CN112064105B - Cu2Zn1-xMgxSnS4纳米晶的制备方法及其用途 - Google Patents

Cu2Zn1-xMgxSnS4纳米晶的制备方法及其用途 Download PDF

Info

Publication number
CN112064105B
CN112064105B CN202010887748.3A CN202010887748A CN112064105B CN 112064105 B CN112064105 B CN 112064105B CN 202010887748 A CN202010887748 A CN 202010887748A CN 112064105 B CN112064105 B CN 112064105B
Authority
CN
China
Prior art keywords
sns
salt
nanocrystalline
preparation
proportion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010887748.3A
Other languages
English (en)
Other versions
CN112064105A (zh
Inventor
管浩
王旭
罗驹华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Institute of Technology
Original Assignee
Yancheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Institute of Technology filed Critical Yancheng Institute of Technology
Priority to CN202010887748.3A priority Critical patent/CN112064105B/zh
Publication of CN112064105A publication Critical patent/CN112064105A/zh
Application granted granted Critical
Publication of CN112064105B publication Critical patent/CN112064105B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种Cu2Zn1‑xMgxSnS4纳米晶的制备方法,将铜盐、锌盐、镁盐、锡盐及硫源以2:(1‑x):x:1:4的摩尔比加入到乙二醇中,所述x=0.2或0.4或0.6或0.8,混合均匀后,升温至180‑220℃进行反应,反应结束后,固液分离,将得到的固体产物用去离子水洗涤干净,然后干燥,即得。该方法操作简单、成本低,制得的Cu2Zn1‑xMgxSnS4纯度高,具有理想的光学带隙,能够用作太阳能电池吸收层材料,同时在可见光照射下,其产生的电子‑空穴对将水中的分子矿化成无毒害的CO2和H2O,避免了在降解时产生二次污染,尤其是在染料废水污染中的亚甲基蓝方面,其有极佳的光催化降解效果。

Description

Cu2Zn1-xMgxSnS4纳米晶的制备方法及其用途
技术领域
本发明属于清洁能源和水处理技术领域,具体涉及一种Cu2Zn1-xMgxSnS4纳米晶的制备方法及其用途。
背景技术
近年来,随着世界经济的持续发展,特别是新兴经济体经济迅速的增长,能源需求和消费量在不断地上升。但是,传统能源的开采难度越来越大,易开采的煤矿、油田不断枯竭,有限的储量现在开始变得可见。因此,人类对化石燃料不断上升的需求和化石燃料有限储量之间的矛盾将导致能源危机的产生。除了能源危机以外,大量使用化石燃料也对环境造成巨大的污染。随着人类的工业化步伐不断加快,环境污染问题也会变得越来越严重,最终会给人类带来灾难性的影响。因此,寻求新型、可再生和环境友好型的清洁能源材料成为人类生存的迫切需要。
在当前的可再生能源利用的领域,太阳能是最清洁、安全、可靠的环保新能源,开发新型太阳能电池材料具有重要的意义。目前全球所生产的太阳能电池超过80%是单晶硅或多晶硅太阳能电池,但是硅基太阳能电池的成本难以降低。与体硅太阳能电池相比,薄膜太阳能电池一般选用光吸收系数大的直接带隙半导体 CdTe、CIGS等。薄膜电池一般只需1-2μm的厚度即可全部吸收太阳光,这就大大降低了材料的用量。目前第二代太阳能电池的转换效率逐渐接近第一代太阳能电池的转换效率,由于薄膜电池在成本上更有优势,因此薄膜电池取代体硅电池成为一个公认的趋势。但是CdTe、CIGS均受到原材料储量不足和毒性的制约。因此储量丰富、廉价、环境友好的四元硫化物材料受到人们的广泛关注。此外,光催化技术在诸如制氢、降解、杀菌、净化灯领域有着广泛的应用。利用光生电子和空穴共同参与的光催化氧化还原反应也能够用于有机水的治理,现有技术中,大多数光催化材料制备的成本高、能耗高,降解废水时间长,有的还存在二次污染,需要寻找新的光催化降解材料,为治理水污染提供一种新的思路。
发明内容
本发明的目的在于提供一种Cu2Zn1-xMgxSnS4纳米晶的制备方法,其可作为太阳能电池吸收层材料或光催化降解材料,该方法操作简单,成本低,制得的纳米晶具有形貌规则,尺寸可控的优点。
技术方案
一种Cu2Zn1-xMgxSnS4纳米晶的制备方法:将铜盐、锌盐、镁盐、锡盐及硫源以 2:(1-x):x:1:4的摩尔比加入到乙二醇中,所述x=0.2或0.4或0.6或0.8,混合均匀后,升温至180-220℃进行反应,反应结束后,固液分离,将得到的固体产物用去离子水洗涤干净,然后干燥,得到Cu2Zn1-xMgxSnS4纳米晶。
进一步,优选x=0.4。
进一步,所述铜盐为硝酸铜、氯化铜或醋酸铜中的一种或两种以上任意比例的组合。
进一步,所述锌盐为醋酸锌、硝酸锌或氯化锌中的一种或两种以上任意比例的组合。
进一步,所述镁盐为醋酸镁、硝酸镁或氯化镁中的一种或两种以上任意比例的组合。
进一步,所述锡盐为氯化亚锡或四氯化锡。
进一步,所述硫源为硫脲、硫化钠、硫代硫酸钠、硫代乙酰胺或L-半胱氨酸中的一种或两种以上任意比例的组合。
进一步,所述反应时间为10-12h。
进一步,所述固液分离的方法为离心,离心转速为2500-3500r/min,时间为 3-5min。
进一步,所述干燥温度为80-90℃。温度过低会导致干燥时间长,温度过高可能会影响其结构。
上述方法制备的Cu2Zn1-xMgxSnS4纳米晶用作太阳能电池吸收层材料的用途。
上述方法制备的Cu2Zn1-xMgxSnS4纳米晶用作光催化降解材料的用途,其对亚甲基蓝的光催化降解效果好,降解过程中不产生二次污染。
本发明的有益效果是:本发明采用用铜盐、锌盐、镁盐、锡盐及硫脲与乙二醇制备Cu2Zn1-xMgxSnS4纳米晶,操作简单、成本低,制得的Cu2Zn1-xMgxSnS4纯度高,具有理想的光学带隙,能够用作太阳能电池吸收层材料,同时在可见光照射下,Cu2Zn1-xMgxSnS4产生的电子-空穴对将水中的分子矿化成无毒害的CO2和H2O,避免在降解时产生二次污染,尤其是在染料废水污染中的亚甲基蓝方面, Cu2Zn1-xMgxSnS4有极佳的光催化降解效果。
附图说明
图1为实施例1制得的Cu2Zn0.8Mg0.2SnS4纳米晶的XRD图;
图2为实施例1制得的Cu2Zn0.8Mg0.2SnS4纳米晶的SEM图;
图3为实施例1制得的Cu2Zn0.8Mg0.2SnS4纳米晶的光学带隙图;
图4为实施例1制得的Cu2Zn0.8Mg0.2SnS4纳米晶降解亚甲基蓝的降解率曲线。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
Cu2Zn1-xMgxSnS4用于制备太阳能电池吸收层材料时,采用分光光度计测量材料的吸收率,并通过如下公式计算光学带隙:
(αhν)n=A(hν-Eg)
其中α为吸收系数,hν为某波长的光子能量,Eg为材料的光学带隙。
实施例1
一种Cu2Zn1-xMgxSnS4纳米晶的制备方法:将2mmol氯化铜、0.8mmol醋酸锌、0.2mmol氯化镁、1mmol氯化亚锡及6mmol硫脲加入到35ml乙二醇中,混合均匀后,升温至200℃反应12h,反应结束后,然后在2500r/min的条件下离心分离3min,取下层固体产物用去离子水洗涤3次,然后80℃干燥3h,得到 Cu2Zn0.8Mg0.2SnS4纳米晶。
实施例1制得的Cu2Zn0.8Mg0.2SnS4纳米晶的XRD图如图1所示,从XRD图中可以看出,Cu2Zn0.8Mg0.2SnS4纳米晶晶相很好的形成,没有其他杂质相存在。
实施例1制得的Cu2Zn0.8Mg0.2SnS4纳米晶的SEM图如图2所示,从SEM图中可以看出,Cu2Zn0.8Mg0.2SnS4呈现纳米晶球状结构。
采用紫外可见分光光度计测试材料的吸收率,并通过如下公式计算其光学带隙:
(αhν)n=A(hν-Eg)
其中α为吸收系数,hν为某波长的光子能量,Eg为材料的光学带隙。
测试结果如图3所示,其光学带隙为1.52eV。
实施例2
一种Cu2Zn1-xMgxSnS4纳米晶的制备方法:将2mmol氯化铜、0.6mmol醋酸锌、0.4mmol氯化镁、1mmol氯化亚锡及6mmol硫脲加入到35ml乙二醇中,混合均匀后,升温至200℃反应12h,反应结束后,然后在2500r/min的条件下离心分离3min,取下层固体产物用去离子水洗涤3次,然后80℃干燥3h,得到 Cu2Zn0.6Mg0.4SnS4纳米晶。
通过紫外可见分光光度计测试其吸收率,通过公式计算其光学带隙,测得光学带隙为1.57eV。
实施例3
一种Cu2Zn1-xMgxSnS4纳米晶的制备方法:将2mmol氯化铜、0.4mmol醋酸锌、0.6mmol氯化镁、1mmol氯化亚锡及6mmol硫脲加入到35ml乙二醇中,混合均匀后,升温至200℃反应12h,反应结束后,然后在2500r/min的条件下离心分离3min,取下层固体产物用去离子水洗涤3次,然后80℃干燥3h,得到 Cu2Zn0.4Mg0.6SnS4纳米晶。
通过紫外可见分光光度计测试其吸收率,通过公式计算其光学带隙,其光学带隙为1.61eV。
实施例4
一种Cu2Zn1-xMgxSnS4纳米晶的制备方法:将2mmol氯化铜、0.2mmol醋酸锌、0.8mmol氯化镁、1mmol氯化亚锡及6mmol硫脲加入到35ml乙二醇中,混合均匀后,升温至200℃反应12h,反应结束后,然后在2500r/min的条件下离心分离3min,取下层固体产物用去离子水洗涤3次,然后80℃干燥3h,得到 Cu2Zn0.2Mg0.8SnS4纳米晶。
通过紫外可见分光光度计测试其吸收率,通过公式计算其光学带隙,其光学带隙为1.65eV。
降解亚甲基蓝实验:
选用TiO2作为对照样1,Cu2ZnSnS4作为对照样2,测试实施例1-4制得的 Cu2Zn1- xMgxSnS4对亚甲基蓝的光催化降解效果,并与对照样1和2对比,实验方法为:配置50mL浓度为10mg/L的亚甲基蓝溶液,向其中加入0.05g样品,避光超声 30min,在模拟可见光源的照射下,每隔60min取样一次,用UV-2450紫外可见分光光度计测其吸光度,通过如下公式计算其降解率:
Figure BDA0002656075350000051
A0:初始吸光度;At:取样时间t时吸光度。
根据计算的结果绘制实施例1制得的Cu2Zn0.8Mg0.2SnS4纳米晶降解亚甲基蓝的降解率曲线图,见图4,从图4可以看出,亚甲基蓝的最大去除率为83%。
对照样1、对照样2以及实施例1-4制得的Cu2Zn1-xMgxSnS4对亚甲基蓝的降解率测试结果见表1:
表1
Figure BDA0002656075350000052
从表1的测试结果可以看出,本发明实施例1-4制得的Cu2Zn1-xMgxSnS4降解亚甲基蓝的效果较好,降解时间短,因此可以用于污水处理过程中的亚甲基蓝降解,可以推测本发明制得的Cu2Zn1-xMgxSnS4还可以处理与亚甲基蓝性质相近的,比如甲基橙、罗丹明B等的降解,例如将Cu2Zn1-xMgxSnS4制备成光催化降解材料,降解甲基橙。
综上所述,本发明的Cu2Zn1-xMgxSnS4制备过程操作简单、成本低,制得的 Cu2Zn1- xMgxSnS4纯度高,具有理想的光学带隙,能够用作太阳能电池吸收层材料。同时在可见光照射下,Cu2Zn1-xMgxSnS4产生的电子-空穴对将水中的分子矿化成无毒害的CO2和H2O,避免在降解时产生二次污染,尤其是在染料废水污染中的亚甲基蓝方面,Cu2Zn1-xMgxSnS4有极佳的效果。既可以作为太阳能电池吸收层材料,也可以作为一种新型的光催化降解材料,为清洁能源应用和治理水污染提供新的思路。
以上所描述的实施例是本发明一部分实施例,而不是全部的实施例。本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (8)

1.一种Cu2Zn1-xMgxSnS4纳米晶的制备方法,其特征在于,将铜盐、锌盐、镁盐、锡盐及硫源以2:(1-x):x:1:4的摩尔比加入到乙二醇中,所述x=0.2或0.4或0.6或0.8,混合均匀后,升温至180-220℃进行反应,反应结束后,固液分离,将得到的固体产物用去离子水洗涤干净,然后干燥,得到Cu2Zn1-xMgxSnS4纳米晶。
2.如权利要求1所述Cu2Zn1-xMgxSnS4纳米晶的制备方法,其特征在于,x=0.4。
3.如权利要求1所述Cu2Zn1-xMgxSnS4纳米晶的制备方法,其特征在于,所述铜盐为硝酸铜、氯化铜或醋酸铜中的一种或两种以上任意比例的组合;所述锌盐为醋酸锌、硝酸锌或氯化锌中的一种或两种以上任意比例的组合;所述镁盐为醋酸镁、硝酸镁或氯化镁中的一种或两种以上任意比例的组合;所述锡盐为氯化亚锡或四氯化锡;所述硫源为硫脲、硫化钠、硫代硫酸钠、硫代乙酰胺或L-半胱氨酸中的一种或两种以上任意比例的组合。
4.如权利要求1所述Cu2Zn1-xMgxSnS4纳米晶的制备方法,其特征在于,所述反应时间为10-12h。
5.如权利要求1所述Cu2Zn1-xMgxSnS4纳米晶的制备方法,其特征在于,所述固液分离的方法为离心,离心转速为2500-3500r/min,时间为3-5min。
6.如权利要求1至5任一项所述Cu2Zn1-xMgxSnS4纳米晶的制备方法,其特征在于,所述干燥温度为80-90℃。
7.权利要求1至6任一项所述方法制备的Cu2Zn1-xMgxSnS4纳米晶用作太阳能电池吸收层材料的用途。
8.权利要求1至6任一项所述方法制备的Cu2Zn1-xMgxSnS4纳米晶用作光催化降解材料的用途。
CN202010887748.3A 2020-08-28 2020-08-28 Cu2Zn1-xMgxSnS4纳米晶的制备方法及其用途 Active CN112064105B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010887748.3A CN112064105B (zh) 2020-08-28 2020-08-28 Cu2Zn1-xMgxSnS4纳米晶的制备方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010887748.3A CN112064105B (zh) 2020-08-28 2020-08-28 Cu2Zn1-xMgxSnS4纳米晶的制备方法及其用途

Publications (2)

Publication Number Publication Date
CN112064105A CN112064105A (zh) 2020-12-11
CN112064105B true CN112064105B (zh) 2022-04-08

Family

ID=73660182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010887748.3A Active CN112064105B (zh) 2020-08-28 2020-08-28 Cu2Zn1-xMgxSnS4纳米晶的制备方法及其用途

Country Status (1)

Country Link
CN (1) CN112064105B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303970A (zh) * 2013-06-26 2013-09-18 吉林大学 一种带隙可调的镁掺杂铜锌锡硫薄膜的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303970A (zh) * 2013-06-26 2013-09-18 吉林大学 一种带隙可调的镁掺杂铜锌锡硫薄膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Cu2ZnSnS4纳米晶微球的制备及其表征;张美娟等;《无机化学学报》;20130228;第29卷(第2期);第333-337页 *
Highly dispersible and uniform size Cu2ZnSnS4 nanoparticles for photocatalytic application;Mohd Zubair Ansari et al.;《Advanced Powder Technology》;20170703;第28卷;第2402-2409页 *

Also Published As

Publication number Publication date
CN112064105A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
Li et al. ZnO/CuInS2 core/shell heterojunction nanoarray for photoelectrochemical water splitting
Hsieh et al. Near infrared-driven photoelectrochemical water splitting: Review and future prospects
CN110694648B (zh) 一种光催化水裂解产氢钼掺杂硫化铟锌空心分级结构光催化剂及其制备方法
CN102125863A (zh) 一种石墨相氮化碳/金红石单晶二氧化钛纳米线阵列的制备方法
CN112427045A (zh) 一种水热法合成的具有Z型异质结CdS/g-C3N4复合光催化剂材料的制备方法
CN110205634B (zh) 一种ZnO/ZnS/CdS光阳极薄膜及其制备方法
CN106563442A (zh) 一种超薄二水三氧化钨纳米片的制备方法及其应用
CN103977806B (zh) 一种光催化降解材料Co掺杂纳米ZnO及其制备方法
CN110639555A (zh) 一种可见光响应的CdS/CdIn2S4复合纳米结构光催化剂的制备方法及应用
CN107138167A (zh) 一种特殊形貌的混合晶相异质结纳米硫化镉的制备方法
CN110965073B (zh) 一种含缺陷的wo3光电极的制备方法
CN111041523B (zh) 一种铜掺杂二氧化钛光电极及其制备方法和在光电催化分解水中的应用
CN107829108B (zh) 一种FeOOH/CdS/Ti:Fe2O3复合光电极及其制备方法
CN115007174A (zh) 一种二维CdIn2S4纳米片及其制备方法、用途
CN103920513A (zh) Ti3+:TiO2/TiF3复合半导体光催化剂及其制备方法
CN108417649B (zh) 一种氧化锡基太阳能电池纳米材料的制备方法及应用
Liu et al. Constructing 1D/0D Sb2S3/Cd0. 6Zn0. 4S S-scheme heterojunction by vapor transport deposition and in-situ hydrothermal strategy towards photoelectrochemical water splitting
CN107188178B (zh) 一种g-C3N4表面光电压信号增强的制备方法
CN113680353A (zh) 一种产H2O2的CdS纳米带的制备方法
CN112064105B (zh) Cu2Zn1-xMgxSnS4纳米晶的制备方法及其用途
CN109811362B (zh) 一种利用硫化铟/镍钴铝类水滑石复合膜光电催化氧化木糖的方法
CN103521205A (zh) 一种制备高光催化活性核壳结构TiO2材料的方法
Fu et al. Recent surficial modification strategies on BiVO4 based photoanodes for photoelectrochemical water splitting enhancement
CN105088266A (zh) 通过在半导体材料上复合共催化剂制备光电化学电池纳米结构光电极的方法
CN114849689A (zh) 一种异质结型复合光催化材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20201211

Assignee: DONGTAI GAOKE TECHNOLOGY INNOVATION PARK Co.,Ltd.

Assignor: YANCHENG INSTITUTE OF TECHNOLOGY

Contract record no.: X2024980001369

Denomination of invention: Cu2Zn1-xMgxSnS4The preparation method and application of SnS nanocrystals

Granted publication date: 20220408

License type: Common License

Record date: 20240124

EE01 Entry into force of recordation of patent licensing contract
EC01 Cancellation of recordation of patent licensing contract

Assignee: DONGTAI GAOKE TECHNOLOGY INNOVATION PARK Co.,Ltd.

Assignor: YANCHENG INSTITUTE OF TECHNOLOGY

Contract record no.: X2024980001369

Date of cancellation: 20240407

EC01 Cancellation of recordation of patent licensing contract