CN112073040B - 具有动态定时的多级栅极断开 - Google Patents

具有动态定时的多级栅极断开 Download PDF

Info

Publication number
CN112073040B
CN112073040B CN202010895948.3A CN202010895948A CN112073040B CN 112073040 B CN112073040 B CN 112073040B CN 202010895948 A CN202010895948 A CN 202010895948A CN 112073040 B CN112073040 B CN 112073040B
Authority
CN
China
Prior art keywords
circuit
signal
semiconductor switch
voltage
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010895948.3A
Other languages
English (en)
Other versions
CN112073040A (zh
Inventor
简·塔尔海姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Integrations Switzerland GmbH
Original Assignee
Power Integrations Switzerland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Integrations Switzerland GmbH filed Critical Power Integrations Switzerland GmbH
Priority to CN202010895948.3A priority Critical patent/CN112073040B/zh
Publication of CN112073040A publication Critical patent/CN112073040A/zh
Application granted granted Critical
Publication of CN112073040B publication Critical patent/CN112073040B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • H03K17/163Soft switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/168Modifications for eliminating interference voltages or currents in composite switches

Landscapes

  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

具有动态定时的多级栅极断开。一种用于断开功率半导体开关(304)的电路(342,346)包括:断开晶体管(364),其被耦合以将用于断开功率半导体开关的信号接入到功率半导体开关的控制端子上;以及反馈控制环路,其用于控制断开期间功率半导体开关的控制端子上的电压(UGE)。反馈环路包括:反馈路径,其用于反馈功率半导体开关的控制端子的电压的测量值;控制端子参考电压发生器,其用于生成时间相关的参考电压(UREF);误差放大器(368),其用于生成表示控制端子的电压与时间相关的参考电压之间的差值的误差信号;以及前向路径,用于向前传送误差信号,以用于控制通过断开晶体管将用于断开功率半导体开关的信号接入到功率半导体开关的控制端子上。

Description

具有动态定时的多级栅极断开
本申请是申请日为2015年7月9日、申请号为2015800371714(国际申请号为PCT/EP2015/065712)、发明名称为“具有动态定时的多级栅极断开”的中国发明专利申请的分案申请。
相关申请的交叉引用
本申请要求2014年7月9日提交的名称为“MULTI-STAGE GATE TURN-OFF WITHDYNAMIC TIMING”的第62/022,304号美国临时申请的优先权。
本申请要求2015年6月19日提交的名称为“MULTI-STAGE GATE TURN-OFF WITHDYNAMIC TIMING”的第14/744,862号美国申请的优先权。
技术领域
本发明涉及用于半导体开关的断开(turn off)电路、包括用于半导体开关的断开电路和有源箝位电路的系统以及用于断开半导体开关的方法。
背景技术
已知若干种用于在短路状态和/或过电流状态的情况下断开半导体开关(并且尤其是功率半导体开关)的方法。在一个示例中,半导体开关的控制输入端(例如栅极端子)可以耦合至第一电阻和第二电阻,其中在正常运行期间,第一电阻被布置为将半导体开关的控制输入端耦合至参考电位(例如半导体开关的发射极电压),并且因此使半导体开关断开。在短路和/或过电流的情况下,现在可以在半导体开关的控制输入端与参考电位之间耦合较大的第二电阻。结果,用以使半导体开关的控制输入端放电的电流减小。半导体开关的控制输入端处的电压比正常运行期间减小得要慢。因此可以防止过度突然的断开操作,这样的过度突然的断开操作可能会导致由半导体开关的输出端处的负载两端的寄生电感确定的、半导体开关中的危险的过电压状况。
发明内容
用于半导体开关的第一断开电路包括:具有可变电阻的元件,所述元件耦合至半导体开关的控制输入端;用于生成控制输入端参考信号的电路;以及控制电路,该控制电路被设计为以闭合控制环路响应于控制输入端参考信号来调整具有可变电阻的元件的电阻,以便使半导体开关断开。
以闭合控制环路对具有可变电阻的元件进行调整使得可以提供动态断开电路,该动态断开电路对于各种不同的半导体开关实现了令人满意的结果。由于可以通过具有可变电阻的元件的经调整的电阻来调整通过半导体开关的控制输入端(例如通过栅极输入端)的电流,所以断开电路可以动态地与相应的半导体开关匹配。在来自先前参考文献的一些断开电路中,对于不同的半导体开关需要使用不同的部件,以便确保控制输入端电压的令人满意的分布(profile,曲线)。例如,在以上示例中可能指明的是,对不同类型的半导体开关使用不同大小的电阻。如果未发生这种匹配,则可能出现以下情形:短路状态持续较长时间(如果电阻高于所需的电阻),或者半导体开关的输出端处的负载上的电压未减小到足够的程度。其他更复杂的断开电路需要更多数量和/或昂贵的部件。
用于半导体开关的第二断开电路包括:具有可变电阻的元件,所述元件耦合至半导体开关的控制输入端;检测电路,该检测电路被设计为检测半导体开关的控制输入端电压或对应的控制输入端电流的米勒平坦区(Miller plateau,米勒平台)的结束;以及控制电路,该控制电路被设计为控制具有可变电阻的元件的电阻值,使得存在于半导体开关的控制输入端处的电压在米勒平坦区结束之后以预定速率减小。
通过将半导体开关的断开分布与米勒平坦区的结束的检测相结合,第二断开电路同样可以与不同的半导体开关动态地匹配。对于不同的半导体开关(在许多情况下,甚至对于宽范围的温度和工艺参数),米勒平坦区(即这样一区域,在该区域中,通过控制输入端的基本上总电流促使对半导体开关的控制输入端与漏极、集电极或阳极输入端之间的寄生电容进行充电,使得半导体开关的控制输入端与半导体开关的源极、发射极或阴极输入端之间的电压基本上保持恒定)可以处于类似的电压范围内。例如,在许多IGBT中,米勒平坦区可以在9.5伏到11.5伏之间。此外,米勒平坦区的结束可以指示这样一时刻,在该时刻处,半导体开关的漏极、集电极或阳极电流在短路和/或过电流的情况下减小至安全水平,并且另一方面,断开运行的持续不会导致半导体开关的输出端上的高过电压。因此,可以针对半导体开关的断开特性的改变选择有利的动态切换点。
在第一实施方案中,用于半导体开关的断开电路包括:具有可变电阻的元件,所述元件耦合至半导体开关的控制输入端;用于生成控制输入端参考信号的电路;以及控制电路,该控制电路被设计为以闭合控制环路响应于控制输入端参考信号来调整具有可变电阻的元件的电阻,以便使半导体开关断开。
该断开电路可以具有以下特征中的一个或多个。例如,具有可变电阻的元件是半导体开关。在另一示例中,具有可变电阻的元件是MOSFET半导体开关,具有可变电阻的元件是MOSFET半导体开关。此外,具有可变电阻的元件的可变电阻形成在半导体开关的漏极、阳极或集电极端子与源极、阴极或发射极端子之间。此外,具有可变电阻的元件与另一电阻串联耦合在半导体开关的控制输入端与参考电位之间。例如,控制输入端参考信号具有按第一速率的第一下降、具有基本上恒定的信号电平的区域以及按第二速率的第二下降。作为另一示例,第二速率高于第一速率。此外,第一速率和第二速率在时间上是可变的。在另一示例中,断开电路还包括检测电路,该检测电路被设计为检测半导体开关的控制输入端电压或控制输入端电流的米勒平坦区的结束,其中,用于生成控制输入端参考信号的电路被设计为响应于检测到米勒平坦区的结束使控制输入端参考信号的电平以预定速率减小。此外,米勒平坦区的结束是基于具有可变电阻的元件的控制输入端处的电压来检测的。此外,当具有可变电阻的元件的控制输入端处的电压下降到确定的信号电平以下时,检测到米勒平坦区的结束。例如,预定信号电平在具有可变电阻的元件的预期栅极阈值电压的50%至150%的范围内。在另一示例中,预定信号电平在0.3到2伏的范围内。此外,该预定信号电平是借助于参考电流并且借助于基于与上述具有可变电阻的元件相同的技术的第二元件来确定的。在一些情况下,第二元件的面积或栅极宽度是上述具有可变电阻的元件的面积或栅极宽度的K倍,并且其中参考电流被选择成使得其为针对米勒平坦区的结束设计的、具有可变电阻的元件的输出电流的阈值的K倍。例如,参考电流被耦合至具有可变电阻的第二元件的控制输入端,尤其是栅极,以及耦合至具有可变电阻的第二元件的输出端,尤其是漏极。此外,参考电流被选择为小于100微安,并且K被选择为小于1%。在一些情况下,控制输入端参考信号的电平在米勒平坦区的结束到达之前基本上是恒定的,并且响应于检测到米勒平坦区的结束,控制输入端参考信号的信号电平以预定速率减小。此外,断开电路还包括用于检测半导体开关的控制输入端处的电压的电路。如在另一示例中,控制电路被设计为响应于控制输入端参考信号和半导体开关的控制输入端处的电压来调整具有可变电阻的元件的电阻。此外,控制电路包括第一比较电路,以便将控制输入端参考信号与半导体开关的控制输入端处的电压进行比较。例如,用于响应于第一比较电路的输出而生成用于具有可变电阻的元件的控制信号的电路。例如,用于生成控制信号的电路包括第二比较电路,该第二比较电路被设计为响应于第一比较电路的输出与故障信号的比较而生成用于具有可变电阻的元件的控制信号,该故障信号指示半导体开关的故障状态。此外,断开电路被设计为接收指示半导体开关的故障状态的故障信号。此外,半导体开关的故障状态是短路状态和/或过电流状态。在另一示例中,半导体开关是功率半导体开关。作为另一示例,功率半导体开关是IGBT、IEGT、功率MOSFET或功率双极型晶体管。在一些情况下,断开电路还包括有源箝位电路。例如,米勒平坦区的结束是基于具有可变电阻的元件上的电压来检测的。此外,米勒平坦区的结束是基于半导体开关的控制输入端处的电流来检测的。此外,米勒平坦区的结束是基于半导体开关上的电压来检测的。在一些情况下,米勒平坦区的结束是基于通过半导体开关的有用电流来检测的。例如,控制电路被设计为基于控制输入端参考信号和具有可变电阻的元件上的电压、半导体开关的控制输入端处的电流、半导体开关上的电压或通过半导体开关的有用电流来检测具有可变电阻的元件的电阻。在另一示例中,用于生成控制输入端参考信号的电路包括两个或更多个电流源和一电容,其中电容被布置为在故障情况下从这两个或更多个电流源放电。此外,在半导体开关的接通运行之后,电容被耦合至预定电压。此外,两个或更多个电流源中的第一电流源被设计为在已经检测到米勒平坦区的结束的时刻之后使电容放电。在一些情况下,两个或更多个电流源中的第二电流源被设计为使电容放电一直到在电容两端呈现阈值电压的时刻。例如,断开电路还包括停用电路,响应于停用信号,该停用电路阻止控制电路响应于控制输入端参考信号调整具有可变电阻的元件的电阻。
在第二实施方案中,断开系统包括:第一实施方案的断开电路中的一个断开电路以及该断开电路的一个或多个特征;有源箝位电路,该有源箝位电路被设计为主动地将半导体开关的驱动电路的输出电压增加至为了使半导体开关的输出电压保持在确定的阈值电压以下所需的程度;以及选择电路,该选择电路响应于选择信号启用断开电路或有源箝位电路,以便在故障情况下断开半导体开关。
断开系统可以具有以下特征中的一个或多个。例如,有源箝位电路的输出端耦合至具有可变电阻的元件的控制输入端。此外,当具有可变电阻的元件的控制输入端与半导体开关的源极、集电极或阴极输入端之间的电压接近预定阈值电压时,有源箝位电路使具有可变电阻的元件的控制输入端处的电压减小。此外,断开系统被设计为使得当有源箝位电路被启用时,阻止控制输入端参考信号耦合至具有可变电阻的元件的控制输入端。
在第三实施方案中,用于半导体开关的断开电路包括:具有可变电阻的元件,所述元件耦合至半导体开关的控制输入端;检测电路,该检测电路被设计为检测半导体开关的控制输入端电压或控制输入端电流的米勒平坦区的结束;以及控制电路,该控制电路被设计为控制具有可变电阻的元件的电阻值,使得存在于半导体开关的控制输入端处的电压在米勒平坦区结束之后以预定速率减小。
断开电路可以具有以下特征中的一个或多个。例如,米勒平坦区的结束是基于具有可变电阻的元件的控制输入端处的电压来检测的。在一些情况下,当具有可变电阻的元件的控制输入端处的电压下降到确定的信号电平以下时,检测到米勒平坦区的结束。此外,预定信号电平在具有可变电阻的元件的预期栅极阈值电压的50%至150%的范围内。此外,预定信号电平在0.3到2伏之间。例如,控制输入端参考信号的电平在米勒平坦区的结束到达之前基本上是恒定的,并且响应于检测到米勒平坦区的结束,控制输入端参考信号的信号电平减小。
在第四实施方案中,用于断开半导体开关的方法包括:生成控制输入端参考信号,以及以闭合控制环路响应于控制输入端参考信号调整具有可变电阻的元件的电阻,所述元件耦合至半导体开关的控制输入端。
在第五实施方案中,用于在控制功率开关的开关控制器中使用的驱动电路包括:被耦合以接收接通信号的接通状态驱动器,其中该接通状态驱动器响应于该接通信号输出用以使功率开关接通的第一控制信号,并且该第一控制信号基本上等于高阈值;被耦合以接收断开信号的断开状态驱动器,其中该断开状态驱动器响应于该断开信号输出用以使功率开关断开的第一控制信号,并且该第一控制信号基本上等于低阈值;以及被耦合以接收第一控制信号的软关断电路,其中软关断电路以闭合环路响应于故障状况调节第一控制信号,其中软关断电路使第一控制信号从高阈值降低到中间阈值达一时间段,然后使第一控制信号降低到低阈值,其中该时间段响应于功率开关的米勒平坦区的结束而结束。
驱动电路可以具有以下特征中的一个或多个。例如,当断开信号达到第一阈值时,软关断电路检测到功率开关的米勒平坦区的结束。在另一示例中,断开状态驱动器还包括晶体管,其中软关断电路被耦合以接收表示该晶体管的栅极电流或栅极电压的栅极信号,并且在晶体管的栅极信号达到第一阈值时检测到功率开关的米勒平坦区的结束。此外,当晶体管的栅极信号在消隐时间之后达到第一阈值时,检测到功率开关的米勒平坦区的结束。此外,关断电路包括被耦合以接收第一控制信号和参考信号的放大器,其中响应于故障状况和功率开关的米勒平坦区的结束,参考信号从高阈值降低到中间阈值达一时间段,然后降低到低阈值。在一些情况下,当晶体管的栅极信号在消隐时间之后达到第一阈值时,检测到功率开关的米勒平坦区的结束,其中,消隐时间可以在参考信号基本上等于中间阈值时结束。例如,如果不存在故障状况,则参考信号基本上不会在该时间段内等于中间阈值。作为另一示例,驱动电路可以接收有源箝位信号,其中当有源箝位信号介于第一阈值与第二阈值之间时,禁用软关断电路。有源箝位信号包括在第一控制信号使功率开关断开之前的附加电流。此外,故障状况可以是功率开关的过电流状况。
在第六实施方案中,用于断开功率半导体开关的电路包括:断开晶体管,该断开晶体管被耦合以将用于断开功率半导体开关的信号接入到功率半导体开关的控制端子上;以及反馈控制环路,该反馈控制环路用于控制断开期间功率半导体开关的控制端子上的电压,反馈控制环路。反馈控制环路包括:反馈路径,其用于反馈功率半导体开关的控制端子的电压的测量值;控制端子参考电压发生器,其用于生成时间相关的参考电压;误差放大器,用于生成表示控制端子的电压与时间相关的参考电压之间的差值的误差信号;以及前向路径,用于向前传送误差信号,以用于控制通过断开晶体管将用于断开功率半导体开关的信号接入到功率半导体开关的控制端子上。
该电路可以具有以下特征中的一个或多个。例如,该电路还包括米勒平坦区检测电路,该米勒平坦区检测电路被耦合以:检测功率半导体开关的控制端子的电压在功率半导体开关的米勒平坦区附近的电压电平以下,并输出指示功率半导体开关的控制端子的电压在功率半导体开关的米勒平坦区附近的电压电平以下的信号。作为另一示例,控制端子参考电压发生器响应于指示功率半导体开关的控制端子在米勒平坦区附近的电压电平以下的信号,使时间相关的参考电压的时间变化率增加。在一些情况下,米勒平坦区检测电路包括被耦合以检测流到功率半导体开关的控制端子的电流的控制端子电流检测电路。此外,米勒平坦区检测电路包括电压比较器,该电压比较器被耦合以将功率半导体开关的控制端子与参考电压进行比较。此外,控制端子参考电压发生器包括:第一电路,其用于将时间相关的参考电压从第一值改变为在功率半导体开关的米勒平坦区附近的第二值,其中功率半导体开关在该第一值下接通;以及第二电路,其用于将时间相关的参考电压从在功率半导体开关的米勒电压附近的第三值改变为第四值,其中功率半导体开关在该第四值下断开。例如,第一电路用于以比第二电路改变时间相关的参考电压的时间变化率小的时间变化率改变该参考电压。作为另一示例,第一电路用于在400纳秒到4000纳秒的时间内将时间相关的参考电压从第一值改变为第二值。在一些情况下,第二电路用于在100纳秒到2000纳秒的时间内将时间相关的参考电压从第三值改变为第四值。在另一示例中,第二电路用于在10纳秒到100纳秒的时间内将时间相关的参考电压从第三值改变为第四值。此外,第二值在功率半导体开关的米勒平坦区以上,并且第三值在功率半导体开关的米勒平坦区以下。此外,控制端子参考电压发生器包括使时间相关的参考电压在第二值与第三值之间保持恒定的电路。对于一些示例,故障检测电路被耦合以响应于检测到通过功率半导体开关的电流传导的故障而输出故障信号,其中控制端子参考电压发生器对故障信号作出响应,以使参考电压从功率半导体开关在其下开路的值开始改变。作为另一示例,故障检测电路包括用于检测功率半导体开关的集电极-发射极电压的电路。此外,用于使功率半导体开关断开的信号是电流,并且该电路还包括断开栅极电阻器。此外,功率半导体开关是IGBT。在一些情况下,断开晶体管是NMOS晶体管。
附图说明
参考以下附图描述了本发明的非限制性且非穷举的示例性实施方案,其中在未另作规定的情况下,在不同的附图中相同的附图标记涉及相同的部件。
图1A示出了用于向消耗装置提供电能的示例性设备,所述设备具有用于半导体开关的控制电路,该控制电路具有本文所描述的断开电路。
图1B示出了在正常运行期间或在短路的情况下半导体开关的控制端子上的电压的示例性信号分布和半导体开关上的电压的信号分布。
图2示出了用于半导体开关的示例性控制电路,该控制电路具有本文所描述的断开电路和有源箝位电路。
图3示出了示例性断开电路。
图4示出了具有用于半导体开关的控制电路的系统中的示例性信号分布,该控制电路具有本文所描述的断开电路。
图5示出了与有源箝位电路组合的示例性断开电路。
图6示出了示例性断开电路中的模拟信号分布。
图7示出了用于检测米勒平坦区的结束的电路中用于生成阈值电压的示例性电路。
具体实施方式
在下面的描述中给出了许多细节以使得能够透彻地理解本发明。然而,对本领域技术人员来说清楚的是,对于实现本发明而言,所述具体细节不是必需的。在另一点上,未详细叙述已知的设备和方法,以便不会不必要地妨碍对本发明的理解。
在本说明书中,对“实现(implementation)”、“配置(configuration)”、“一示例(an example)”或“示例(example)”的提及意指结合该实施方案描述的具体的特征、结构或性质包括在本发明的至少一个实施方案中。因此,本说明书中不同位置处的措辞“在一种实现中(in one implementation)”、“在一个实施方案中(in one embodiment)”、“一个示例(one example)”或“在一个示例中(in one example)”未必全都指相同的实施方案或相同的示例。
另外,可以在一个或多个实施方案或示例中以任何期望的合适组合和/或子组合来组合具体的特征、结构或性质。特定的特征、结构或性质可以包括在提供所描述的功能的集成电路、电子电路、电路逻辑或者其他合适的部件中。此外,将参考以下事实:附图是用于向本领域技术人员进行说明的目的,并且附图不一定真正按比例例示。
图1A示出了用于向消耗装置110提供电能的设备100(也称为功率转换器),所述设备具有用于半导体开关的控制电路,该控制电路具有本文所描述的断开电路。然而,能量流也可以指向另一方向。在这种情况下,元件110是发电装置。在其他设备中,元件110可以在不同的运行状态下运行,既作为消耗装置又作为发电装置。在下文中,仅论述用于提供能量的设备,其包括刚刚提及的所有情况(可以在不同的输出端提供能量)。该设备包括耦合在一起的两个功率半导体开关104、106。另外,设备100可以接收DC输入电压102(UIN)。该设备被设计成通过控制功率半导体开关104、106而将电能从输入端传输到与消耗装置110连接的输出端(或将电能沿相反方向传输)。在这种情况下,用于提供电能的设备可以控制输出到消耗装置的电压电平、电流电平或这两个变量的组合。在图1A所示的示例中,功率半导体开关104、106是IGBT。
在接下来的内容中,使用IGBT的示例来说明设备和方法。然而,本文所描述的断开设备不限于与IGBT一起使用。替代地,它们也可以与其他功率半导体开关组合使用。例如,金属氧化物半导体场效应晶体管(MOSFET)、双极型晶体管(BJT)、注入增强栅晶体管(IEGT)和门极可关断晶闸管(GTO)可以与本文所描述的断开设备一起使用。本文所描述的断开设备还可以与基于氮化镓(GaN)半导体或碳化硅(SiC)半导体的功率半导体开关一起使用。
功率半导体开关在切断状态下的最大标称集电极-发射极电压、阳极-阴极电压或漏极-源极电压可以大于500V,优选地大于2kV。
另外,本文所描述的断开设备不限于与功率半导体开关一起使用。因此,其他半导体开关也可以与本文所描述的断开设备一起使用。这里提到的效果和优点还至少部分地在具有其他半导体开关的系统中出现。
由于在下面论述IGBT,因此功率半导体开关的端子被称为“集电极”、“栅极”和“发射极”。然而,如以上已经说明的,设备和方法不限于IGBT。为了避免不必要地冗长的描述,本文的名称“发射极”还包括对应功率半导体开关的由“源极”或“阴极”表示的端子。同样地,文中的术语“集电极”还包括由“漏极”或“阳极”表示的端子,并且术语“栅极”表示对应功率半导体开关的由“基极”表示的端子。在接下来的内容中,术语“集电极-发射极电压”还包括“漏极-源极电压”和“阴极-阳极电压”,并且术语“集电极电压”和“发射极电压”还分别包括“漏极电压”或“阳极电压”和“源极电压”或“阴极电压”。
功率半导体开关104、106各自由第一控制电路118和第二控制电路120控制。所述控制电路提供第一栅极-发射极驱动信号130(UGE1)和第二栅极-发射极驱动信号132(UGE2),以便控制第一IGBT和第二IGBT的开关时间。控制电路118、120二者可以可选地依次由系统控制器114控制。系统控制器114可以具有用于接收系统输入信号116的输入端。在图1A所示的示例中,例示了具有半桥配置的两个功率半导体开关104、106。然而,断开设备还可以用在其他拓扑中。例如,可以耦合具有用于检测功率半导体开关上的电压的分布的设备或具有控制电路的单个功率半导体开关(例如单个IGBT)。在其他示例中,在具有六个功率半导体开关或十二个功率半导体开关的三相系统中,每个功率半导体开关均可以具有用于检测功率半导体开关上的电压的分布的设备。
除了输出栅极-发射极驱动信号之外,控制电路118、120还接收表示存在于功率半导体开关104、106上的电压的信号。这些信号可以是电压信号或电流信号。在图1A所示的示例中,每个控制电路118、120在每种情况下具有一个表示集电极-发射极电压并且被标记为集电极-发射极电压信号122、124(UCE1,UCE2)的信号。
图1A将控制电路118、120示为单独的控制电路。然而,两个控制电路118、120还可以组合在单个电路中。在这种情况下,单个控制电路控制两个功率半导体开关104、106。此外,第二栅极-发射极驱动信号132(UGE2)可以是反相的第一栅极-发射极驱动信号130(UGE1)。
两个控制电路118、120包括本文所描述的断开设备中的一个。响应于短路状态和/或过电流状态的确立,相应的功率半导体开关104、106可以借助于本文所描述的断开设备断开。
图1B示出了在正常运行期间和在短路情况下半导体开关的控制端子上的电压的示例性信号分布和半导体开关上的电压的信号分布。在图1B的上半部分示出了栅极端子与发射极端子之间的电压130(UGE)的信号分布。电压130(UGE)被示为具有第一信号电平(VON)和不同的第二信号电平(VOFF)。如果栅极端子处于第一信号电平(VON),则半导体开关接通(在时间tON 131内)。在图1B的下半部分示出了半导体开关接通时在正常情况下(左手侧)以及在示例性短路和/或过电流情况下(右手侧)半导体开关上的集电极-发射极电压125的信号分布。在示出的短路情况下,集电极-发射极电压125在接通之后并未迅速降低至相对低的值(然而,还存在集电极-发射极电压呈现其他特性分布的另外的短路情况)。这可能导致半导体开关和负载的损坏。因此,应当快速断开半导体开关。然而,如果这发生得过快,可能在负载上出现过电压。为了防止这种情况,可以使用本文所描述的断开电路。
图2示出了用于半导体开关的示例性控制电路218,该控制电路包括本文所描述的断开电路242和(可选的)有源箝位电路236。控制电路从系统控制器214接收控制命令(所述控制命令又是响应于系统输入信号216生成的)。在驱动器接口226处,这些控制命令被转换成控制信号250(UCMD),这些控制信号经由隔离变压器232传输到驱动电路228。驱动电路228响应于经由隔离变压器232接收的控制信号250(UCMD)来控制半导体开关204。为此目的,驱动电路228耦合至半导体开关204的控制输入端(例如,栅极输入端)。
图2所示的示例性驱动电路228具有用于半导体开关的接通(ON)状态的驱动器244和用于半导体开关的断开(OFF)状态的驱动器246。所述驱动器244、246各自生成用于半导体开关204的驱动信号230(UGE)。经由驱动器信号处理单元238对两个驱动器244、246进行控制,驱动器信号处理单元从隔离变压器232接收控制信号250(UCMD)(并且将它们转换成接通信号254(UON)和断开信号258(UOFF),以用于相应的驱动器244、246)。
本文所描述的断开电路242耦合在驱动器信号处理单元238与用于断开状态的驱动器246之间。所述断开电路242可以确保短路情况下和/或过电流情况下的断开运行,其中在断开运行期间,通过半导体开关的开关电流240(在该示例中为集电极-发射极电流ICE)的下降不如正常运行期间那样陡峭(所谓的“软关断”)。结果,可以防止在半导体开关的输出端上出现危险的过电压。结合图3、图4和图5论述关于各种断开电路的性质的细节。
断开电路242接收:用于用于断开状态的驱动器246的断开信号252(UOFF);指示短路情况和/或过电流情况的存在的故障信号248;以及存在于半导体开关的控制端子处的信号230(例如,栅极-发射极电压UGE)。基于这些信号,断开电路242可以动态地控制半导体开关204的断开运行。在一个示例中,存在于半导体开关的控制端子处的信号230的分布可以闭合控制环路进行调整,以便断开半导体开关204。在图2所示的示例中,调整可以包括生成修改的断开信号256(UOFF*),该修改的断开信号从断开电路242传输到用于断开状态的驱动器246。在一个示例中,该修改的断开信号256(UOFF*)可以改变用于断开状态的驱动器246中具有可变电阻的元件的可变电阻,并且因此影响存在于半导体开关的控制端子处的信号230(例如,栅极-发射极电压UGE)的分布。换句话说,修改的断开信号256(UOFF*)可以是控制环路的被操纵变量。在图2所示的示例中,存在于半导体开关的控制端子处的信号230(例如栅极-发射极电压UGE)是控制环路的反馈参数。然而,其他参数也可以用作反馈参数。
另外地或作为替代,可以对用于断开状态的驱动器246进行控制,使得存在于半导体开关的控制输入端处的电压230(例如栅极-发射极电压UGE)在米勒平坦区的结束之后以预定速率减小。以这种方式,动态断开电路242可以确保对不同半导体开关的合适的“软关断”。在一个示例中,可以基于用于断开状态的驱动器246中具有可变电阻的元件的控制输入端处的电压258(UG_OFF)的分布来检测半导体开关204的控制输入端电压或控制输入端电流的米勒平坦区的结束。
控制电路218包括生成故障信号248(UFLT)的短路和/或过电压检测电路234。在一个示例中,短路和/或过电压保护电路234可以监测半导体开关204的集电极-发射极电压222(UCE)。如结合图1B所提及的,所述集电极-发射极电压222(UCE)在短路情况和/或过电流情况下可能会呈现出特征分布,并且短路和/或过电压保护电路234可以检测该特征分布。
可选地,控制电路218可以包括有源箝位电路236。这可以在故障的情况下提供用于“软关断”的第二电路,该电路可以用作断开电路242的替代。
由于已经关于图2论述了用于半导体开关的、具有本文所描述的断开电路242和有源箝位电路236的示例性控制电路,将关于图3来说明示例性断开电路。
图3示出了用于接通状态的驱动器344、用于断开状态的驱动器346、断开电路342和半导体开关304。驱动器344、346各自包括具有可变电阻的元件361、364(在图3所示的示例中为NMOS半导体开关,但是也可以使用具有可变电阻的其他可切换半导体开关或其他元件)。具有可变电阻的元件361、364各自与可选的电阻362、363串联耦合。
用于接通状态的驱动器344的具有可变电阻的元件361(和电阻362)耦合在半导体开关304的控制输入端(图3所示的示例中的栅极输入端)与第一参考电位360(VDD)之间。此外,具有可变电阻的元件361被布置为使得该具有可变电阻的元件361可以在其控制端子处(例如在NMOS 361的栅极输入端处)接收控制电路的接通信号354(UON)。因此,如果意在使半导体开关接通,则减小具有可变电阻的元件361的电阻(例如使NMOS半导体开关361接通),使得半导体开关304的控制输入端(例如IGBT 304的栅极端子)耦合至高到足以接通该半导体开关的电位(例如,图3中的第一参考电位360VDD)。
类似地,用于断开状态的驱动器346的具有可变电阻的元件364(和电阻363)耦合在半导体开关304的控制输入端(图3所示示例中的IGBT的栅极输入端)与第二参考电位312之间。另外,具有可变电阻的元件364被布置为使得其可以在控制端子364(示为NMOS 364的栅极端子)处接收控制电路的修改的断开信号356(UOFF*)。因此,如果意在切断半导体开关304,则减小具有可变电阻的元件364的电阻(例如使NMOS半导体开关364接通),使得半导体开关304的控制输入端(IGBT 304的栅极端子)耦合至对于使该半导体开关切断而言足够低的电位(例如第二参考电位312)。通过将控制端子(IGBT的栅极端子)立即拉到第二参考电位来切断半导体开关304导致半导体开关304的集电极-发射极电流相对快速地下降。然而,如果存在短路情况,那么由于寄生耦合,集电极-发射极电流的快速下降可能会导致生成可能危险的过电压。为了防止可能危险的过电压的影响,可以在短路情况和/或过电流情况下使用断开电路342以实现软关断。
在图3所示的示例中,开关366(S3)由故障信号348(UFLT)控制,使得当存在故障时(例如,当相应的检测电路已经识别到故障时)开关366(S3)开路。结果,在故障情况下,由断开电路342修改(原始)断开信号352(UOFF)。另一方面,在正常运行期间,开关S3 366闭合并耦合至固定参考电位312,使得断开电路342不影响用于断开状态的驱动器346的具有可变电阻的元件364。
断开电路342包括:用于生成控制输入端参考信号370(UREF)的电路;检测电路369,其被设计为检测半导体开关的控制输入端电压或对应的控制输入端电流的米勒平坦区的结束;以及第一比较电路368,以便将控制输入端参考信号370(UREF)与半导体开关的控制输入端处的电压330(UGE)进行比较。
首先,说明用于生成控制输入端参考信号370(UREF)的电路。所述电路包括电容,其中参考信号370(UREF)由电容两端的电压形成。在图3所示的示例中,电容可以耦合至两个电流源372、373(I1、I2),并且该电容可以通过电流源372、373(I1、I2)放电以便使参考信号370(UREF)的信号电平以第一速率或第二速率减小。第一速率和第二速率可以与电流源372、373(I1、I2)和电容的值成比例。首先,一旦半导体开关304已经响应于接通信号354(UON)接通,电容的第一端子就可以耦合至确定的参考电位360(VDD)。这在图3所示的示例中对应于半导体开关304的控制输入端在接通状态下所耦合至的第一参考电位360。由于电容的第二端子处于较低的电位(这在图3所示的示例中对应于半导体开关304的控制输入端在断开状态下所耦合至的第二参考电位312),电容在半导体开关304的接通状态期间被充电到上述确定的电压,并且因此就在接通开始之前是静止的。结果,控制输入端参考信号370(UREF)以对应于确定的参考电位360(VDD)的预定信号电平“开始”。
第一电流源373经由开关377(S1)耦合至第二参考电位312。当开关377(S1)闭合时,第一电流源373使电容以第一速率(对应于电流I1)进行放电。用于开关377(S1)的控制电路可以被设计为使得开关377(S1)从检测到短路情况和/或过电流情况的时刻(或在检测到短路情况和/或过电流情况之后的预定时间跨度(time span,时间间隔))一直到半导体开关304的控制输入端处的电压330达到与半导体开关的米勒平坦区对应的电压(示出为信号UM 375)的时刻保持闭合。因此,在该时间跨度中,电容以第一速率放电。
在图3所示的示例中,用于开关377(S1)的控制电路包括比较电路374,该比较电路将电容两端的电压(即参考信号370(UREF))与阈值375(UM)进行比较。该阈值375(UM)可以被选择为使得其反映与半导体开关的米勒平坦区相对应的电压。对于许多IGBT,该电压可以在9.5伏与11.5伏之间。如果参考信号370(UREF)的信号电平达到阈值375(UM),则开关377(S1)开路。电容现在不再通过电流源373放电。这可能导致参考信号370(UREF)的信号电平保持基本上(例如,最大变化为初始信号电平的10%)恒定达确定的时间段。该时间段通过开关376(S2)的闭合而结束,并且因此电容的放电运行再次由第二电流源372发起。
可以通过检测电路369来确定另一开关376(S2)的闭合的此时间,该检测电路被设计为检测半导体开关304的控制输入端电流或控制输入端电压的米勒平坦区的结束。在图3所示的示例中,基于在用于断开状态的驱动器的具有可变电阻的元件364的控制输入端处的电压358(UG_OFF)(例如,具有可变电阻的元件364的栅极电压)来确定米勒平坦区的结束。如果该电压下降到预定阈值UTH以下,则这可以指示米勒平坦区的结束(米勒平坦区的结束与对该阈值的下冲的一致在这种情况下可能是不完美的,但是对该阈值的下冲提供对米勒平坦区的结束时间的良好估计)。
在图7中示出了用于生成阈值UTH的示例性电路。在一个示例中,阈值UTH在具有可变电阻的元件364的预期栅极阈值电压的50%至150%的范围内。在另一示例中,阈值UTH可以在0.3到2伏的范围内。在图7所示的示例中,用于生成阈值UTH的电路包括具有可变电阻的第二元件799,该具有可变电阻的第二元件基于与用于断开状态的驱动器的具有可变电阻的元件764相同的技术(在图7所示的示例中为NMOS半导体开关)。参考电流785(IREF)可以耦合至第二元件799的控制输入端(例如栅极端子)和第二元件799的第一端子(例如漏极端子)。第二元件799的面积或栅极宽度可以是用于断开状态的驱动器的具有可变电阻的元件764的面积或栅极宽度的K倍,其中参考电流785(IREF)被选择为使得其为针对米勒平坦区的结束设计的、具有可变电阻的元件764的输出电流的阈值的K倍。在一个示例中,参考电流785(IREF)小于100微安,并且K小于1%。给定这样的电路,阈值UTH可以对应于具有可变电阻的第二元件799的控制输入端处的电压。
在图3所示的示例中,用于断开状态的驱动器346的具有可变电阻的元件364的控制输入端处的电压(NMOS 364的栅极电压)可以用于检测米勒平坦区结束的时刻。然而,该时刻还可以基于其他信号来确定。在其他示例中,使用用于断开状态的驱动器的具有可变电阻的元件364的控制输入端处的电流来确定米勒平坦区的结束。例如,当米勒平坦区的结束到达时,用于断开状态的驱动器346的具有可变电阻的元件364的控制输入端处的电流趋于零。在又一示例中,可以使用半导体开关304的控制电压或控制电流。在另外的示例中,可以检测半导体开关的集电极-发射极电压或半导体开关的开关电流,以便检测米勒平坦区的结束。
通过闭合开关376(S2),电容从米勒平坦区结束开始以第二速率放电。该放电运行可以持续,直到电容已经完全放电为止(或者直到电容已经放电到预定最小值为止)。因此,参考信号370(UREF)可以具有图4所示的分布,其中两个区域具有下降的信号电平。在这种情况下,可以根据需要设置第一速率和第二速率。例如,第二速率可以是第一速率的两倍高或更高。在其他示例中,第一速率和第二速率相同。
由图3所示的用于生成控制输入端参考信号的电路生成的参考信号370(UREF)可以包括两个具有下降的信号电平的区域,其中在所述区域之间嵌入有具有基本上恒定的信号电平的区域。然而,该区域顺序不是必需的。例如,第一速率和/或第二速率可以在时间上变化。在其他示例中,参考信号370(UREF)可以具有不止两个具有下降的信号电平的区域,在这些具有下降的信号电平的区域中,信号以不同的速率下降。具有基本上恒定的信号电平的另外的区域可以嵌入在这些区域之间。
由于已经在前面的段落中论述了参考信号370(UREF)的生成,下面将描述使用该参考信号370(UREF)来实现“软关断”。在这点上,可以通过第一比较电路368将参考信号370(UREF)与半导体开关的控制输入端处的电压330(UGE)进行比较。响应于该比较,可以为用于断开状态的驱动器346的具有可变电阻的元件364生成修改的控制信号356(UOFF*)。在图3所示的示例中,为此目的将断开信号352(UOFF)转换为修改的断开信号356(UOFF*)。这可以在减法电路365中进行。
以这种方式,可以闭合控制环路调整具有可变电阻的元件364的可变电阻,以便实现与参考信号370(UREF)的分布对应的、半导体开关的控制输入端处的电压330(UGE)的分布。以这种方式,半导体开关经受“软关断”。
在其他示例中,用于闭合控制环路的反馈变量可以是与半导体开关的控制输入端处的电压330(UGE)不同的、基于其可以监测半导体开关的断开运行的信号(例如,半导体开关的控制输入端处的电流或半导体开关的集电极-发射极电压)。在这些情况下,可能需要给予参考信号370(UREF)与图3的示例中所示的分布不同的分布。然而,同样在这些示例中,闭合控制环路的被操纵变量可以是用于断开状态的驱动器346的具有可变电阻的元件364的电阻(或改变具有可变电阻的元件364的电阻的控制信号)。
图4示出了具有用于半导体开关的控制电路的系统中的示例性信号分布,该控制电路具有本文所描述的断开电路。图4中的信号示出了半导体开关的两个示例性切换周期。第一切换周期(页面左手侧的曲线图)具有正常分布,而在第二切换周期(页面右手侧的曲线图)出现短路情况或过电流情况。第一曲线图示出了例如从图2中的驱动器接口226传输到控制电路228的控制信号450(UCMD)。可以由这些控制信号450(UCMD)生成接通信号452(UON)和断开信号454(UOFF)。第五曲线图示出了半导体开关的集电极-发射极电压422(VCE)的分布和半导体开关的集电极-发射极电流423(ICE)的分布。已经关于图1B对这些分布的一些特性进行了说明。在第二接通时段的开始,发生故障。集电极-发射极电压422(VCE)不会像在正常情况下所预期的那样严格地下降。此外,集电极-发射极电流423(ICE)增加到与在正常情况下相比较高的值(增加的故障电流449(IFT)在流动)。这可以通过短路和/或过电压检测电路进行检测,该短路和/或过电压检测电路随即输出图4中示为第六曲线图的故障信号448(UFLT)。结果,可以启用断开电路,以便确保“软关断”。
为此目的,可以生成控制输入端参考信号470(UREF)。图4中的示例性参考信号470(UREF)首先以第一速率从预定电平下降,然后在一时间段内保持基本上恒定,该时间段通过半导体开关的米勒平坦区的结束而结束。然后,参考信号470(UREF)的信号电平以第二速率下降。如图4所示,当检测到过电流和/或短路时,断开电路将半导体开关的栅极-发射极电压430(UGE-例示为从底部起的第三曲线图)调整至参考信号470(UREF)。这可以产生以下结果:半导体开关的断开运行与正常运行期间的“硬关断”相比延长。该延长可以在图4中通过将第一切换周期和第二切换周期中的栅极-发射极电压430的下降沿进行比较来识别。断开运行的延时在这种情况下与半导体开关的米勒平坦区的结束的检测相关:半导体开关仅在米勒平坦区的结束已经到达时才最终断开。因此,可以避免负载上的危险的高电压。
图4中的第四曲线图示出了由断开电路(例如图3所示的断开电路)修改的示例性断开信号456(UOFF*)。该信号可以被馈送到用于半导体开关的断开状态的驱动器的具有可变电阻的元件的控制输入端,以便调整半导体开关的断开运行。在图4所示的示例中,修改的断开信号456(UOFF*)的上升沿比断开信号454(UOFF)的上升沿长。这可以导致用于断开状态的驱动器中的半导体开关(例如图3中的NMOS 364)的接通运行并且因此导致半导体开关(例如图3中的IGBT 304)的断开运行在时间上被拉长,以便实现“软关断”。图4中最下面的曲线图示出了用于检测电路369的检测信号458(UG_OFF),该检测电路被设计为检测半导体开关的控制输入端电压或对应的控制输入端电流的米勒平坦区的结束。检测信号458(UG_OFF)可以对应于修改的断开信号456(UOFF*)或者可以基于修改的断开信号456(UOFF*)生成。
图6示出了用于断开电路的、对应于图4中的信号的模拟信号分布。特别地,在从顶部起的第四曲线图中,可以看出如何通过示例性断开电路将待切换的功率半导体开关的栅极处的电压(UGE)的分布调整至栅极参考信号(VGref)。
图5示出了与有源箝位电路组合的示例性断开电路542。在这种情况下断开电路的元件以及用于接通状态的驱动器和用于断开状态的驱动器的元件对应于图3所示的相应元件。断开电路542还包括开关S3 566,该开关耦合至比较器568的同相输入端和具有控制输入端参考信号(UREF)的电容570。当没有检测到故障(故障信号UFLT 548为逻辑低,而反相的故障信号为逻辑高)时,开关S3 566闭合,比较器568的同相输入端处的电压基本上等于返回电压(return)512。这样,类似于图3,修改的断开信号556(UOFF*)基本上是断开信号552(UOFF)。当检测到故障(故障信号UFLT 548为逻辑高并且开关S4B 576接通)时,控制输入端参考信号570(UREF)以预定信号电平“开始”,该预定信号电平对应于确定的参考电位560(VDD)。当开关S4A接通时(即当UON 554为逻辑高时),控制输入端参考信号570(UREF)被充电至确定的参考电位560(VDD)。另外,然而当相应的信号560(UACL)有所指示时,图5中的断开电路可以被停用。这意味着,使用图5的示例,有源箝位电路确保“软关断”,使得断开电路不需要变为启用的。
在图5所示的示例中,信号560(UACL)的近似为零的信号电平意味着有源箝位电路是未启用的。如果有源箝位电路被启用,则信号560(UACL)具有正电平或负电平。该状态由比较电路578、579(例如通过将信号560(UACL)的信号电平与第一(较低)阈值(E1)和第二(较高)阈值(E2)进行比较)来检测。比较电路耦合至NOR(或非)电路580,使得检测到信号560(UACL)的信号电平既不在第二阈值(E2)以上也不在第一阈值(E1)以下。随即,可以生成用于断开电路的对应启用信号577(SSD_EN)。例如,NOR电路580的输出端可以耦合至D触发器581的数据输入端,响应于该D触发器的输出生成启用信号566(SSD_EN)。在这种情况下,故障信号548(UFLT)可以耦合至D触发器581的时钟输入端。这与断开电路的第一比较电路568的输出信号相关联。因此,如果启用信号566(SSD_EN)具有高信号电平,则断开电路进行如上所进一步描述的断开运行。另一方面,如果启用信号566(SSD_EN)具有低信号电平(这指示有源箝位电路的运行),则抑制断开电路的影响。在这种情况下,有源箝位电路确保“软关断”。可以独立于有源箝位电路的存在来提供用于启用断开设备的设备。然后如果在确定的控制电路中提供了有源箝位电路,则用于启用断开设备的设备可以具有对应的电路。
在其他示例中,用于在断开电路与有源箝位电路之间进行选择的选择电路可以包括另外的元件。例如,在每次断开运行之前,可以向用于信号560(UACL)的输入端馈送电流。由内部电路提供并且提供信息至相同网(net)(即图5中的UACL)的附加电流可以用于测试提供给该网的电流是否将在该网处引起电压。如果是这种情况,则有源箝位信号可能是有效的。此外,触发器581的输出脉冲的持续时间可以被延长至预定的最小持续时间,其中启用信号566(SSD_EN)是响应于该触发器的输出脉冲生成的。替代地,可以将比较电路578、579的输出脉冲的持续时间延长至预定的最小持续时间。利用这些措施,可以使对选择电路的故障的敏感性降低。对本发明的所例示示例的以上描述并非意在是穷举的或限于所述示例。虽然为了说明的目的在本文中描述了本发明的具体实施方案和示例,但是可以在不脱离本发明的情况下进行各种修改。电压、电流、频率、功率、范围值、时间等的具体示例仅仅是说明性的,使得还可以用这些变量的其他值来实现本发明。
根据以上详细描述,可以使用本发明的示例来实现这些修改。在所附权利要求书中使用的术语不应被解释为将本发明限制于在说明书和权利要求书中公开的具体实施方案。本说明书和附图应被认为是说明性的而非限制性的。

Claims (18)

1.一种用于半导体开关的断开电路,包括:
具有可变电阻的元件,所述元件耦合至所述半导体开关的控制输入端;
用于生成控制输入端参考信号的电路;
控制电路,所述控制电路被设计为以闭合控制环路响应于所述控制输入端参考信号来调整所述具有可变电阻的元件的电阻,以便使所述半导体开关断开;
有源箝位电路,所述有源箝位电路被设计为主动地将所述半导体开关的驱动电路的输出电压增加至为了使所述半导体开关的输出电压保持在确定的阈值电压以下所需的程度;以及
选择电路,所述选择电路响应于选择信号启用所述断开电路或所述有源箝位电路,以便在故障情况下断开所述半导体开关。
2.根据权利要求1所述的断开电路,其中所述具有可变电阻的元件与另一电阻串联耦合在所述半导体开关的所述控制输入端与参考电位之间。
3.根据权利要求2所述的断开电路,其中所述控制输入端参考信号具有按第一速率的第一下降、具有恒定的信号电平的区域以及按第二速率的第二下降。
4.根据权利要求3所述的断开电路,其中所述第二速率高于所述第一速率。
5.根据权利要求3所述的断开电路,其中所述第一速率和所述第二速率在时间上是可变的。
6.根据权利要求1所述的断开电路,其中所述断开电路还包括检测电路,所述检测电路被设计为检测所述半导体开关的控制输入端电压或控制输入端电流的米勒平坦区的结束,其中,所述用于生成控制输入端参考信号的电路被设计为响应于检测到米勒平坦区的结束使所述控制输入端参考信号的电平以预定速率减小。
7. 根据权利要求6所述的断开电路,其中当所述具有可变电阻的元件的所述控制输入端处的电压下降到预定信号电平以下时,检测到米勒平坦区的结束。
8. 根据权利要求7所述的断开电路,其中所述预定信号电平
在所述具有可变电阻的元件的预期栅极阈值电压的50%至150%的范围内,或
在0.3到2伏的范围内。
9.根据权利要求7所述的断开电路,其中所述预定信号电平是借助于参考电流并且借助于基于与所述具有可变电阻的元件相同的技术的第二元件来确定的,其中所述第二元件的面积或栅极宽度是所述具有可变电阻的元件的面积或栅极宽度的K倍,并且其中所述参考电流被选择成使得其为针对所述米勒平坦区的结束设计的、所述具有可变电阻的元件的输出电流的阈值的K倍。
10.根据权利要求1所述的断开电路,其中所述断开电路还包括用于检测所述半导体开关的所述控制输入端处的电压的电路,其中所述控制电路被设计为响应于所述控制输入端参考信号和所述半导体开关的所述控制输入端处的电压来调整所述具有可变电阻的元件的电阻。
11. 根据权利要求9所述的断开电路,其中:
所述控制电路包括第一比较电路,所述第一比较电路被配置为将所述控制输入端参考信号与所述半导体开关的所述控制输入端处的电压进行比较;以及
用于生成控制信号的电路包括第二比较电路,所述第二比较电路被设计为响应于所述第一比较电路的输出与故障信号的比较而生成用于所述具有可变电阻的元件的所述控制信号,所述故障信号指示所述半导体开关的故障状态。
12.一种用于在控制功率开关的开关控制器中使用的驱动电路,包括:
接通状态驱动器,所述接通状态驱动器被耦合以接收接通信号,其中所述接通状态驱动器响应于所述接通信号输出用以使所述功率开关接通的第一控制信号,并且所述第一控制信号等于高阈值;
断开状态驱动器,所述断开状态驱动器被耦合以接收断开信号,其中所述断开状态驱动器响应于所述断开信号输出用以使所述功率开关断开的所述第一控制信号,并且所述第一控制信号等于低阈值;以及
软关断电路,所述软关断电路被耦合以接收所述第一控制信号,其中所述软关断电路以闭合环路响应于故障状况调节所述第一控制信号,其中所述软关断电路使所述第一控制信号从所述高阈值降低到中间阈值达一时间段,然后使所述第一控制信号降低到所述低阈值,其中所述时间段响应于所述功率开关的米勒平坦区的结束而结束。
13.根据权利要求12所述的驱动电路,其中当所述断开信号达到第一阈值时,所述软关断电路检测到所述功率开关的所述米勒平坦区的结束。
14.根据权利要求13所述的驱动电路,其中所述断开状态驱动器还包括晶体管,其中所述软关断电路被耦合以接收表示所述晶体管的栅极电流或栅极电压的栅极信号,并且在所述晶体管的所述栅极信号达到所述第一阈值时检测到所述功率开关的所述米勒平坦区的结束。
15.根据权利要求14所述的驱动电路,其中所述软关断电路还包括被耦合以接收所述第一控制信号和参考信号的放大器,其中响应于所述故障状况和所述功率开关的所述米勒平坦区的结束,所述参考信号从所述高阈值降低到所述中间阈值达一时间段,然后降低到所述低阈值。
16.根据权利要求15所述的驱动电路,其中当所述晶体管的所述栅极信号在消隐时间之后达到第一阈值时,检测到所述功率开关的所述米勒平坦区的结束,其中,所述消隐时间在所述参考信号等于所述中间阈值时结束。
17.根据权利要求12所述的驱动电路,其中所述驱动电路可耦合以接收有源箝位信号,其中当所述有源箝位信号介于第一阈值与第二阈值之间时,禁用所述软关断电路,其中所述有源箝位信号包括在所述第一控制信号使所述功率开关断开之前的附加电流。
18.根据权利要求12所述的驱动电路,其中所述故障状况是所述功率开关的过电流状况。
CN202010895948.3A 2014-07-09 2015-07-09 具有动态定时的多级栅极断开 Active CN112073040B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010895948.3A CN112073040B (zh) 2014-07-09 2015-07-09 具有动态定时的多级栅极断开

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201462022304P 2014-07-09 2014-07-09
US62/022,304 2014-07-09
US14/744,862 US9825625B2 (en) 2014-07-09 2015-06-19 Multi-stage gate turn-off with dynamic timing
US14/744,862 2015-06-19
CN202010895948.3A CN112073040B (zh) 2014-07-09 2015-07-09 具有动态定时的多级栅极断开
PCT/EP2015/065712 WO2016005501A1 (en) 2014-07-09 2015-07-09 Multi-stage gate turn-off with dynamic timing
CN201580037171.4A CN106471740B (zh) 2014-07-09 2015-07-09 具有动态定时的多级栅极断开

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201580037171.4A Division CN106471740B (zh) 2014-07-09 2015-07-09 具有动态定时的多级栅极断开

Publications (2)

Publication Number Publication Date
CN112073040A CN112073040A (zh) 2020-12-11
CN112073040B true CN112073040B (zh) 2024-04-16

Family

ID=53539723

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010895948.3A Active CN112073040B (zh) 2014-07-09 2015-07-09 具有动态定时的多级栅极断开
CN201580037171.4A Active CN106471740B (zh) 2014-07-09 2015-07-09 具有动态定时的多级栅极断开

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201580037171.4A Active CN106471740B (zh) 2014-07-09 2015-07-09 具有动态定时的多级栅极断开

Country Status (6)

Country Link
US (3) US9825625B2 (zh)
EP (2) EP3447918B1 (zh)
JP (2) JP6666258B2 (zh)
KR (1) KR102336161B1 (zh)
CN (2) CN112073040B (zh)
WO (1) WO2016005501A1 (zh)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10977128B1 (en) 2015-06-16 2021-04-13 Amazon Technologies, Inc. Adaptive data loss mitigation for redundancy coding systems
US10270476B1 (en) 2015-06-16 2019-04-23 Amazon Technologies, Inc. Failure mode-sensitive layered redundancy coding techniques
US10298259B1 (en) 2015-06-16 2019-05-21 Amazon Technologies, Inc. Multi-layered data redundancy coding techniques
US10270475B1 (en) 2015-06-16 2019-04-23 Amazon Technologies, Inc. Layered redundancy coding for encoded parity data
US10394762B1 (en) 2015-07-01 2019-08-27 Amazon Technologies, Inc. Determining data redundancy in grid encoded data storage systems
US10089176B1 (en) 2015-07-01 2018-10-02 Amazon Technologies, Inc. Incremental updates of grid encoded data storage systems
US10198311B1 (en) 2015-07-01 2019-02-05 Amazon Technologies, Inc. Cross-datacenter validation of grid encoded data storage systems
US10162704B1 (en) 2015-07-01 2018-12-25 Amazon Technologies, Inc. Grid encoded data storage systems for efficient data repair
US10108819B1 (en) 2015-07-01 2018-10-23 Amazon Technologies, Inc. Cross-datacenter extension of grid encoded data storage systems
US11386060B1 (en) 2015-09-23 2022-07-12 Amazon Technologies, Inc. Techniques for verifiably processing data in distributed computing systems
US10394789B1 (en) 2015-12-07 2019-08-27 Amazon Technologies, Inc. Techniques and systems for scalable request handling in data processing systems
GB2545236B (en) * 2015-12-10 2017-12-13 Rolls Royce Plc A method of controlling an inverter
US10642813B1 (en) 2015-12-14 2020-05-05 Amazon Technologies, Inc. Techniques and systems for storage and processing of operational data
US10248793B1 (en) 2015-12-16 2019-04-02 Amazon Technologies, Inc. Techniques and systems for durable encryption and deletion in data storage systems
US10102065B1 (en) 2015-12-17 2018-10-16 Amazon Technologies, Inc. Localized failure mode decorrelation in redundancy encoded data storage systems
US10235402B1 (en) 2015-12-17 2019-03-19 Amazon Technologies, Inc. Techniques for combining grid-encoded data storage systems
US10180912B1 (en) 2015-12-17 2019-01-15 Amazon Technologies, Inc. Techniques and systems for data segregation in redundancy coded data storage systems
US10324790B1 (en) 2015-12-17 2019-06-18 Amazon Technologies, Inc. Flexible data storage device mapping for data storage systems
US10127105B1 (en) 2015-12-17 2018-11-13 Amazon Technologies, Inc. Techniques for extending grids in data storage systems
US10033377B2 (en) 2016-03-15 2018-07-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Adaptive power down control system
US10592336B1 (en) 2016-03-24 2020-03-17 Amazon Technologies, Inc. Layered indexing for asynchronous retrieval of redundancy coded data
US10366062B1 (en) * 2016-03-28 2019-07-30 Amazon Technologies, Inc. Cycled clustering for redundancy coded data storage systems
US10678664B1 (en) 2016-03-28 2020-06-09 Amazon Technologies, Inc. Hybridized storage operation for redundancy coded data storage systems
US10061668B1 (en) 2016-03-28 2018-08-28 Amazon Technologies, Inc. Local storage clustering for redundancy coded data storage system
EP3229373A1 (en) * 2016-04-06 2017-10-11 Volke Andreas Soft shutdown modular circuitry for power semiconductor switches
JP6766443B2 (ja) * 2016-05-20 2020-10-14 富士電機株式会社 半導体集積回路
US11137980B1 (en) 2016-09-27 2021-10-05 Amazon Technologies, Inc. Monotonic time-based data storage
US11204895B1 (en) 2016-09-28 2021-12-21 Amazon Technologies, Inc. Data payload clustering for data storage systems
US10810157B1 (en) 2016-09-28 2020-10-20 Amazon Technologies, Inc. Command aggregation for data storage operations
US10496327B1 (en) 2016-09-28 2019-12-03 Amazon Technologies, Inc. Command parallelization for data storage systems
US10657097B1 (en) 2016-09-28 2020-05-19 Amazon Technologies, Inc. Data payload aggregation for data storage systems
US10437790B1 (en) 2016-09-28 2019-10-08 Amazon Technologies, Inc. Contextual optimization for data storage systems
US11281624B1 (en) 2016-09-28 2022-03-22 Amazon Technologies, Inc. Client-based batching of data payload
US10614239B2 (en) 2016-09-30 2020-04-07 Amazon Technologies, Inc. Immutable cryptographically secured ledger-backed databases
US10296764B1 (en) 2016-11-18 2019-05-21 Amazon Technologies, Inc. Verifiable cryptographically secured ledgers for human resource systems
US11269888B1 (en) 2016-11-28 2022-03-08 Amazon Technologies, Inc. Archival data storage for structured data
US10574226B2 (en) * 2017-02-16 2020-02-25 Texas Instruments Incorporated Gate driver including gate sense circuit
DE102017108769B4 (de) * 2017-04-25 2019-04-18 Semikron Elektronik Gmbh & Co. Kg Steuereinrichtung für einen Leistungshalbleiterschalter
FR3073645A1 (fr) * 2017-11-13 2019-05-17 Stmicroelectronics (Rousset) Sas Procede de modification aleatoire du profil de consommation d'un circuit logique, et dispositif associe
JP7305303B2 (ja) * 2018-03-20 2023-07-10 三菱電機株式会社 駆動装置及びパワーモジュール
EP3595152B1 (en) * 2018-07-12 2023-09-06 Power Integrations, Inc. Protecting semiconductor switches in switched mode power converters
KR102046583B1 (ko) * 2019-03-27 2019-11-19 콘티넨탈 오토모티브 시스템 주식회사 모터 구동 회로의 단선 진단 장치 및 방법
US10998843B2 (en) 2019-09-23 2021-05-04 Power Integrations, Inc. External adjustment of a drive control of a switch
US11451227B2 (en) * 2020-04-30 2022-09-20 Eaton Intelligent Power Limited Control circuitry for power semiconductor switches using control signal feedback
JP7056688B2 (ja) * 2020-06-02 2022-04-19 株式会社三洋物産 遊技機
US11437911B2 (en) 2020-12-22 2022-09-06 Power Integrations, Inc. Variable drive strength in response to a power converter operating condition
EP4254700A1 (en) * 2021-04-21 2023-10-04 Samsung Electronics Co., Ltd. Overcurrent protection device of power supply device and operating method therefor

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3141613B2 (ja) * 1993-03-31 2001-03-05 株式会社日立製作所 電圧駆動形素子の駆動方法及びその回路
KR0171713B1 (ko) * 1995-12-12 1999-05-01 이형도 전력용 반도체 트랜지스터의 과전류 보호회로
JP3829534B2 (ja) * 1999-05-26 2006-10-04 松下電工株式会社 放電灯点灯装置
JP2001197724A (ja) * 2000-01-14 2001-07-19 Fuji Electric Co Ltd 電力用半導体素子のゲート駆動回路
US6717785B2 (en) * 2000-03-31 2004-04-06 Denso Corporation Semiconductor switching element driving circuit
US6459324B1 (en) * 2000-10-23 2002-10-01 International Rectifier Corporation Gate drive circuit with feedback-controlled active resistance
JP3886876B2 (ja) * 2002-01-17 2007-02-28 三菱電機株式会社 電力用半導体素子の駆動回路
DE10215363A1 (de) * 2002-04-08 2003-10-30 Eupec Gmbh & Co Kg Schaltungsanordnung zum Ansteuern eines Halbleiterschalters
US7276954B2 (en) * 2002-06-26 2007-10-02 Kabushiki Kaisha Toyota Jidoshokki Driver for switching device
US7061301B2 (en) 2003-12-19 2006-06-13 Power Integrations, Inc. Method and apparatus switching a semiconductor switch with a multi-state drive circuit
US7667524B2 (en) 2004-11-05 2010-02-23 International Rectifier Corporation Driver circuit and method with reduced DI/DT and having delay compensation
DE102006036349B4 (de) 2006-08-03 2015-04-02 Infineon Technologies Ag Schaltungsvorrichtung und Verfahren zum Erkennen eines Betriebszustandes
FI120812B (fi) * 2007-04-30 2010-03-15 Vacon Oyj Tehopuolijohdekytkimen ohjaus
US7821306B2 (en) 2007-06-19 2010-10-26 Panasonic Corporation Switching device drive circuit
JP2009225506A (ja) * 2008-03-13 2009-10-01 Toshiba Corp 電力変換器
JP5513778B2 (ja) 2008-08-18 2014-06-04 パナソニック株式会社 スイッチング電源回路
US7936189B2 (en) 2008-12-04 2011-05-03 Stmicroelectronics S.R.L. Driver circuit and method for reducing electromagnetic interference
JP2011200037A (ja) * 2010-03-19 2011-10-06 Toyota Motor Corp 半導体電力変換装置
JP5556442B2 (ja) * 2010-06-30 2014-07-23 株式会社デンソー スイッチング素子の駆動回路
JP5344056B2 (ja) * 2011-03-28 2013-11-20 株式会社デンソー スイッチング素子の駆動回路
WO2012157118A1 (ja) * 2011-05-19 2012-11-22 トヨタ自動車株式会社 電圧駆動型素子を駆動する駆動装置
US8760218B2 (en) * 2012-05-07 2014-06-24 General Electric Company System and method for operating an electric power converter
WO2015182669A1 (ja) * 2014-05-29 2015-12-03 カルソニックカンセイ株式会社 半導体スイッチング素子駆動回路

Also Published As

Publication number Publication date
US11469756B2 (en) 2022-10-11
US20200259488A1 (en) 2020-08-13
US10680604B2 (en) 2020-06-09
KR102336161B1 (ko) 2021-12-08
EP3108580A1 (en) 2016-12-28
JP2017521982A (ja) 2017-08-03
EP3447918B1 (en) 2021-05-19
CN106471740B (zh) 2020-09-04
JP6666258B2 (ja) 2020-03-13
CN112073040A (zh) 2020-12-11
KR20170031085A (ko) 2017-03-20
US20160013788A1 (en) 2016-01-14
CN106471740A (zh) 2017-03-01
JP2020096525A (ja) 2020-06-18
EP3447918A1 (en) 2019-02-27
US9825625B2 (en) 2017-11-21
US20180041205A1 (en) 2018-02-08
JP6949160B2 (ja) 2021-10-13
WO2016005501A1 (en) 2016-01-14
EP3108580B1 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
CN112073040B (zh) 具有动态定时的多级栅极断开
US10236677B2 (en) Semiconductor device
US9366717B2 (en) Device and procedure for the detection of a short circuit or overcurrent situation in a power semiconductor switch
US10263412B2 (en) System and method for desaturation detection
US10199916B2 (en) Resistor emulation and gate boost
US8994413B2 (en) Method for driving power semiconductor switches
CA2840440C (en) Short circuit protection circuit and method for insulated gate bipolar transistor
US9601985B2 (en) Segmented driver for a transistor device
JP2024007553A (ja) スイッチング電力コンバーターにおいて半導体スイッチを保護すること
US8363440B2 (en) Power conversion circuit having off-voltage control circuit
CN106416072B (zh) 为用于半导体功率开关的驱动电路产生动态基准信号的装置和方法
US9653998B2 (en) Boost converter and power controling method thereof
CN109217858B (zh) 晶体管装置的过电压保护
US11545972B2 (en) Overcurrent protection circuit for switching element turned on and off based on control voltage
JP2006352931A (ja) スイッチング素子保護回路
JP6706876B2 (ja) パワーモジュール
EP3993264A1 (en) Switch controller, device and method with overcurrent protection
WO2023119574A1 (ja) 半導体素子の駆動装置及び駆動方法
EP3024143B1 (en) Solid state power controller
WO2015129049A1 (ja) 電力変換装置、及び、電力変換装置の短絡保護方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant