CN112038234B - SiC MOSFET器件及其制造方法 - Google Patents

SiC MOSFET器件及其制造方法 Download PDF

Info

Publication number
CN112038234B
CN112038234B CN202010812855.XA CN202010812855A CN112038234B CN 112038234 B CN112038234 B CN 112038234B CN 202010812855 A CN202010812855 A CN 202010812855A CN 112038234 B CN112038234 B CN 112038234B
Authority
CN
China
Prior art keywords
region
barrier layer
type base
semiconductor substrate
base region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010812855.XA
Other languages
English (en)
Other versions
CN112038234A (zh
Inventor
陈辉
王加坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Xinmai Semiconductor Technology Co ltd
Original Assignee
Hangzhou Xinmai Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Xinmai Semiconductor Technology Co ltd filed Critical Hangzhou Xinmai Semiconductor Technology Co ltd
Priority to CN202010812855.XA priority Critical patent/CN112038234B/zh
Publication of CN112038234A publication Critical patent/CN112038234A/zh
Priority to US17/394,879 priority patent/US20220052176A1/en
Priority to TW110129671A priority patent/TWI812995B/zh
Application granted granted Critical
Publication of CN112038234B publication Critical patent/CN112038234B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/0465Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/7602Making of isolation regions between components between components manufactured in an active substrate comprising SiC compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

公开了一种SiC MOSFET器件及其制造方法,所述方法包括提供一具有第一掺杂类型的半导体基底;在所述半导体基底的上表面形成图案化的第一阻挡层;以所述第一阻挡层为掩膜,形成从所述半导体基底的上表面延伸至其内部的源区,所述源区为第一掺杂类型;刻蚀部分所述第一阻挡层以形成第二阻挡层,使得所述第二阻挡层的离子注入窗口大于所述第一阻挡层的离子注入窗口;以所述第二阻挡层为掩膜,形成从所述半导体基底的上表面延伸至其内部的第一类型基区,所述第一类型基区为第二掺杂类型,所述源区位于所述第一类型基区中;以及形成第二掺杂类型的接触区。该方法可以形成短沟道,降低导通电阻,并使元胞内沟道分布对称,提高器件可靠性。

Description

SiC MOSFET器件及其制造方法
技术领域
本发明涉及半导体技术,更具体地,涉及一种SiC MOSFET器件及其制造方法。
背景技术
在SiC MOSFET领域,为了减小元胞尺寸、提高电流密度,将沟道的长度设置的越短越好,考虑到光刻精度的影响,长度小于0.5um的沟道一般会使用自对准工艺实现。由于SiC的扩散系数较低,无法使用Si标准的自对准工艺形成沟道,现有的SiC MOSFET沟道自对准工艺首先利用光刻后的多晶硅做P型基区的阻挡层,形成P型基区后对多晶硅进行氧化,多晶硅会在表面以及侧壁形成一定厚度的二氧化硅,然后利用侧壁的二氧化硅作为阻挡层可以实现N+源区的自对准注入。另外,在形成P+接触区时,因为N+源区的离子注入剂量要远大于P+接触区,因此都需要一张单独的掩膜版来形成P+接触区的阻挡层,增加了制造成本。
另一方面,由于SiC MOSFET属于高压应用,必须使用合理的终端设计来减弱边缘的电场集中。在传统的设计中一般采用元胞和终端分开设计的思路,不但增加多次离子注入,而且增加光刻步骤。
发明内容
有鉴于此,本发明的目的在于提供一种SiC MOSFET器件及其制造方法,以解决上述问题。
根据本发明的第一方面,提供一种SiC MOSFET器件的制造方法,包括:提供一具有第一掺杂类型的半导体基底;在所述半导体基底的上表面形成图案化的第一阻挡层;以所述第一阻挡层为掩膜,形成从所述半导体基底的上表面延伸至其内部的源区,所述源区为第一掺杂类型;刻蚀部分所述第一阻挡层以形成第二阻挡层,使得所述第二阻挡层的离子注入窗口大于所述第一阻挡层的离子注入窗口;以所述第二阻挡层为掩膜,形成从所述半导体基底的上表面延伸至其内部的第一类型基区,所述第一类型基区为第二掺杂类型,所述源区位于所述第一类型基区中;以及形成第二掺杂类型的接触区。
优选地,同时刻蚀所述第一阻挡层的厚度和宽度以形成所述第二阻挡层。
优选地,所述第二阻挡层是通过各向同性刻蚀的方法刻蚀所述第一阻挡层形成。
优选地,所述第一阻挡层被配置为多晶硅。
优选地,根据所述MOSFET的沟道长度,控制所述第一阻挡层被刻蚀掉的宽度。
优选地,所述第一阻挡层被刻蚀的宽度与所述MOSFET的沟道长度对应。
优选地,在形成所述第一类型基区后,去除所述第二阻挡层。
优选地,形成所述接触区的方法包括:在所述半导体基底的上表面形成图案化的第三阻挡层,以所述第三阻挡层为掩膜,形成从所述半导体基底的上表面延伸至其内部的所述接触区,其中,所述源区位于所述接触区两侧并相邻。
优选地,在形成所述接触区之前,还包括形成从所述半导体基底的上表面延伸至其内部的第二类型基区,所述第一类型基区位于所述第二类型基区的两侧并相邻。
优选地,形成所述第二类型基区的方法包括:在所述半导体基底的上表面形成图案化的第四阻挡层;以所述第四阻挡层为掩膜,形成第二掺杂类型的所述第二类型基区,其中,所述接触区位于所述第二类型基区中。
优选地,在所述第四阻挡层的侧壁形成侧墙以形成所述第三阻挡层。
优选地,形成所述侧墙的方法包括:在所述第四阻挡层和所述半导体基底的上表面沉积半导体层;通过各向异性刻蚀的方法刻蚀所述半导体层;保留所述第四阻挡层侧壁上的半导体层以形成所述侧墙。
优选地,在形成所述接触区时,还包括同时在所述MOSFET器件的终端区域中形成场限浅环,所述场限浅环为第二掺杂类型,与所述接触区的结深相同。
优选地,在形成所述第二类型基区时,还包括同时在所述MOSFET器件的终端区域中形成场限深环,所述场限深环为第二掺杂类型,与所述第二类型基区的结深相同,其中,所述场限浅环位于所述场限深环中。
优选地,所述第二类型基区的结深不大于所述第一类型基区的结深。
优选地,所述第二类型基区的掺杂浓度与所述第一类型基区的掺杂浓度相同。
优选地,所述接触区的结深不小于所述源区的结深,小于所述第一类型基区的结深。
优选地,还包括:去除所述第三阻挡层;在所述半导体基底的上表面形成栅介质层;在所述栅介质层上形成栅极导体;在所述栅介质层和所述栅极导体上沉积层间介质层;刻蚀所述层间介质层形成裸露所述接触区和部分所述源区上表面的开孔;在所述开孔中形成源极金属,以及在所述半导体基底的背面形成漏极金属。
优选地,所述第四阻挡层和所述侧墙被设置为多晶硅。
根据本发明的第二方面,提供一种SiC MOSFET器件,包括:具有第一掺杂类型的半导体基底;从所述半导体基底的上表面延伸至其内的第二掺杂类型的接触区;从所述半导体基底的上表面延伸至其内并位于所述接触区两侧的第一掺杂类型的源区;环绕包围所述接触区和所述源区的基区,所述基区包括第一类型基区和第二类型基区;其中,所述接触区位于所述第二类型基区中,所述第一类型基区位于所述第二类型基区的两侧并相邻。
优选地,所述接触区的结深不小于所述源区的结深。
优选地,所述第二类型基区的结深不大于所述第一类型基区的结深。
优选地,所述接触区的宽度不大于所述第二类型基区的宽度。
优选地,所述第一类型基区的宽度大于所述源区的宽度。
优选地,还包括位于所述MOSFET器件终端区域的场限环。
优选地,所述场限环包括场限深环和场限浅环。
优选地,所述场限深环和所述第二类型基区具有相同的结深和掺杂浓度。
优选地,所述场限浅环和所述接触区具有相同的结深和掺杂浓度。
优选地,所述第二类型基区的掺杂浓度与所述第一类型基区的掺杂浓度相同。
优选地,还包括位于半导体基底上表面的栅介质层和栅极导体;位于所述栅介质层和栅极导体上的层间介质层,所述层间介质层具有裸露所述接触区和部分所述源区表面的开孔;通过所述开孔与所述源区和所述接触区接触的源极金属,以及位于所述半导体基底背面的漏极金属。
优选地,所述第一掺杂类型为N型或P型中的一种,所述第二掺杂类型为所述N型或P型中的另一种。
根据本发明提供的SiC MOSFET器件及其制备方法,一方面利用对掩膜被各向同性刻蚀前后的宽度差,在所述掩膜刻蚀前后进行两次离子注入分别形成源区和第一类型基区,以形成沟道,该方法可以形成短沟道,降低导通电阻,并使元胞内沟道分布对称,提高可靠性。另一方面,利用沉积掩膜并刻蚀形成侧墙,在形成侧墙的前后进行两次离子注入,分别形成表面重掺杂的接触区,底部轻掺杂的第二类型基区,并且重掺杂接触区被轻掺杂的第二类型基区完全覆盖。这种掺杂分布不但可以满足P+欧姆接触,同时在终端区域可以充当场限环起到分压的作用,在简化工艺,节约成本的同时,还能改善器件的击穿特性与可靠性。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其他目的、特征和优点将更为清楚,在附图中:
图1A至图1F示出根据本发明的实施例的制造SiC MOSFET的方法的各个阶段的截面图。
具体实施方式
以下将参照附图更详细地描述本发明。在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的半导体结构。
应当理解,在描述器件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将器件翻转,该一层、一个区域将位于另一层、另一个区域“下面”或“下方”。
如果为了描述直接位于另一层、另一个区域上面的情形,本文将采用“A直接在B上面”或“A在B上面并与之邻接”的表述方式。在本申请中,“A直接位于B中”表示A位于B中,并且A与B直接邻接,而非A位于B中形成的掺杂区中。
在本申请中,术语“半导体结构”指在制造半导体器件的各个步骤中形成的整个半导体结构的统称,包括已经形成的所有层或区域。术语“横向延伸”是指沿着大致垂直于沟槽深度方向的方向延伸。
在下文中描述了本发明的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本发明。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本发明。
除非在下文中特别指出,半导体器件的各个部分可以由本领域的技术人员公知的材料构成。半导体材料例如包括III-V族半导体,如GaAs、InP、GaN、SiC,以及IV族半导体,如Si、Ge。栅极导体可以由能够导电的各种材料形成,例如金属层、掺杂多晶硅层、或包括金属层和掺杂多晶硅层的叠层栅极导体或者是其他导电材料,例如为TaC、TiN、TaSiN、HfSiN、TiSiN、TiCN、TaAlC、TiAlN、TaN、PtSix、Ni3Si、Pt、Ru、W、和所述各种导电材料的组合。栅极电介质可以由SiO2或介电常数大于SiO2的材料构成,例如包括氧化物、氮化物、氧氮化物、硅酸盐、铝酸盐、钛酸盐。并且,栅极电介质不仅可以由本领域的技术人员公知的材料形成,也可以采用将来开发的用于栅极电介质的材料。
本发明公开了一种SiC MOSFET器件的制造方法,包括:提供一具有第一掺杂类型的半导体基底;在所述半导体基底的上表面形成图案化的第一阻挡层;以所述第一阻挡层为掩膜,形成从所述半导体基底的上表面延伸至其内部的源区,所述源区为第一掺杂类型;刻蚀部分所述第一阻挡层以形成第二阻挡层,使得所述第二阻挡层的离子注入窗口大于所述第一阻挡层的离子注入窗口;以所述第二阻挡层为掩膜,形成从所述半导体基底的上表面延伸至其内部的第一类型基区,所述第一类型基区为第二掺杂类型,所述源区位于所述第一类型基区中;以及形成第二掺杂类型的接触区。
如图1A-1F示出根据本发明的第一实施例的制造SiC MOSFET器件的方法的各个阶段的截面图。
如图1A所示,提供一具有第一掺杂类型的半导体基底,在所述半导体基底的上表面形成图案化的第一阻挡层103;并以所述第一阻挡层103作为掩膜,进行第一次离子注入工艺,形成从所述半导体基底的上表面延伸至其内部的源区110,所述源区110为第一掺杂类型。其中,所述第一阻挡层被设置为多晶硅。具体地,在所述半导体基底的上表面沉积一层多晶硅,并对其进行刻蚀形成具有离子注入窗口的第一阻挡层103,所述第一阻挡层103的离子注入窗口与所述源区110的位置相对应。在本实施例中,所述半导体基底包括第一掺杂类型的半导体衬底101和位于所述半导体衬底上第一掺杂类型的外延层102,即所述第一阻挡层103形成在所述外延层102的上表面上。所述外延层102的下表面与所述半导体衬底101接触,所述外延层102的上表面与下表面相对。当然,所述第一阻挡层103并不限于本申请所述的多晶硅,本领域的技术人员也可选择其他与半导体基底不同,且可作为掩膜的材料。
如图1B所示,刻蚀部分所述第一阻挡层103以形成第二阻挡层104,使得所述第二阻挡层104的离子注入窗口大于所述第一阻挡层103的离子注入窗口;以所述第二阻挡层104为掩膜,进行第二次离子注入工艺,形成从所述半导体基底的上表面延伸至其内部的第一类型基区111,所述第一类型基区111为第二掺杂类型,所述源区110位于所述第一类型基区111中。所述第二阻挡层104的离子注入窗口与所述第一类型基区111的位置相对应。所述源区110的结深小于所述第一类型基区111,所述源区110的宽度小于所述第一类型基区111。具体地,同时刻蚀所述第一阻挡层的厚度和离子注入窗口的宽度以形成所述第二阻挡层,以使得所述第二阻挡层104相对于所述第一阻挡层103,不仅离子注入窗口的宽度变大,厚度也减薄。具体地,采用各向同性的刻蚀方式刻蚀所述第一阻挡层103,以形成所述第二阻挡层104。在本实施例中,可以根据所述MOSFET的沟道长度,控制所述第一阻挡层被刻蚀掉的宽度,以形成所述第二阻挡层。具体地,所述第一阻挡层被刻蚀掉的宽度与所述沟道长度对应,更进一步地,所述第一阻挡层被刻蚀掉的宽度与所述沟道长度相等。
当然,本领域的技术人员也可采用其他的刻蚀方式形成所述第二阻挡层,也可仅仅刻蚀所述第一阻挡层的宽度使得离子注入窗口变宽以形成第二阻挡层,在此并不做任何限制。
形成所述第一类型基区111后,去除所述第二阻挡层104。
随后,在所述半导体基底的上表面形成图案化的第三阻挡层,以所述第三阻挡层为掩膜,形成从所述半导体基底的上表面延伸至其内部的所述接触区,其中,所述源区位于所述接触区两侧并相邻。在形成所述接触区之前,还包括形成从所述半导体基底的上表面延伸至其内部的第二类型基区,所述第一类型基区位于所述第二类型基区的两侧并相邻。其中,形成所述第二类型基区的方法包括:在所述半导体基底的上表面形成图案化的第四阻挡层;以所述第四阻挡层为掩膜,形成第二掺杂类型的所述第二类型基区,其中,所述接触区位于所述第二类型基区中。在所述第四阻挡层的侧壁形成侧墙以形成所述第三阻挡层。
具体地,如图1C所示,在所述半导体基底的上表面形成图案化的第四阻挡层105;以所述第四阻挡层105为掩膜,进行第三次离子注入工艺,形成从所述半导体基底的上表面延伸至其内部的第二类型基区112,所述第二类型基区112为第二掺杂类型。所述第四阻挡层105被设置为多晶硅。具体地,形成所述第四阻挡层105的步骤包括:在所述半导体基底的上表面沉积一层多晶硅,并对其进行刻蚀形成具有离子注入窗口的第四阻挡层105,所述第四阻挡层105的离子注入窗口与所述第二类型基区112的位置相对应。所述第一类型基区111位于所述第二类型基区112的两侧并相邻,所述第二类型基区112的结深不大于所述第一类型基区111,优选地,所述第二类型基区112的结深等于所述第一类型基区111。所述第二类型基区112和所述第一类型基区111的掺杂浓度相同。
进一步,在形成所述第二类型基区112的同时,形成位于所述MOSFET终端区域的场限深环120,即所述第二类型基区112和所述场限深环120是同一步离子注入(第三次离子注入)工艺形成。所述第四阻挡层也具有与所述场限深环120相对应的离子注入窗口。所述第二类型基区112与所述场限深环有相同的掺杂浓度和结深。
所述MOSFET包括有源区和终端区,所述有源区包括所述源区110,所述第一类型基区111以及后续形成的接触区,所述终端区包括场限深环120以及后续工艺形成的场限浅环。需要注意的是,沿远离有源区的方向可以设置所述场限深环的宽度依次减小;或者沿远离有源区的方向,可以设置所述场限深环之间的间距依次增大。当然,所述场限深环的宽度以及场限深环之间的间距都可根据实际需要,例如MOSFET的击穿电压等,作实际的安排和调整,并不限于此。
如图1D所示,在所述第四阻挡层105的侧壁上形成侧墙123以形成第三阻挡层,然后以所述第三阻挡层为掩膜,进行第四次离子注入工艺,形成从所述半导体基底的上表面延伸至其内部的接触区113,所述接触区113为第二掺杂类型。其中,所述源区110位于所述接触区113两侧并相邻,所述接触区113位于所述第二类型基区112中,所述接触区113的掺杂浓度大于所述第二类型基区112和所述第一类型基区111的掺杂浓度,所述接触区113的结深不小于所述源区110,小于所述第二类型基区112。具体地,形成所述侧墙123的方法包括:在所述第四阻挡层105和所述半导体基底的上表面沉积半导体层;通过各向异性刻蚀的方法刻蚀所述半导体层;保留所述第四阻挡层侧壁上的半导体层以形成所述侧墙123。所述侧墙123也可采用其他方法形成,在此并不做限制。其中,所述半导体层设置为多晶硅。
进一步,在形成所述接触区113的同时,形成位于所述MOSFET终端区域的场限浅环121,即所述接触区113和所述场限浅环121是同一步离子注入(第四次离子注入)工艺形成。所述第三阻挡层也具有与所述场限浅环121相对应的离子注入窗口。所述接触区113与所述场限浅环121有相同的掺杂浓度和结深,所述场限浅环121位于所述场限深环120中,所述场限深环120的掺杂浓度小于所述场限浅环121的掺杂浓度。
在形成所述接触区113和所述场限浅环后,去除所述第三阻挡层。
如图1E所示,在所述半导体基底的上表面形成栅介质层106;在所述栅介质层上形成栅极导体107。具体地,所述栅介质层106可通过热氧化的工艺形成,所述栅介质层106为氧化层。形成所述栅极导体107的方法包括:在所述栅介质层106上沉积一层多晶硅层,通过刻蚀的方式刻蚀掉位于接触区,部分终端区域以及部分源区上方的多晶硅层,保留的多晶硅层即所述栅极导体107。当然,所述栅极导体也可采用其他的材料,在此并不做限定。
如图1F所示,在所述栅介质层106和所述栅极导体107上沉积层间介质层108,刻蚀部分所述层间介质层108形成裸露所述接触区113和部分所述源区110上表面的开孔;在所述开孔中沉积金属以形成源极电极109,以及在所述半导体基底的背面沉积金属形成漏极电极125。具体地,形成所述开孔的方法包括:采用掩膜板遮挡位于终端区域上方的层间介质层,刻蚀位于有源区上方的层间介质层使得所述接触区113和部分所述源区110被裸露,在所述栅极导体107的上表面和侧壁都保留有层间介质层108。
其中,所述第一掺杂类型为N型或P型中的一种,所述第二掺杂类型为所述N型或P型中的另一种。
本发明还公开了一种SiC MOSFET器件,包括具有第一掺杂类型的半导体基底;从所述半导体基底的上表面延伸至其内的第二掺杂类型的接触区;从所述半导体基底的上表面延伸至其内并位于所述接触区两侧的第一掺杂类型的源区;环绕包围所述接触区和所述源区的基区,所述基区包括第一类型基区和第二类型基区;其中,所述接触区位于所述第二类型基区中,所述第一类型基区位于所述第二类型基区的两侧并相邻。
如图1F所示,所述SiC MOSFET器件包括第一掺杂类型的半导体基底,在本实施例中,所述半导体基底包括第一掺杂类型的半导体衬底101和位于所述半导体衬底上第一掺杂类型的外延层102。
所述SiC MOSFET器件还包括从所述外延层102的上表面延伸至其内的第二掺杂类型的接触区113;从所述外延层102上表面延伸至其内并位于所述接触区两侧的第一掺杂类型的源区110;环绕包围所述接触区113和所述源区110的基区,所述基区包括第一类型基区111和第二类型基区112;其中,所述接触区113位于所述第二类型基区112中,所述第一类型基区111位于所述第二类型基区112的两侧并相邻。所述接触区113的结深不小于所述源区110的结深,所述第二类型基区112的结深不大于所述第一类型基区111的结深,优选地,所述第二类型基区112的结深等于所述第一类型基区111的结深。所述接触区113的宽度不大于所述第二类型基区112的宽度,所述第一类型基区111的宽度大于所述源区110的宽度。所述第二类型基区112的掺杂浓度与所述第一类型基区111的掺杂浓度相同。
进一步地,所述SiC MOSFET器件还包括位于所述MOSFET器件终端区域的场限环。其中,所述场限环包括场限深环120和场限浅环121,所述场限浅环121位于所述场限深环120中。所述场限深环120和所述第二类型基区112具有相同的结深和掺杂浓度。所述场限浅环121和所述接触区113具有相同的结深和掺杂浓度。
需要注意的是,沿远离有源区的方向,可以设置所述场限环的宽度依次减小;或者沿远离有源区的方向,可以设置所述场限环之间的间距依次增大。当然,所述场限环的宽度以及场限环之间的间距都可根据实际需要,例如MOSFET的击穿电压等,作实际的安排和调整,并不限于此。
进一步地,所述SiC MOSFET器件还包括:位于半导体基底上表面的栅介质层106和栅极导体107;位于所述栅介质层和栅极导体107上的层间介质层108,所述层间介质层108具有裸露所述接触区113和部分所述源区110表面的开孔;通过所述开孔与所述源区110和所述接触区113接触的源极金属109,以及位于所述半导体基底背面的漏极金属125。其中,所述栅极导体107位于所述栅极介质层106上,所述栅极导体位于所述SiC MOSFET器件的沟道的上方。所述层间介质层108位于所述SiC MOSFET器件有源区的部分被刻蚀形成所述开孔,所述SiC MOSFET器件有源区保留的所述层间介质层108覆盖所述栅极导体109的上表面和侧壁。
其中,所述第一掺杂类型为N型或P型中的一种,所述第二掺杂类型为所述N型或P型中的另一种。
本发明提供的一种SiC MOSFET制备方法,一方面利用对掩膜被各向同性刻蚀前后的宽度差,在所述掩膜刻蚀前后进行两次离子注入分别形成源区和第一类型基区,以形成沟道,该方法可以形成短沟道,降低导通电阻,并使元胞内沟道分布对称,提高可靠性。另一方面,利用沉积掩膜并刻蚀形成侧墙,在形成侧墙的前后进行两次离子注入,分别形成表面重掺杂的接触区,底部轻掺杂的第二类型基区,并且重掺杂接触区被轻掺杂的第二类型基区完全覆盖。这种掺杂分布不但可以满足P+欧姆接触,同时在终端区域可以充当场限环起到分压的作用,在简化工艺,节约成本的同时,还能改善器件的击穿特性与可靠性。
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
依照本发明的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地利用本发明以及在本发明基础上的修改使用。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (27)

1.一种SiC MOSFET器件的制造方法,包括:
提供一具有第一掺杂类型的半导体基底;
在所述半导体基底的上表面形成图案化的第一阻挡层;
以所述第一阻挡层为掩膜,形成从所述半导体基底的上表面延伸至其内部的源区,所述源区为第一掺杂类型;
刻蚀部分所述第一阻挡层以形成第二阻挡层,使得所述第二阻挡层的离子注入窗口大于所述第一阻挡层的离子注入窗口;
以所述第二阻挡层为掩膜,形成从所述半导体基底的上表面延伸至其内部的第一类型基区,所述第一类型基区为第二掺杂类型,所述源区位于所述第一类型基区中;
去除所述第二阻挡层;
形成从所述半导体基底的上表面延伸至其内部的第二类型基区,所述第一类型基区位于所述第二类型基区的两侧并相邻;以及
形成第二掺杂类型的接触区,形成所述第二掺杂类型的所述接触区的方法包括:
在所述半导体基底的上表面形成图案化的第三阻挡层;以及
以所述第三阻挡层为掩膜,形成从所述半导体基底的上表面延伸至其内部的所述接触区,其中,所述源区位于所述接触区两侧并相邻。
2.根据权利要求1所述的方法,其中,同时刻蚀所述第一阻挡层的厚度和宽度以形成所述第二阻挡层。
3.根据权利要求1所述的方法,其中,所述第二阻挡层是通过各向同性刻蚀的方法刻蚀所述第一阻挡层形成。
4.根据权利要求1所述的方法,其中,所述第一阻挡层被配置为多晶硅。
5.根据权利要求1所述的方法,其中,根据所述MOSFET的沟道长度,控制所述第一阻挡层被刻蚀掉的宽度,以形成所述第二阻挡层。
6.根据权利要求1所述的方法,其中,所述第一阻挡层被刻蚀的宽度与所述MOSFET的沟道长度对应。
7.根据权利要求1所述的方法,其中,形成所述第二类型基区的方法包括:
在所述半导体基底的上表面形成图案化的第四阻挡层;
以所述第四阻挡层为掩膜,形成第二掺杂类型的所述第二类型基区,
其中,所述接触区位于所述第二类型基区中。
8.根据权利要求7所述的方法,其中,在所述第四阻挡层的侧壁形成侧墙以形成所述第三阻挡层。
9.根据权利要求8所述的方法,其中,形成所述侧墙的方法包括:
在所述第四阻挡层和所述半导体基底的上表面沉积半导体层;
通过各向异性刻蚀的方法刻蚀所述半导体层;
保留所述第四阻挡层侧壁上的半导体层以形成所述侧墙。
10.根据权利要求1所述的方法,其中,在形成所述接触区时,还包括同时在所述MOSFET器件的终端区域中形成场限浅环,所述场限浅环为第二掺杂类型,与所述接触区的结深相同。
11.根据权利要求10所述的方法,其中,在形成所述第二类型基区时,还包括同时在所述MOSFET器件的终端区域中形成场限深环,所述场限深环为第二掺杂类型,与所述第二类型基区的结深相同,其中,所述场限浅环位于所述场限深环中。
12.根据权利要求1所述的方法,其中,所述第二类型基区的结深不大于所述第一类型基区的结深。
13.根据权利要求1所述的方法,其中,所述第二类型基区的掺杂浓度与所述第一类型基区的掺杂浓度相同。
14.根据权利要求1所述的方法,其中,所述接触区的结深不小于所述源区的结深,小于所述第一类型基区的结深。
15.根据权利要求1所述的方法,其中,还包括:
去除所述第三阻挡层;
在所述半导体基底的上表面形成栅介质层;
在所述栅介质层上形成栅极导体;
在所述栅介质层和所述栅极导体上沉积层间介质层,
刻蚀所述层间介质层形成裸露所述接触区和部分所述源区上表面的开孔;
在所述开孔中形成源极金属,以及
在所述半导体基底的背面形成漏极金属。
16.根据权利要求8所述的方法,其中,所述第四阻挡层和所述侧墙被设置为多晶硅。
17.一种SiC MOSFET器件,包括:
具有第一掺杂类型的半导体基底;
从所述半导体基底的上表面延伸至其内的第二掺杂类型的接触区;
从所述半导体基底的上表面延伸至其内并位于所述接触区两侧的第一掺杂类型的源区;
环绕包围所述接触区和所述源区的基区,所述基区包括第一类型基区和第二类型基区;
其中,所述接触区位于所述第二类型基区中,所述第一类型基区位于所述第二类型基区的两侧并相邻;
其中,所述第二类型基区的结深不大于所述第一类型基区的结深。
18.根据权利要求17所述的器件,其中,所述接触区的结深不小于所述源区的结深。
19.根据权利要求17所述的器件,其中,所述接触区的宽度不大于所述第二类型基区的宽度。
20.根据权利要求17所述的器件,其中,所述第一类型基区的宽度大于所述源区的宽度。
21.根据权利要求17所述的器件,其中,还包括位于所述MOSFET器件终端区域的场限环。
22.根据权利要求21所述的器件,其中,所述场限环包括场限深环和场限浅环。
23.根据权利要求22所述的器件,其中所述场限深环和所述第二类型基区具有相同的结深和掺杂浓度。
24.根据权利要求22所述的器件,其中,所述场限浅环和所述接触区具有相同的结深和掺杂浓度。
25.根据权利要求17所述的器件,其中,所述第二类型基区的掺杂浓度与所述第一类型基区的掺杂浓度相同。
26.根据权利要求17所述的器件,其中,还包括
位于半导体基底上表面的栅介质层和栅极导体;
位于所述栅介质层和栅极导体上的层间介质层,所述层间介质层具有裸露所述接触区和部分所述源区表面的开孔;
通过所述开孔与所述源区和所述接触区接触的源极金属,以及
位于所述半导体基底背面的漏极金属。
27.根据权利要求17所述的器件,其中,所述第一掺杂类型为N型或P型中的一种,所述第二掺杂类型为所述N型或P型中的另一种。
CN202010812855.XA 2020-08-13 2020-08-13 SiC MOSFET器件及其制造方法 Active CN112038234B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010812855.XA CN112038234B (zh) 2020-08-13 2020-08-13 SiC MOSFET器件及其制造方法
US17/394,879 US20220052176A1 (en) 2020-08-13 2021-08-05 Silicon carbide metal-oxide-semiconductor field-effect transistor device and manufacturing method thereof
TW110129671A TWI812995B (zh) 2020-08-13 2021-08-11 SiC MOSFET器件的製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010812855.XA CN112038234B (zh) 2020-08-13 2020-08-13 SiC MOSFET器件及其制造方法

Publications (2)

Publication Number Publication Date
CN112038234A CN112038234A (zh) 2020-12-04
CN112038234B true CN112038234B (zh) 2022-11-22

Family

ID=73577211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010812855.XA Active CN112038234B (zh) 2020-08-13 2020-08-13 SiC MOSFET器件及其制造方法

Country Status (3)

Country Link
US (1) US20220052176A1 (zh)
CN (1) CN112038234B (zh)
TW (1) TWI812995B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117193B (zh) 2020-09-21 2023-05-16 杭州芯迈半导体技术有限公司 碳化硅mosfet器件及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1777982A (zh) * 2003-04-24 2006-05-24 克里公司 具有自对准的源区和阱区的碳化硅功率器件及其制备方法
US20120164810A1 (en) * 2010-12-22 2012-06-28 Sumitomo Electric Industries, Ltd. Method of manufacturing silicon carbide semiconductor device
US20120184092A1 (en) * 2011-01-17 2012-07-19 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
US20180286963A1 (en) * 2015-12-02 2018-10-04 Abb Schweiz Ag Semiconductor device and method for manufacturing such a semiconductor device
CN109148590A (zh) * 2018-08-30 2019-01-04 全球能源互联网研究院有限公司 半导体器件及其制备方法
US20200020533A1 (en) * 2018-07-12 2020-01-16 Alpha Power Solutions Limited Semiconductor Devices and Methods of Making the Same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729037A (en) * 1996-04-26 1998-03-17 Megamos Corporation MOSFET structure and fabrication process for decreasing threshold voltage
CN1173411C (zh) * 2000-11-21 2004-10-27 松下电器产业株式会社 半导体器件及其制造方法
TWI246181B (en) * 2004-07-29 2005-12-21 Silicon Based Tech Corp Scalable planar DMOS transistor structure and its fabricating methods
US7208785B2 (en) * 2004-12-20 2007-04-24 Silicon-Based Technology Corp. Self-aligned Schottky-barrier clamped planar DMOS transistor structure and its manufacturing methods
US8643104B1 (en) * 2012-08-14 2014-02-04 United Microelectronics Corp. Lateral diffusion metal oxide semiconductor transistor structure
WO2014207793A1 (ja) * 2013-06-24 2014-12-31 株式会社日立製作所 半導体装置およびその製造方法
US10424635B2 (en) * 2016-04-06 2019-09-24 Littelfuse, Inc. High voltage semiconductor device with guard rings and method associated therewith

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1777982A (zh) * 2003-04-24 2006-05-24 克里公司 具有自对准的源区和阱区的碳化硅功率器件及其制备方法
US20120164810A1 (en) * 2010-12-22 2012-06-28 Sumitomo Electric Industries, Ltd. Method of manufacturing silicon carbide semiconductor device
US20120184092A1 (en) * 2011-01-17 2012-07-19 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
US20180286963A1 (en) * 2015-12-02 2018-10-04 Abb Schweiz Ag Semiconductor device and method for manufacturing such a semiconductor device
US20180350602A1 (en) * 2015-12-02 2018-12-06 Abb Schweiz Ag Semiconductor device and method for manufacturing such a semiconductor device
US20200020533A1 (en) * 2018-07-12 2020-01-16 Alpha Power Solutions Limited Semiconductor Devices and Methods of Making the Same
CN109148590A (zh) * 2018-08-30 2019-01-04 全球能源互联网研究院有限公司 半导体器件及其制备方法

Also Published As

Publication number Publication date
TW202213540A (zh) 2022-04-01
CN112038234A (zh) 2020-12-04
TWI812995B (zh) 2023-08-21
US20220052176A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
US10615275B2 (en) Semiconductor device and method of manufacturing semiconductor device
US20130153995A1 (en) Semiconductor device and method for manufacturing the same
US6765264B1 (en) Method of fabricating power rectifier device to vary operating parameters and resulting device
US7608510B2 (en) Alignment of trench for MOS
US9837358B2 (en) Source-gate region architecture in a vertical power semiconductor device
EP0654829A1 (en) Increased density MOS-gated double diffused semiconductor devices
CN111092123A (zh) 横向双扩散晶体管及其制造方法
CN112864018A (zh) 沟槽型场效应晶体管结构及其制备方法
CN111048420A (zh) 横向双扩散晶体管的制造方法
EP1535344B1 (en) Vertical gate semiconductor device with a self-aligned structure
CN112635540A (zh) Ldmos器件及其制备方法
US20150162431A1 (en) Planar vertical dmos transistor with reduced gate charge
US20220130981A1 (en) Ldmos transistor and manufacturing method thereof
CN113206148B (zh) 沟槽mosfet及其制造方法
CN110957370A (zh) 横向双扩散晶体管的制造方法
CN112038234B (zh) SiC MOSFET器件及其制造方法
CN111554746B (zh) 碳化硅mosfet器件及其制造方法
CN113644108A (zh) 沟槽栅半导体器件及其制备方法
CN110993690A (zh) 沟槽型mosfet器件及其制造方法
CN115498026A (zh) 自对准双槽igbt结构及其制造方法
CN113809148B (zh) 功率元件及其制造方法
US20230268432A1 (en) Manufacturing method of a semiconductor device
CN112117193A (zh) 碳化硅mosfet器件及其制造方法
CN111710719A (zh) 横向双扩散晶体管及其制造方法
US12002883B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210705

Address after: 311100 room 232, building 3, No. 1500, Wenyi West Road, Cangqian street, Yuhang District, Hangzhou City, Zhejiang Province

Applicant after: Hangzhou chuangqin Sensor Technology Co.,Ltd.

Address before: No.6, Lianhui street, Xixing street, Binjiang District, Hangzhou City, Zhejiang Province

Applicant before: SILERGY SEMICONDUCTOR TECHNOLOGY (HANGZHOU) Co.,Ltd.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20211216

Address after: 310051 1-1201, No. 6, Lianhui street, Xixing street, Binjiang District, Hangzhou City, Zhejiang Province

Applicant after: Hangzhou Xinmai Semiconductor Technology Co.,Ltd.

Address before: 311100 room 232, building 3, No. 1500, Wenyi West Road, Cangqian street, Yuhang District, Hangzhou City, Zhejiang Province

Applicant before: Hangzhou chuangqin Sensor Technology Co.,Ltd.

GR01 Patent grant
GR01 Patent grant