CN112067671B - 一种葡萄糖电化学传感器及其制备方法 - Google Patents

一种葡萄糖电化学传感器及其制备方法 Download PDF

Info

Publication number
CN112067671B
CN112067671B CN202010832447.0A CN202010832447A CN112067671B CN 112067671 B CN112067671 B CN 112067671B CN 202010832447 A CN202010832447 A CN 202010832447A CN 112067671 B CN112067671 B CN 112067671B
Authority
CN
China
Prior art keywords
transition metal
glucose
metal complex
redox polymer
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010832447.0A
Other languages
English (en)
Other versions
CN112067671A (zh
Inventor
于非
鲁玉辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weitai Medical Device Hangzhou Co ltd
Original Assignee
Weitai Medical Device Hangzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weitai Medical Device Hangzhou Co ltd filed Critical Weitai Medical Device Hangzhou Co ltd
Priority to CN202010832447.0A priority Critical patent/CN112067671B/zh
Publication of CN112067671A publication Critical patent/CN112067671A/zh
Priority to EP21857534.8A priority patent/EP4220144A1/en
Priority to PCT/CN2021/111770 priority patent/WO2022037439A1/zh
Priority to US18/258,393 priority patent/US20240044831A1/en
Application granted granted Critical
Publication of CN112067671B publication Critical patent/CN112067671B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/06Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/10Alpha-amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • G01N27/3335Ion-selective electrodes or membranes the membrane containing at least one organic component
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明提供了一种基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器,及其制备方法。所述葡萄糖电化学传感器的传感层包括含过渡金属配合物介质的阳离子氧化还原聚合物、葡萄糖氧化酶和交联剂。本发明的葡萄糖电化学传感器能够特异性检测葡萄糖,且其稳定电流信号与葡萄糖浓度线性相关系数高;能够排除干扰物质对葡萄糖检测的影响;还能够排除溶液中氧气浓度对葡萄糖检测的影响。

Description

一种葡萄糖电化学传感器及其制备方法
技术领域
本发明涉及一种基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器及其制备方法。本发明属于电化学传感器领域。
背景技术
糖尿病是一种普遍的慢性疾病,是由于人体内血糖浓度的不可控所引起,它严重危害着人类的健康。如果人体内的血糖浓度持续偏高则很有可能会诱发高血糖,继而引发一系列并发症,如失明、心血管疾病、肾功能衰竭等。而过低的血糖浓度又会造成低血糖,甚至引起死亡。
到目前为止,还没有很好的医疗手段可以根治糖尿病。多数情况下,医生都是通过控制病人的血糖浓度来达到治疗的目的。而想要很好的控制血糖浓度,对血糖进行连续实时的监测是必不可少的。因此,葡萄糖传感器被研发出来用于精确的检测血糖浓度。
在众多的葡萄糖检测方法中,电化学分析方法有着一些简单和定量的操作模式,被广泛的应用在葡萄糖传感器中。这类方法有很快的响应时间和很宽的检测范围,测得的电化学信号可以转化为相应的葡萄糖浓度,能够很好的实现对葡萄糖浓度的定量分析。
然而,现有的葡萄糖电化学传感器也存在着一些问题,主要体现在:1、干扰物质会对葡萄糖检测有较大的影响;2、基于特异性高的葡萄糖氧化酶反应机理制造的葡萄糖电化学传感器在使用时,需要消耗氧气,氧气不足导致测试结果不准确。
结合对相关背景问题的了解,本发明提供了一种基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器及其制备方法。
本发明提供的电化学葡萄糖传感器能够特异性检测葡萄糖,且其稳定电流信号与葡萄糖浓度线性相关系数高,能排除干扰物质对葡萄糖检测的影响,能够排除溶液中氧气浓度对葡萄糖检测的影响,从而克服了现有技术的不足。
因此,本发明基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器在连续性血糖检测上具有广泛的应用价值。
发明内容
本发明涉及一种基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器及其制备方法,本发明提供的电化学传感器能够快速准确地连续性检测葡萄糖浓度。
为了达到上述目的,本发明采用了下列技术方案:
一种葡萄糖电化学传感器的制备方法,所述葡萄糖电化学传感器基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶,其特征在于,所述制备方法包括以下步骤:
A、将过渡金属配合物介质接枝到阳离子聚合物侧链上得到含过渡金属配合物介质的阳离子氧化还原聚合物,
B、将步骤A中得到的过渡金属配合物介质的阳离子氧化还原聚合物溶解在去离子水中,得到过渡金属配合物介质的阳离子氧化还原聚合物水溶液,
C、将步骤B中得到的过渡金属配合物介质的阳离子氧化还原聚合物水溶液、以及葡萄糖氧化酶水溶液和交联剂水溶液的溶液混合物涂布到电极表面,
D、待水分蒸发后置入真空干燥箱中干燥,得到含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器。
进一步的,本发明的葡萄糖电化学传感器的制备方法,其中步骤A中得到的过渡金属配合物介质的阳离子氧化还原聚合物化学结构式如下所示:
Figure RE-GDA0002756372560000031
其中,M为过渡金属;
L为过渡金属配合物中的配体,选自二联咪唑和二联吡啶类衍生物;
x,y,z为分子中碳氢链的长度。
进一步的,本发明的葡萄糖电化学传感器的制备方法,其中步骤A中所用的过渡金属M为铁、钴、钌、锇和钒中的一种或多种。
进一步的,本发明的葡萄糖电化学传感器的制备方法,其中步骤A中所用的过渡金属配合物中的配体L为N,N′-二甲基-2,2′-联咪唑、2,2′-联吡啶、4,4′-二甲基 -2,2′-联吡啶、4,4′-二甲氧基-2,2′-联吡啶和4,4′-二氯-2,2′-联吡啶中的一种或多种。
进一步的,本发明的葡萄糖电化学传感器的制备方法,其中步骤A中使用的阳离子氧化还原聚合物选自侧链带有氨基的壳聚糖、N-羧甲基壳聚糖、O-羧甲基壳聚糖、羟丙基壳聚糖、N-马来酰化壳聚糖的天然高分子,和聚赖氨酸、聚烯丙基胺、聚乙烯亚胺、聚精氨酸的合成高分子中的一种或多种。
进一步的,本发明的葡萄糖电化学传感器的制备方法,其中步骤A中过渡金属配合物介质通过4-20个共价键接枝到阳离子聚合物侧链上,即4≤x+y+z≤20。
进一步的,本发明的葡萄糖电化学传感器的制备方法,其中步骤C中使用的交联剂选自戊二醛、聚乙二醇二缩水甘油醚和京尼平中的一种或多种;其中京尼平的结构式为:
Figure RE-GDA0002756372560000041
进一步的,本发明的葡萄糖电化学传感器的制备方法,其中步骤C中,所述溶液混合物通过将步骤A中得到的过渡金属配合物介质的阳离子氧化还原聚合物水溶液、葡萄糖氧化酶水溶液和交联剂水溶液在0-45℃下,混合45分钟-2天得到。
进一步的,本发明的葡萄糖电化学传感器的制备方法,其特征在于所述溶液混合物通过将1-20mg/mL的过渡金属配合物介质的阳离子氧化还原聚合物水溶液、1-10mg/mL的葡萄糖氧化酶水溶液、1-10mg/mL的交联剂水溶液混合得到,使得溶液混合物中过渡金属配合物介质的阳离子氧化还原聚合物、葡萄糖氧化酶和交联剂的质量比为1:(0.1-5):(0.01-0.5)。
本发明还涉及由上述方法制备得到的葡萄糖电化学传感器。
根据本发明方法制备的葡萄糖电化学传感器取得了以下有益效果:
1.本发明的葡萄糖电化学传感器能够特异性检测葡萄糖,且其稳定电流信号与葡萄糖浓度线性相关系数高。
2.本发明的葡萄糖电化学传感器能排除干扰物质对葡萄糖检测的影响。
3.本发明的葡萄糖电化学传感器能够排除溶液中氧气浓度对葡萄糖检测的影响。
附图说明
图1基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器在0mM、5mM、10mM、15mM葡萄糖的PBS溶液中的氧化还原曲线。
图2基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器在10mM葡萄糖的PBS溶液中的时间电流曲线。
图3基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器在10mM葡萄糖的PBS溶液中的时间电流曲线。随着溶液中氧气浓度的变化,信号值变化较小。
图4基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器在5mM、10mM、15mM、20mM葡萄糖的PBS溶液中的时间电流曲线。随着葡萄糖浓度的增加,电流信号值也增加;且葡萄糖浓度和电流信号值呈比较好的线性关系。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明做进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1:一种基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器制备方法,包括以下步骤:
1)将1mmol乙烯基咪唑、1mmol 11-巯基十一烷酸和12mg引发剂偶氮二异丁腈加入到5mL的乙醇中,70℃过夜反应。反应完全后降至室温,将所得溶液缓慢滴加到50mL去离子水中沉淀。过滤,滤饼在烘箱中烘干。
2)将1.5mmol的步骤1)中的产物和1mmol的Os-(bpy)2Cl加入到5mL的乙醇中,回流反应三天。反应完全后,冷却至室温,缓慢滴加到50mL去离子水中。过滤,收集滤液。滤液在烘箱中干燥得到产物。
3)将1mmol 2)中得到的产物溶于去离子水中,加入28mg EDC(二氯乙烷) 和16mgNHS(N-羟基琥珀酰亚胺)活化羧基,加入0.468g聚烯丙基胺,室温反应2天。将该体系透析,冻干,得到产物。
4)将7.8μL3)中所得产物的水溶液(10mg/mL)、16μL葡萄糖氧化酶水溶液(10mg/mL)和6μL聚乙二醇二缩水甘油醚水溶液(2.5mg/mL)混合后,室温交联2天。
5)将该凝胶体系滴加到电极表面,待水分蒸发后,置入真空环境中2天,得到目标电极。
测试制备的电极在0、5mM、10mM、15mM葡萄糖的PBS溶液(磷酸盐缓冲溶液)中的氧化还原曲线,结果如图1所示。该电极的氧化还原峰在250mV以下,远低于干扰物质对乙酰氨基酚和抗坏血酸等催化氧化所需要的电压。故该电极有较好的抗干扰能力。
实施例2:一种基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器制备方法,包括以下步骤:
1)将1mmol乙烯基咪唑、1mmol 16-巯基十六烷基酸和12mg引发剂偶氮二异丁腈加入到5mL的丙酮中,45℃过夜反应。反应完全后降至室温,该溶液缓慢滴加到50mL去离子水中沉淀。过滤,滤饼在烘箱中烘干。
2)将1.7mmol的步骤1)中的产物和1mmol的Rh-(二甲基-bpy)2Cl加入到 5mL的乙醇中,回流反应三天。反应完全后,冷却至室温,缓慢滴加到50mL去离子水中。过滤,收集滤液。滤液在烘箱中干燥得到产物。
3)将1mmol 2)中得到的产物溶于去离子水中,加入28mg EDC和16mg NHS 活化羧基,加入0.641g聚乙烯亚胺,室温反应2天。将该体系透析,冻干,得到产物。
4)将10μL的3)中得到的产物的水溶液(5mg/mL)、2μL葡萄糖氧化酶水溶液(10mg/mL)和1μL戊二醛(2mg/mL)混合后,45℃交联40min。
5)将该凝胶体系滴加到电极表面,待水分蒸发后,置入真空环境中2天,得到目标电极。
测试制备的电极在10mM葡萄糖的PBS溶液中的时间电流曲线,结果如图2 所示。该电极在10mM的葡萄糖PBS溶液中的响应较好,加入葡萄糖后,电极能够在10秒内就能够有响应信号。
实施例3:一种基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器制备方法,包括以下步骤:
1)将1mmol丙烯基咪唑、1mmol 1巯基丙酸和12mg引发剂偶氮二异丁腈加入到5mL的1,4-二氧六环中,75℃反应12h。反应完全后降至室温,该溶液缓慢滴加到50mL去离子水中沉淀。过滤,滤饼在烘箱中烘干。
2)将1.5mmol的步骤1)中的产物和1mmol的Ru-(bpy)2Cl加入到5mL的乙醇中,回流反应三天。反应完全后,冷却至室温,缓慢滴加到50mL去离子水中。过滤,收集滤液。滤液在烘箱中干燥得到产物。
3)将1mmol 2)中得到的产物溶于去离子水中,加入28mg EDC和16mg NHS 活化羧基,加入0.78g聚赖氨酸,室温反应2天。将该体系透析,冻干,得到产物。
4)将7.8μL的3)中得到的产物的水溶液(10mg/mL)、16μL葡萄糖氧化酶水溶液(10mg/mL)和6μL京尼平水溶液(2.5mg/mL)混合后,40℃交联2天。
5)将该凝胶体系滴加到电极表面,待水分蒸发后,置入真空环境中2天,得到目标电极。
测试制备的电极在10mM葡萄糖的PBS溶液中不同气体氛围下的时间电流曲线,结果如图3所示。随着溶液中气体氛围的变化,信号值变化较小。该结果说明制备的电极对测试环境中的氧气浓度变化不敏感。
实施例4:一种基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器制备方法,包括以下步骤:
1)将1mmol乙烯基咪唑、1mmol 4-巯基氢化肉桂酸和12mg引发剂偶氮二异丁腈加入到5mL的N,N-二甲基甲酰胺中,80℃反应8h。反应完全后降至室温,该溶液缓慢滴加到50mL去离子水中沉淀。过滤,滤饼在烘箱中烘干。
2)将2mmol的步骤1)中的产物和1mmol的Os-(二甲氧基-bpy)2Cl加入到 5mL的乙醇中,回流反应三天。反应完全后,冷却至室温,缓慢滴加到50mL去离子水中。过滤,收集滤液。滤液在烘箱中干燥得到产物。
3)将1mmol 2)中得到的产物溶于去离子水中,加入28mg EDC和16mg NHS 活化羧基,加入0.645g聚乙烯亚胺,室温反应2天。将该体系透析,冻干,得到产物。
4)将7μL的3)中得到的产物的水溶液(15mg/mL)、2μL葡萄糖氧化酶水溶液(8mg/mL)和2μL聚乙二醇二缩水甘油醚水溶液(2mg/mL)混合后,室温交联2天。
5)将该凝胶体系滴加到电极表面,待水分蒸发后,置入真空环境中2天,得到目标电极。
测试制备的电极在0、5mM、10mM、15mM、20mM葡萄糖的PBS溶液中的时间电流曲线,结果如图4所示。随着葡萄糖浓度的增加,电流信号值也增加。且葡萄糖浓度和电流信号值呈比较好的线性关系。该结果表明,制备的电极能够较好的测试在0-20mM的葡萄糖浓度范围内的葡萄糖浓度。
实施例5:一种基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器制备方法,包括以下步骤:
1)将1mmol丙烯基咪唑、1mmol巯基乙酸和12mg引发剂偶氮二异丁腈加入到5mL的甲醇中,65℃过夜反应。反应完全后降至室温,该溶液缓慢滴加到50mL去离子水中沉淀。过滤,滤饼在烘箱中烘干。
2)将1.5mmol的步骤1)中的产物和1mmol的Os-(二氯-bpy)2Cl加入到5mL 的乙醇中,回流反应三天。反应完全后,冷却至室温,缓慢滴加到50mL去离子水中。过滤,收集滤液。滤液在烘箱中干燥得到产物。
3)将1mmol 2)中得到的产物溶于去离子水中,加入28mg EDC和16mg NHS 活化羧基,加入壳聚糖水溶液(含壳聚糖0.806g),室温反应2天。将该体系透析,冻干,得到产物。
4)将5μL的3)中得到的产物的水溶液(10mg/mL)、2μL葡萄糖氧化酶水溶液(5mg/mL)和3μL聚乙二醇二缩水甘油醚水溶液(3mg/mL)混合后,室温交联2天。
5)将该凝胶体系滴加到电极表面,待水分蒸发后,置入真空环境中2天,得到目标电极。

Claims (8)

1.一种葡萄糖电化学传感器的制备方法,所述葡萄糖电化学传感器基于含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶,其特征在于包括以下步骤:
A、将过渡金属配合物与含氮杂环化合物和端巯基烷基酸反应合成含过渡金属配合物的短链接枝分子;所述端巯基烷基酸为巯基乙酸、巯基丙酸、4-巯基氢化肉桂酸、11-巯基十一烷酸、16-巯基十六烷基酸中的一种或多种;所述含氮杂环化合物为乙烯基咪唑、丙烯基咪唑的一种或多种,
B、将此短链分子接枝到阳离子聚合物侧链上得到结构式如下所示的过渡金属配合物介质的阳离子氧化还原聚合物,
Figure FDA0003775292850000011
其中,M为过渡金属;
L为过渡金属配合物中的配体,选自二联咪唑和二联吡啶类衍生物;
x为阳离子氧化还原聚合物分子侧链上碳氢链的长度;
y为端巯基烷基酸分子上碳氢链的长度;
z为与过渡金属配合物接枝的乙烯基含氮杂环化合物上碳氢链的长度;
并且4≤x+y+z≤20,
C、将步骤B中得到的过渡金属配合物介质的阳离子氧化还原聚合物溶解在去离子水中,得到过渡金属配合物介质的阳离子氧化还原聚合物水溶液,
D、将步骤C中得到的过渡金属配合物介质的阳离子氧化还原聚合物水溶液、以及葡萄糖氧化酶水溶液和交联剂水溶液的溶液混合物涂布到电极表面,
E、待水分蒸发后置入真空干燥箱中干燥,得到含过渡金属配合物介质的阳离子氧化还原聚合物水凝胶的葡萄糖电化学传感器。
2.根据权利要求1所述的制备方法,其特征在于步骤A中所用的过渡金属M为铁、钴、钌、锇和钒中的一种或多种。
3.根据权利要求1或2所述的制备方法,其特征在于步骤A中所用的过渡金属配合物中的配体L为N,N′-二甲基-2,2′-联咪唑、2,2′-联吡啶、4,4′-二甲基-2,2′-联吡啶、4,4′-二甲氧基-2,2′-联吡啶和4,4′-二氯-2,2′-联吡啶中的一种或多种。
4.根据权利要求1或2所述的制备方法,其特征在于步骤B中使用的阳离子氧化还原聚合物选自侧链带有氨基的壳聚糖、N-羧甲基壳聚糖、O-羧甲基壳聚糖、羟丙基壳聚糖和N-马来酰化壳聚糖的天然高分子,和聚赖氨酸、聚烯丙基胺、聚乙烯亚胺、聚精氨酸的合成高分子中的一种或多种。
5.根据权利要求1或2所述的制备方法,其特征在于步骤D中使用的交联剂选自戊二醛、聚乙二醇二缩水甘油醚和京尼平中的一种或多种。
6.根据权利要求1或2所述的制备方法,其特征在于步骤D中,所述溶液混合物通过将步骤B中得到的过渡金属配合物介质的阳离子氧化还原聚合物水溶液、葡萄糖氧化酶水溶液和交联剂水溶液在0-45℃下,混合45分钟-2天得到。
7.根据权利要求6所述的制备方法,其特征在于所述溶液混合物通过将1-20mg/mL的过渡金属配合物介质的阳离子氧化还原聚合物水溶液、1-10mg/mL的葡萄糖氧化酶水溶液、1-10mg/mL的交联剂水溶液混合得到,使得溶液混合物中过渡金属配合物介质的阳离子氧化还原聚合物、葡萄糖氧化酶和交联剂的质量比为1:(0.1-5):(0.01-0.5)。
8.根据权利要求1-7中任一项方法制备的葡萄糖电化学传感器。
CN202010832447.0A 2020-08-18 2020-08-18 一种葡萄糖电化学传感器及其制备方法 Active CN112067671B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010832447.0A CN112067671B (zh) 2020-08-18 2020-08-18 一种葡萄糖电化学传感器及其制备方法
EP21857534.8A EP4220144A1 (en) 2020-08-18 2021-08-10 Glucose electrochemical sensor and preparation method thereof
PCT/CN2021/111770 WO2022037439A1 (zh) 2020-08-18 2021-08-10 一种葡萄糖电化学传感器及其制备方法
US18/258,393 US20240044831A1 (en) 2020-08-18 2021-08-18 Glucose electrochemical sensor and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010832447.0A CN112067671B (zh) 2020-08-18 2020-08-18 一种葡萄糖电化学传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN112067671A CN112067671A (zh) 2020-12-11
CN112067671B true CN112067671B (zh) 2022-09-23

Family

ID=73662161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010832447.0A Active CN112067671B (zh) 2020-08-18 2020-08-18 一种葡萄糖电化学传感器及其制备方法

Country Status (4)

Country Link
US (1) US20240044831A1 (zh)
EP (1) EP4220144A1 (zh)
CN (1) CN112067671B (zh)
WO (1) WO2022037439A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112067671B (zh) * 2020-08-18 2022-09-23 微泰医疗器械(杭州)股份有限公司 一种葡萄糖电化学传感器及其制备方法
CN113720889A (zh) * 2021-09-02 2021-11-30 苏州中星医疗技术有限公司 葡萄糖生物传感器及其葡萄糖生物传感膜
CN114740068A (zh) * 2022-04-15 2022-07-12 深圳可孚生物科技有限公司 一种基于Genipin的葡萄糖传感器的制备方法
CN115266874A (zh) * 2022-05-24 2022-11-01 四川大学 一种电位低且检测范围宽的葡萄糖传感器及其制备方法
CN114778645A (zh) * 2022-05-24 2022-07-22 四川大学 一种双金属中心导电纳米材料葡萄糖传感及其制备方法和应用
CN114894865A (zh) * 2022-05-24 2022-08-12 四川大学 一种高精度葡萄糖传感器及其制备方法
CN117018210B (zh) * 2023-04-23 2024-05-07 国科温州研究院(温州生物材料与工程研究所) 一种游动细胞机器人及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992012254A1 (en) * 1991-01-10 1992-07-23 Board Of Regents, The University Of Texas System Enzyme electrodes
US8444834B2 (en) * 1999-11-15 2013-05-21 Abbott Diabetes Care Inc. Redox polymers for use in analyte monitoring
ATE364046T1 (de) * 1999-11-15 2007-06-15 Therasense Inc Übergangsmetallkomplexe, die über ein bewegliches zwischenglied an ein polymer gebunden sind
US8226814B2 (en) * 2001-05-11 2012-07-24 Abbott Diabetes Care Inc. Transition metal complexes with pyridyl-imidazole ligands
US7511142B2 (en) * 2004-07-28 2009-03-31 Agency For Science, Technology And Research Mediator-modified redox biomolecules for use in electrochemical determination of analyte
US8636884B2 (en) * 2008-09-15 2014-01-28 Abbott Diabetes Care Inc. Cationic polymer based wired enzyme formulations for use in analyte sensors
KR102423250B1 (ko) * 2015-03-04 2022-07-21 삼성전자주식회사 효소 기반의 전위차법 글루코스 검출용 센서 및 이의 제조방법
CN106290520B (zh) * 2016-08-29 2018-10-30 微泰医疗器械(杭州)有限公司 一种带有表面固化多肽探针的电化学传感器的制备方法
EP3805304A4 (en) * 2018-06-08 2022-03-02 i-Sens, Inc. CROSSLINKER WITH GENIPIN FOR USE IN MAKING A SENSOR FILM OR A DIFFUSION CONTROL FILM OF AN ELECTROCHEMICAL SENSOR
CN110887884B (zh) * 2019-12-23 2020-10-09 四川大学 一种柔性电化学葡萄糖传感器及其制备方法
CN112067671B (zh) * 2020-08-18 2022-09-23 微泰医疗器械(杭州)股份有限公司 一种葡萄糖电化学传感器及其制备方法

Also Published As

Publication number Publication date
CN112067671A (zh) 2020-12-11
EP4220144A1 (en) 2023-08-02
WO2022037439A1 (zh) 2022-02-24
US20240044831A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
CN112067671B (zh) 一种葡萄糖电化学传感器及其制备方法
JP5308609B2 (ja) ポリマー遷移金属錯体及びその用途
Zouaoui et al. Electrochemical sensors based on molecularly imprinted chitosan: A review
Kempahanumakkagari et al. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform
US4560534A (en) Polymer catalyst transducers
EP1507785A2 (en) Transition metal complexes with (pyridyl)imidazole ligands
WO2022228022A1 (zh) 一种微溶胀型生物相容性膜及其制备方法
Liu et al. Electrochemically mediated ATRP (eATRP) amplification for ultrasensitive detection of glucose
CN113406168A (zh) 分子印迹检测氯霉素的电化学传感器及其制备方法和应用
Wei et al. L-histidine-regulated zeolitic imidazolate framework modified electrochemical interface for enantioselective determination of L-glutamate
Alizadeh et al. A novel enzyme-less uric acid voltammetric sensor based on highly selective nano-imprinted polymer synthesized utilizing [tetrabutyl ammonium]+-[urate]− ion-pair complex as template
KR20210016577A (ko) 전기화학적 센서
Welzel et al. Reactive groups on polymer covered electrodes, 4. Lactate‐oxidase‐biosensor based on electrodes modified by polythiophene
Yang et al. Dynamic reversible hydrogel-bearing cucurbit [6] uril units: Unique recognition of copper ions
CN117884166B (zh) 一种用于过氧化氢和肌氨酸快速定量检测的水凝胶试剂盒及其制备方法和应用
CN115215953B (zh) 自组装氧化还原聚合物、传感器及其制备方法
EP0983511A1 (en) Sensors for sugars and other metal binding analytes
CN118465254A (zh) 基于适体、酶和mof杂化的沙拉沙星刺激响应水凝胶比色传感器
CN117736456A (zh) 超支化结构氧化还原聚合物、葡萄糖传感材料及其制备方法与应用
CN117805203A (zh) 一种环糊精聚合物-石墨烯修饰电极、电化学传感器及其制备和应用
CN116698942A (zh) 一种可特异性识别磷脂酶c的柔性传感器
CN114674770A (zh) 一种基于分子印迹聚合物包裹金属有机骨架的比色传感器的制备方法及其产品和应用
CN117659226A (zh) 一种含巯基基团的壳聚糖及其制备方法和应用
AU2011239358A1 (en) Transition metal complexes with (pyridyl)imidazole ligands

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: No.108, Liuze street, Cangqian street, Yuhang District, Hangzhou City, Zhejiang Province

Applicant after: Weitai medical device (Hangzhou) Co.,Ltd.

Address before: No.108, Liuze street, Cangqian street, Yuhang District, Hangzhou City, Zhejiang Province

Applicant before: MICROTECH MEDICAL (HANGZHOU) Co.,Ltd.

GR01 Patent grant
GR01 Patent grant