的任何其他设备通知交叉路口故障,以确保该交叉路口整体上进入交叉路口故障模式。通常,该模式包括所有信号头都处于闪烁状态。然后,所通知的设备在264进入交叉路口故障状态。
如图10所示,当SCU 52在270处进入故障状态时,SCU 52在272 处向设备通知该故障状态,然后该设备在274处进入交叉路口故障状态。
图11示出了用于故障模式恢复的流程图。在300处的一第一场景中,交叉路口10由于设备处于局部故障而处于交叉路口故障。该设备在302 处恢复并通知SCU 52,并采取交叉路口故障状态。在304处的第二场景,由于设备无法与SCU 52进行通信,所以交叉路口10处于交叉路口故障。在306处的第三场景,由于SCU故障而交叉路口10处于交叉路口故障,而SCU 52在308从故障状况中恢复。在这些场景中的任何一个或全部中,SCU 52在310确定它是否可以验证向其报告的所有设备并且都处于交叉故障状态。如果是,则SCU 52在312处恢复发布路口状态I(t)的操作。如果否,则在314处交叉路口保持交叉路口故障状态。
现在参考图12,示出了用于配置LCU 54的操作的流程图。在350 处,已经建立了影响交叉路口的所有设备之间的可靠通信。在352处为交叉路口定义了ACU 58和相关的控制逻辑,并且将该逻辑提供给了 ACU 58。在354处,还为每个ACU 58定义了传感器组64,并且在356 处传感器组64向ACU 58注册。传感器组65可包括用于ACU 58或LCU 54的所有参考传感器。在一简化示例中,考虑包括一交叉路口10、多个局部传感器和多个下游传感器的走廊。可以定义一ACU 58代表下游传感器请求服务。在该示例中,LCU 54将具有参考交叉路口10本地的传感器的传感器组64,而ACU 58将具有参考下游传感器的传感器组。
在358安装和配置交叉路口本地的传感器64,然后在360向ACU 58 注册。在364安装和配置流量控制和其他安全设备并在366向SCU 52 注册,在362向LCU 54这些设备和传感器。在368安装SCU 52,在370 配置初始安全表ST(x),并在374认定SCU 52准备就绪。一旦SCU 52 在374指示它处于就绪状态,LCU 54向SCU 52注册,并且用户在372 定义并验证用于部署的控制程序。在376安装并配置IG 56,它是在362 处向LCU 54注册的设备之一,可以理解,流控制设备配置、SCU安装以及IG安装和配置可以是并行或依次进行,或者部分并行的而部分依次进行。
一旦在374处SCU 52就绪,则在378处,LCU 54向SCU 52进行注册,并且在380处,SCU被重新配置为包括LCU 54。由于缺乏交叉路口监视和控制可能会导致不安全使用交叉路口10,LCU 54可以考虑为高可靠设备。此行为与传统交叉路口的安全操作相一致。然后,LCU 54在382处开始操作。
SCU 52在发布之前验证所有建议的交叉路口状态。通过在安全表 ST(x)表示的函数中评估建议的状态来执行验证。安全表ST(x)的功能可以通过以下方式定义。
对于一个交叉路口中的N个安全设备,用x={x1,x2,...xN}表示一个建议的交叉路口状态。每个xi属于{0,m1,m2,...,mn_i},其中:
mj:安全装置i的一操作模式;
0:设备i未报告或处于本地故障情况;和
n_i:设备i操作的模式数。
然后,安全表为:
ST(x)=0:x是不安全的配置;和
1:x是安全配置。
现在参考图13,示出了具有两个移动的交叉路口10的简化示例。在该示例中,交叉路口10具有3个安全装置:用于移动1的流量控制装置(标记1),用于移动2的流量控制装置(标记2)和LCU(标记3)。每个状态为:
1:G,Y,R
2:G,Y,R
3:开启
对于这些设备,此简单系统的ST(x)为:
表1:示例状态表
Figure BDA0002640471240000151
Figure BDA0002640471240000161
在图14示出了阐释具有新的或修订的安全表ST(x)的SCU 52的配置的流程图。在400处,假定定义了现有的ST(x),并且在402处,添加了新的安全设备或配置发生了改变(例如,更多的状态,更少的设备等)。应当理解,x可能最初是未配置交叉路口的空向量。对于要添加或配置的安全设备,在404将ID和关联的模式m1,m2,...,mn_ID发送到 SCU 52,并在406接收。
SCU 52在407处确定该设备是新设备还是现有设备。对于新设备,在408通过用一个表示新设备的可能模式的附加字段xN'扩展现有向量x ={x1,x2,…,xN}来构造新状态向量x'。在410,随后对默认安全表ST'(x') 的属性建议,忽略新设备的状态。如果在407,SCU52确定设备已知(存在),则定义新的状态向量,其中相关字段xk'被新模式{0,m1,...mj} 替换,如409所示。在这种情况下,默认建议的安全表ST'(x')不能自动生成,而必须由用户在412提供。
在410创建默认的建议的安全表ST'(x')的同时,用户还可以选择向 SCU 52提供替代的ST'(x')。一旦ST'(x')中的所有条目都在414提供给 SCU 52,在416处具有相关的表标识符新的安全表作为新的ST(x)发布到LCU。在418,LCU已收到SCU使用的新表的通知。并随后发送下一个交叉路口状态I(t)以及接收到的安全表标识符,以确认新表的使用。在418收到LCU对安全表变化消息的确认后,SCU可以在420开始使用新的安全表并弃用旧的安全表。416至420的步骤类似于三向握手,以同步并确认安全表的更改。
在某些配置中,可以对在IG 56后面创建的网络进行分区,以为某些组件引入额外的隔离和安全层。可以这样做以将高可靠设备与网络的其余部分隔离开,从而通过防止从非高可靠节点到高可靠节点的通信来提供额外的安全层。可以通过许多方式来实现安全性,包括例如子网。在一个实施方式中,这样的配置可以包括两个子网,第一个包括交叉路口10中的所有内容,而第二个(即子网)仅用于高可靠设备。可以理解,也可以使用两个以上的子网。
为了阐释的简单和清楚起见,在适当的情况下,可以在附图之间重复附图标记以指示相应或相似的元件。另外,阐述了许多具体细节以便提供对本文所述示例的透彻理解。然而,本领域普通技术人员将理解,可以在没有这些具体细节的情况下实施本文描述的示例。在其他情况,未详细描述公知的方法、过程和组件,以免混淆本文所述的示例。而且,在此的描述不应被认为是对本文描述的示例的范围的限制。
可以理解,本文中使用的示例和相应示图仅出于说明性目的。在不脱离本文所表达的原理的情况下,可以使用不同的配置和术语。例如,可以在不背离这些原理的情况下添加、删除、修改或设置具有不同连接的组件和模块。
还应当理解,本文示例性的执行指令的任何模块或组件可以包括或可以访问计算机可读介质,所述计算机可读介质诸如存储介质、计算机存储介质或数据存储设备(可移动和/或不可移动),例如磁盘、光盘或磁带。计算机存储介质可以包括以用于存储信息诸如计算机可读指令、数据结构、程序模块或其他数据的、以任何方法或技术实现的易失性和非易失性、可移动和不可移动介质。计算机存储介质的示例包括RAM (随机存取存储器)、ROM(只读存储器)、EEPROM(电可擦只读存储器)、闪存或其他存储技术、CD-ROM(只读光盘驱动器)、数字多功能通用光盘(DVD)或其他光学存储、磁盒、磁带、磁盘存储或其他磁性存储设备,或可以用于存储所需信息并且可以由应用、模块或两者访问的任何其他介质。任何这样的计算机存储介质可以是系统50的一部分、系统50的任何部件或与系统50有关的部件等,或者是可访问或可连接的。可以使用可以由这种计算机可读介质存储或以其他方式保存的计算机可读/可执行指令来实现本文描述的任何应用或模块。
在此描述的流程图和图中的步骤或操作仅是示例。在不脱离上述原理的情况下,这些步骤或操作可以有许多变化。例如,可以以不同的顺序执行步骤,或者可以添加、删除或修改步骤。
尽管已经参考某些特定示例描述了上述原理,但是如所附权利要求概括的各种修改对于本领域技术人员是显而易见的。

Claims (23)

1.一种数字式交叉路口系统,包括:
至少一高可靠设备,对应于控制进入或通过所述交叉路口的允许移动的设备;
一本地控制单元,设置为生成并输出一交叉路口状态计划;和
一安全控制单元,设置为从所述本地控制单元接受所述交叉路口状态计划、验证所述状态计划并将所述状态计划提供给所述交叉路口中的任何感兴趣的设备,所述感兴趣的设备包括所述至少一高可靠设备。
2.根据权利要求1所述的系统,其特征在于,还包括至少一传感器,所述至少一传感器与能够收集与所述交叉路口或所述交叉路口周围的局部区域有关的信息或能够影响交叉路口的交通模式的设备或数据源相对应,其中,所述本地控制单元还设置为接受来自所述至少一传感器的输入。
3.根据权利要求2所述的系统,其特征在于,所述至少一传感器包括多个传感器,所述多个传感器包括至少一本地传感器和至少一远程传感器。
4.根据权利要求1所述的系统,其特征在于,所述高可靠设备、所述本地控制单元和所述安全控制单元中的至少一个包括一用于在所述系统内可靠通信的安全模块。
5.根据权利要求1所述的系统,其特征在于,还包括至少一辅助控制单元,其设置为接受来自一个或多个传感器设备的输入并将一个或多个控制指令输出到所述本地控制单元。
6.根据权利要求5所述的系统,其特征在于,包括一本地辅助控制单元。
7.根据权利要求5或6所述的系统,其特征在于,包括一远程辅助控制单元。
8.根据权利要求5-7之一所述的系统,其特征在于,所述至少一辅助控制单元包括一用于在所述系统内可靠地通信的安全模块。
9.根据权利要求1所述的系统,其特征在于,还包括至少一个与所述本地控制单元通信的交叉路口网关,以允许所述本地控制单元与一通信网络通信。
10.根据权利要求9所述的系统,其特征在于,所述交叉路口网关设置为使得所述交叉路口外部的设备能够与所述交叉路口内部的设备通信。
11.根据权利要求1所述的系统,其特征在于,所述安全控制单元连接到用于控制所述交叉路口交通的多个信号头中的每一个。
12.根据权利要求11所述的系统,其特征在于,所述安全控制单元连接到部署在所述多个信号头中的每一个中的一辅助控制单元。
13.根据权利要求11所述的系统,其特征在于,所述安全控制单元连接到一车辆到基础设施网络,用于控制不需要信号头的交叉路口。
14.根据权利要求1-13之一所述的系统,其特征在于,在所述系统的任何组件中运行的应用都是由软件驱动、控制和更新的。
15.一种用于使用数字式交叉路口系统实施交叉路口状态改变的方法,该方法包括:
在一本地控制单元处接收来自所述交叉路口中的一个或多个传感器的传感器数据,每个传感器对应于一设备或数据源,该设备或数据源能够收集与所述交叉路口或所述交叉路口周围的局部区域有关的信息或影响交叉路口的交通方式;和
由所述本地控制单元输出一状态计划,并将该状态计划发送到一安全控制单元,该安全控制单元配置为从所述本地控制单元接受所述交叉路口状态计划、验证所述状态计划并将该状态计划提供给在所述交叉路口中任何感兴趣的设备,所述任何感兴趣的设备包括至少一高可靠设备,该高可靠设备与控制进入或通过所述交叉路口的允许运动的设备相对应。
16.一种处理交叉路口状态计划的方法,该方法包括:
在一安全控制单元处接收由一本地控制单元提供给所述安全控制单元的一状态计划,所述安全控制单元设置为从所述本地控制单元接收所述交叉路口状态计划、验证所述状态计划并提供所述状态计划给所述交叉路口中的任何感兴趣的设备,该任何感兴趣的设备包括至少一高可靠设备,该高可靠设备与控制进入或通过交叉路口的允许移动的设备相对应;
在所述安全控制单元确定所述状态计划是否安全;
当所述状态计划不安全时,所述安全控制单元启动交叉路口故障,使所述交叉路口进入交叉路口故障模式;和
当确定所述状态计划安全时,所述安全控制单元批准该状态计划并将该状态计划发布为下一个状态。
17.根据权利要求16所述的方法,其特征在于,将所述下一个状态发布到所述至少一高可靠设备,以确定是否可以应用该状态,其中,拒绝该状态将启动与设备故障相对应的一本地故障状态。
18.一种在数字式交叉路口系统中处理故障模式的方法,该方法包括:
确定一高可靠设备有故障,该高可靠设备对应于控制进入或穿过所述交叉路口的允许移动的设备;
确定发生故障的所述高可靠设备是否正常工作;
当所述高可靠设备正常工作时,将本地状态更改为本地故障状态;
当所述高可靠设备不正常工作时,由所述数字式交叉路口中的安全控制单元检测故障,该安全控制单元配置为从所述本地控制单元接收所述交叉路口状态计划、验证所述状态计划并提供所述状态计划到所述交叉路口中任何感兴趣的设备;和
所述安全控制单元进入路口故障状态并将路口故障通知所述交叉路口中任何感兴趣的设备,以使得所述交叉路口进入交叉路口故障模式,其中所通知的设备进入路口故障状态。
19.根据权利要求18所述的方法,其特征在于,所述本地状态对应于本地故障状态,所述方法还包括:
所述安全控制单元从在本地故障状态下的所述高可靠设备接收所述安全控制单元已恢复的通知;
所述安全控制单元确定它是否可以验证向其报告的高可靠设备,并根据确定结果通过发布所述交叉路口状态来恢复操作或保持所述交叉路口故障状态。
20.根据权利要求18所述的系统,其特征在于,所述交叉路口故障是由一感兴趣的设备无法与所述安全控制单元进行通信或者所述安全控制单元处于故障状态且可以自行恢复,所述方法还包括:
所述安全控制单元确定它是否可以验证对其进行报告的感兴趣的设备,并根据确定结果通过发布所述交叉路口状态恢复操作或保持所述路口故障状态。
21.一种配置本地控制单元的方法,该本地控制单元设置为在一数字式交叉路口系统中生成和输出一交叉路口状态计划,该方法包括:
在所述数字式交叉路口的所有设备之间建立可靠通信;
向所述本地控制单元注册这些设备和至少一个传感器;
一旦安全控制单元处于就绪状态并且已经配置有一初始安全表,就向所述安全控制单元注册所述本地控制单元,其中所述安全控制单元被重新配置为包括所述本地控制单元;
向所述本地控制单元注册一交叉路口网关,该交叉路口网关与所述本地控制单元通信以允许所述本地控制单元与一通信网络通信;和
操作所述本地控制单元以生成和输出一交叉路口状态计划,使所述高可靠设备接收所述交叉路口状态计划、验证所述状态计划并将所述状态计划提供给所述交叉路口中任何感兴趣的设备,该感兴趣的设备包括至少一高可靠设备。
22.一种在数字式交叉路口中处理新的或修订的安全表的方法,该方法包括:
在将一新的高可靠设备添加到所述数字式交叉路口或更改配置后,一安全控制单元确定是要添加一新设备还是要更新一现有设备;
对于要添加的新设备,增加现有状态向量以生成包括该新设备的一新状态向量;
对于现有设备,用一个或多个模式改变来更新现有状态向量;
将一具有相关表标识符的新安全表发布到一本地控制单元,以使所述本地控制单元能够发送具有下一个交叉口状态的新安全表;和
从所述本地控制单元收到所述新安全表的确认,并开始在所述安全控制单元上使用所述新安全表。
23.一种计算机可读介质,包括用于执行根据权利要求15-22之一所述的方法的计算机可执行指令。
CN201980014582.XA 2018-02-21 2019-02-21 提供一种数字式交叉路口的系统和方法 Pending CN112074884A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862633519P 2018-02-21 2018-02-21
US62/633,519 2018-02-21
PCT/CA2019/050215 WO2019161501A1 (en) 2018-02-21 2019-02-21 System and method for providing a digital intersection

Publications (1)

Publication Number Publication Date
CN112074884A true CN112074884A (zh) 2020-12-11

Family

ID=67686710

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980014582.XA Pending CN112074884A (zh) 2018-02-21 2019-02-21 提供一种数字式交叉路口的系统和方法

Country Status (5)

Country Link
US (1) US20200388151A1 (zh)
EP (1) EP3738113B1 (zh)
CN (1) CN112074884A (zh)
CA (1) CA3091402A1 (zh)
WO (1) WO2019161501A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3098730A1 (en) 2018-05-10 2019-11-14 Miovision Technologies Incorporated Blockchain data exchange network and methods and systems for submitting data to and transacting data on such a network

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2003638A (en) * 1977-09-02 1979-03-14 Siemens Ag Traffic signalling system
EP1830332A2 (en) * 2006-03-04 2007-09-05 Hatton Traffic Management Limited Traffic light control system
US20100325720A1 (en) * 2009-06-23 2010-12-23 Craig Stephen Etchegoyen System and Method for Monitoring Attempted Network Intrusions
WO2015185009A1 (zh) * 2014-06-06 2015-12-10 郝明学 交通信息控制、获取方法,交通信息控制、接收装置以及交通信息指示系统
EP3029652A1 (en) * 2014-12-02 2016-06-08 Robert Bosch Gmbh Collision avoidance in traffic crossings using radar sensors
US20160247400A1 (en) * 2015-02-23 2016-08-25 GE Lighting Solutions, LLC Remote control of light signaling devices
CN107067817A (zh) * 2017-04-17 2017-08-18 北京理工大学 一种针对有轨电车在交叉路口防止冲突的方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016018936A1 (en) * 2014-07-28 2016-02-04 Econolite Group, Inc. Self-configuring traffic signal controller
US9836969B2 (en) * 2015-05-29 2017-12-05 Miovision Technologies Incorporated System and method for connecting traffic intersections
US10297147B2 (en) * 2016-12-06 2019-05-21 Flir Commercial Systems, Inc. Methods and apparatus for monitoring traffic data
EP3555876A4 (en) * 2016-12-19 2020-08-19 Thrugreen, LLC CONNECTED AND ADAPTIVE VEHICLE TRAFFIC MANAGEMENT SYSTEM WITH DIGITAL PRIORIZATION

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2003638A (en) * 1977-09-02 1979-03-14 Siemens Ag Traffic signalling system
EP1830332A2 (en) * 2006-03-04 2007-09-05 Hatton Traffic Management Limited Traffic light control system
US20100325720A1 (en) * 2009-06-23 2010-12-23 Craig Stephen Etchegoyen System and Method for Monitoring Attempted Network Intrusions
WO2015185009A1 (zh) * 2014-06-06 2015-12-10 郝明学 交通信息控制、获取方法,交通信息控制、接收装置以及交通信息指示系统
EP3029652A1 (en) * 2014-12-02 2016-06-08 Robert Bosch Gmbh Collision avoidance in traffic crossings using radar sensors
US20160247400A1 (en) * 2015-02-23 2016-08-25 GE Lighting Solutions, LLC Remote control of light signaling devices
CN107067817A (zh) * 2017-04-17 2017-08-18 北京理工大学 一种针对有轨电车在交叉路口防止冲突的方法及系统

Also Published As

Publication number Publication date
EP3738113A4 (en) 2021-10-13
WO2019161501A1 (en) 2019-08-29
EP3738113A1 (en) 2020-11-18
EP3738113B1 (en) 2024-05-15
US20200388151A1 (en) 2020-12-10
CA3091402A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
KR102617639B1 (ko) 차량내 통신 시스템 및 방법, 및 디바이스
CN107968775B (zh) 数据处理方法、装置、计算机设备及计算机可读存储介质
JP6964277B2 (ja) 通信遮断システム、通信遮断方法及びプログラム
US11063957B2 (en) Method and arrangement for decoupled transmission of data between networks
CN104718727A (zh) 通信网络和用于运行通信网络的方法
CN106685734B (zh) 一种基于以太网的智能配置方法及系统
CN112074884A (zh) 提供一种数字式交叉路口的系统和方法
CN113949649B (zh) 故障检测协议的部署方法、装置、电子设备及存储介质
US9509569B2 (en) Intermediate network in a ring topology, and method for setting up a network connection between two network domains
US8681645B2 (en) System and method for coordinated discovery of the status of network routes by hosts in a network
CN104104596A (zh) 一种irf分裂处理方法和装置
JP2006197114A (ja) 情報伝送システム、鉄道車両用情報伝送システム及び車両用情報伝送端末装置
CN112152854B (zh) 一种信息处理方法及装置
US11521486B2 (en) Traffic validation system and method
CN105376130B (zh) 中继系统以及中继装置
Cello et al. Smart transportation systems (STSs) in critical conditions
CN110365577A (zh) 一种安全资源池的引流系统
KR20150059697A (ko) 소프트웨어 정의 네트워크에서의 네트워크 결함 검출 방법 및 시스템
CN115941392B (zh) 实现互联互通的方法、电子设备、计算机可读介质
TWI742496B (zh) 道旁監控系統及其方法
WO2016177116A1 (zh) 网络路径切换方法和装置
US20240137373A1 (en) Advanced intrusion prevention manager
CN109391507B (zh) 网络配置方法、计算机可读存储介质及网络装置
Hinrichs et al. Applying Safety Methods To Sensor Networks
KR20050095071A (ko) 열차 제어 시스템

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination