CN112034257A - 一种井下电阻率的计算方法 - Google Patents
一种井下电阻率的计算方法 Download PDFInfo
- Publication number
- CN112034257A CN112034257A CN202010950453.6A CN202010950453A CN112034257A CN 112034257 A CN112034257 A CN 112034257A CN 202010950453 A CN202010950453 A CN 202010950453A CN 112034257 A CN112034257 A CN 112034257A
- Authority
- CN
- China
- Prior art keywords
- resistivity
- working frequency
- drilling
- stratum
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R23/00—Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
- G01R23/16—Spectrum analysis; Fourier analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/08—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
- G01V3/10—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Electromagnetism (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明提供一种井下电阻率的计算方法,其中在随钻电磁波电阻率测井时,根据钻井现场作业条件和所需探测地层深度选择电磁波工作频率,并根据所选择的工作频率进行计算并处理采集的电磁波电阻率测井信号;首先钻井仪器下井前,根据作业需求设置工作频率,400KHz或2MHz,然后根据选择工作频率的不同,采取相对应的电阻率计算方法,再在地面系统处理上传的电阻率值,绘制电阻率曲线;优点为:本发明根据工作需求设置工作频率,扩大井深探测范围、加深探测深度,更好地识别地层界面,实现地质导向功能,根据实际情况灵活获得电阻率参数,提高石油钻探电阻率测量的准确性。
Description
技术领域
本发明涉及石油钻井工程领域,尤其是涉及一种井下电阻率的计算方法。
背景技术
随着测井技术的不断发展,传统的测井技术已不能满足石油钻井工程领域的发展与需求,因此,测量参数多、测量精度高、测量信息真实可靠的随钻测井成为当今石油工业的发展趋势。随钻测井(LWD)是在钻井过程中实时测量井下各种参数,钻进的同时完成地质和岩石等物理参数的测量,并将测量结果实时传送到地面进行处理。随钻测井(LWD),除包括随钻测量(MWD)的测量参数外,还包括电阻率、声速、伽马、中子孔隙度、密度、钻压、扭矩、转速等参数。
随钻电磁波电阻率测量是随钻测井技术的核心之一。不同地层的地质参数不同,高频电磁场的响应也不同,因此,通过检测电磁场的变化可以获取地质参数。随着作业现场深度井项目的增加,为了准确获取电阻率数值,单一工作频率的电磁波电阻率测量已不能满足实际作业需求。
发明内容
本发明的目的在于为解决现有技术的不足,而提供一种井下电阻率的计算方法。
本发明新的技术方案是:一种井下电阻率的计算方法,根据钻井作业条件和所需探测地层深度选择电磁波工作频率,对井下采集的电磁波电阻率信号进行计算,然后将电阻率值发送到地面系统绘制电阻率曲线,所述的井下电阻率的计算方法包括以下步骤:
1)钻井仪器采用双发双收四线圈系:
钻井仪器内,由两个仪器频率发射器向发射线圈提供400KHz或2MHz频率的交变电流,产生电磁波,其中一部分电磁波穿越地层被远近两个接收线圈获取,再经正弦波信号混频产生输出信号,输出信号供电路处理;因地层介质的影响,近接收线圈和远接收线圈会产生不同的幅度和相位感应电动势,相位差反应电磁波的传播时间,幅度衰减反应电磁波传播过程中的衰减,由此获得地层电阻率;
2)钻井仪器采用双频工作模式:
双频工作模式的信号组合为400KHz和2MHz,2MHz作为浅发射线圈的工作频率;400KHz作为深发射线圈的工作频率;仪器下井前,根据作业条件和探测地层深度要求设置工作频率;
3)
4)当工作频率选择400KHz时,将线圈近似为磁偶极子,介质中电磁场的电场强度满足非齐次Helmholtz微分方程:
5)当工作频率选择2MHz时,磁场表达式写成Sommerfeld积分形式:
本发明的有益效果为:本发明根据工作需求设置工作频率,扩大井深探测范围、加深探测深度,更好地识别地层界面,实现地质导向功能,根据实际情况灵活获得电阻率参数,提高石油钻探电阻率测量的准确性。
附图说明
图1为数据处理流程图。
具体实施方式
下面结合附图对本发明作进一步的说明。
一种井下电阻率的计算方法,根据钻井作业条件和所需探测地层深度选择电磁波工作频率,对井下采集的电磁波电阻率信号进行计算,然后将电阻率值发送到地面系统绘制电阻率曲线,
所述的井下电阻率的计算方法包括以下步骤:
1)钻井仪器采用双发双收四线圈系:
钻井仪器内,由两个仪器频率发射器向发射线圈提供400KHz或2MHz频率的交变电流,产生电磁波,其中一部分电磁波穿越地层被远近两个接收线圈获取,再经正弦波信号混频产生输出信号,输出信号供电路处理;因地层介质的影响,近接收线圈和远接收线圈会产生不同的幅度和相位感应电动势,相位差反应电磁波的传播时间,幅度衰减反应电磁波传播过程中的衰减,由此获得地层电阻率;
2)钻井仪器采用双频工作模式:
双频工作模式的信号组合为400KHz和2MHz,2MHz作为浅发射线圈的工作频率;400KHz作为深发射线圈的工作频率;仪器下井前,根据作业条件和探测地层深度要求设置工作频率;
3)
4)当工作频率选择400KHz时,将线圈近似为磁偶极子,介质中电磁场的电场强度满足非齐次Helmholtz微分方程:
5)当工作频率选择2MHz时,磁场表达式写成Sommerfeld积分形式:
Claims (1)
1.一种井下电阻率的计算方法,根据钻井作业条件和所需探测地层深度选择电磁波工作频率,对井下采集的电磁波电阻率信号进行计算,然后将电阻率值发送到地面系统绘制电阻率曲线,其特征在于:
所述的井下电阻率的计算方法包括以下步骤:
1)钻井仪器采用双发双收四线圈系:
钻井仪器内,由两个仪器频率发射器向发射线圈提供400KHz或2MHz频率的交变电流,产生电磁波,其中一部分电磁波穿越地层被远近两个接收线圈获取,再经正弦波信号混频产生输出信号,输出信号供电路处理;因地层介质的影响,近接收线圈和远接收线圈会产生不同的幅度和相位感应电动势,相位差反应电磁波的传播时间,幅度衰减反应电磁波传播过程中的衰减,由此获得地层电阻率;
2)钻井仪器采用双频工作模式:
双频工作模式的信号组合为400KHz和2MHz,2MHz作为浅发射线圈的工作频率;400KHz作为深发射线圈的工作频率;仪器下井前,根据作业条件和探测地层深度要求设置工作频率;
3)
4)当工作频率选择400KHz时,将线圈近似为磁偶极子,介质中电磁场的电场强度满足非齐次Helmholtz微分方程:
5)当工作频率选择2MHz时,磁场表达式写成Sommerfeld积分形式:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010950453.6A CN112034257B (zh) | 2020-09-11 | 2020-09-11 | 一种井下电阻率的计算方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010950453.6A CN112034257B (zh) | 2020-09-11 | 2020-09-11 | 一种井下电阻率的计算方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112034257A true CN112034257A (zh) | 2020-12-04 |
CN112034257B CN112034257B (zh) | 2023-09-29 |
Family
ID=73588703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010950453.6A Active CN112034257B (zh) | 2020-09-11 | 2020-09-11 | 一种井下电阻率的计算方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112034257B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113359199A (zh) * | 2021-07-06 | 2021-09-07 | 北京航空航天大学 | 一种基于聚焦磁场的井周电阻率测量方法 |
CN113504573A (zh) * | 2021-07-06 | 2021-10-15 | 北京航空航天大学 | 一种基于聚焦磁场的井周电阻率测量装置 |
CN113781599A (zh) * | 2021-08-23 | 2021-12-10 | 上海市政工程设计研究总院(集团)有限公司 | 绘制钻井电阻率测试成果曲线的方法及系统 |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK478375A (da) * | 1974-10-24 | 1976-04-25 | Texaco Development Corp | Fremgangsmade og apparat til logging af et borehul |
NO984301D0 (no) * | 1997-09-19 | 1998-09-17 | Anadrill Int Sa | FremgangsmÕte og apparat for mÕling av resistivitet i en grunnformasjon |
US20020153897A1 (en) * | 2001-04-18 | 2002-10-24 | Evans Martin Townley | Apparatus and method for wellbore resistivity imaging using capacitive coupling |
US20030137301A1 (en) * | 2002-01-19 | 2003-07-24 | Thompson Larry W. | Well logging system for determining resistivity using multiple transmitter-receiver groups operating at three frequencies and at optimized gain |
CN1434926A (zh) * | 1999-07-09 | 2003-08-06 | 霍尼韦尔国际公司 | 传导波地层电阻率测量装置 |
US20050122116A1 (en) * | 2003-12-03 | 2005-06-09 | Baker Hughes Incorporated | Method and apparatus for use of the real component of a magnetic field of multicomponent resistivity measurements |
CN1869400A (zh) * | 2005-05-27 | 2006-11-29 | 中国石化集团胜利石油管理局钻井工艺研究院 | 随钻双感应电阻率测量仪 |
WO2012008965A1 (en) * | 2010-07-16 | 2012-01-19 | Halliburton Energy Services, Inc. | Efficient inversion systems and methods for directionally-sensitive resistivity logging tools |
CA2822506A1 (en) * | 2010-12-23 | 2012-06-28 | Shengli Drilling Technology Research Institute Of Sinopec | A device and method for determining the resistivity of a formation in front of a well logger |
WO2012109844A1 (zh) * | 2011-02-17 | 2012-08-23 | 长江大学 | 一种探测金属套管外地层电阻率的井中时域脉冲电磁法 |
CN102678106A (zh) * | 2012-05-02 | 2012-09-19 | 中国电子科技集团公司第二十二研究所 | 随钻电磁波电阻率测井仪器的数据处理方法 |
CN102943662A (zh) * | 2012-11-12 | 2013-02-27 | 斯伦贝谢金地伟业油田技术(山东)有限公司 | 一种可打捞式无线随钻电磁波电阻率测量短节 |
CN103015970A (zh) * | 2012-11-30 | 2013-04-03 | 中国海洋石油总公司 | 一种随钻电阻率测井仪的模拟检测设备 |
CN106446408A (zh) * | 2016-09-23 | 2017-02-22 | 上海神开石油设备有限公司 | 一种随钻补偿电磁波仪器的快速正反演处理方法 |
CN107630697A (zh) * | 2017-09-26 | 2018-01-26 | 长江大学 | 基于随钻电磁波电阻率测井的地层电阻率联合反演方法 |
CN108019206A (zh) * | 2017-11-16 | 2018-05-11 | 中国石油集团长城钻探工程有限公司 | 一种高介电常数下随钻电磁波电阻率仪器量程扩展方法 |
WO2019236090A1 (en) * | 2018-06-07 | 2019-12-12 | Halliburton Energy Services, Inc. | Method of determining full green's tensor with resistivity measurement |
-
2020
- 2020-09-11 CN CN202010950453.6A patent/CN112034257B/zh active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK478375A (da) * | 1974-10-24 | 1976-04-25 | Texaco Development Corp | Fremgangsmade og apparat til logging af et borehul |
NO984301D0 (no) * | 1997-09-19 | 1998-09-17 | Anadrill Int Sa | FremgangsmÕte og apparat for mÕling av resistivitet i en grunnformasjon |
CN1434926A (zh) * | 1999-07-09 | 2003-08-06 | 霍尼韦尔国际公司 | 传导波地层电阻率测量装置 |
US20020153897A1 (en) * | 2001-04-18 | 2002-10-24 | Evans Martin Townley | Apparatus and method for wellbore resistivity imaging using capacitive coupling |
US20030137301A1 (en) * | 2002-01-19 | 2003-07-24 | Thompson Larry W. | Well logging system for determining resistivity using multiple transmitter-receiver groups operating at three frequencies and at optimized gain |
US20050122116A1 (en) * | 2003-12-03 | 2005-06-09 | Baker Hughes Incorporated | Method and apparatus for use of the real component of a magnetic field of multicomponent resistivity measurements |
CN1869400A (zh) * | 2005-05-27 | 2006-11-29 | 中国石化集团胜利石油管理局钻井工艺研究院 | 随钻双感应电阻率测量仪 |
WO2012008965A1 (en) * | 2010-07-16 | 2012-01-19 | Halliburton Energy Services, Inc. | Efficient inversion systems and methods for directionally-sensitive resistivity logging tools |
CA2822506A1 (en) * | 2010-12-23 | 2012-06-28 | Shengli Drilling Technology Research Institute Of Sinopec | A device and method for determining the resistivity of a formation in front of a well logger |
WO2012109844A1 (zh) * | 2011-02-17 | 2012-08-23 | 长江大学 | 一种探测金属套管外地层电阻率的井中时域脉冲电磁法 |
CN102678106A (zh) * | 2012-05-02 | 2012-09-19 | 中国电子科技集团公司第二十二研究所 | 随钻电磁波电阻率测井仪器的数据处理方法 |
CN102943662A (zh) * | 2012-11-12 | 2013-02-27 | 斯伦贝谢金地伟业油田技术(山东)有限公司 | 一种可打捞式无线随钻电磁波电阻率测量短节 |
CN103015970A (zh) * | 2012-11-30 | 2013-04-03 | 中国海洋石油总公司 | 一种随钻电阻率测井仪的模拟检测设备 |
CN106446408A (zh) * | 2016-09-23 | 2017-02-22 | 上海神开石油设备有限公司 | 一种随钻补偿电磁波仪器的快速正反演处理方法 |
CN107630697A (zh) * | 2017-09-26 | 2018-01-26 | 长江大学 | 基于随钻电磁波电阻率测井的地层电阻率联合反演方法 |
CN108019206A (zh) * | 2017-11-16 | 2018-05-11 | 中国石油集团长城钻探工程有限公司 | 一种高介电常数下随钻电磁波电阻率仪器量程扩展方法 |
WO2019236090A1 (en) * | 2018-06-07 | 2019-12-12 | Halliburton Energy Services, Inc. | Method of determining full green's tensor with resistivity measurement |
Non-Patent Citations (2)
Title |
---|
YUMEI ZHANG等: "Optimization of the Electromagnetic Wave Resistivity tool in Logging While Drilling" * |
胡松等: "水平井随钻电磁波电阻率数值模拟" * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113359199A (zh) * | 2021-07-06 | 2021-09-07 | 北京航空航天大学 | 一种基于聚焦磁场的井周电阻率测量方法 |
CN113504573A (zh) * | 2021-07-06 | 2021-10-15 | 北京航空航天大学 | 一种基于聚焦磁场的井周电阻率测量装置 |
CN113359199B (zh) * | 2021-07-06 | 2022-07-08 | 北京航空航天大学 | 一种基于聚焦磁场的井周电阻率测量方法 |
CN113781599A (zh) * | 2021-08-23 | 2021-12-10 | 上海市政工程设计研究总院(集团)有限公司 | 绘制钻井电阻率测试成果曲线的方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN112034257B (zh) | 2023-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112034257A (zh) | 一种井下电阻率的计算方法 | |
US10914856B2 (en) | High resolution downhole imaging | |
EP3410160A1 (en) | Method for real-time downhole processing and detection of bed boundary for geosteering application | |
US20140052376A1 (en) | Method for Cement Evaluation with Acoustic and Nuclear Density Logs | |
US20150049585A1 (en) | Acoustic logging systems and methods employing multi-mode inversion for anisotropy and shear slowness | |
CA2844051C (en) | System and method for determining shear wave anisotropy in a vertically transversely isotropic formation | |
US10295697B2 (en) | Determination of true formation resistivity | |
CN103821495B (zh) | 测井方法 | |
EP2659292A2 (en) | Stress in formations from azimuthal variation in acoustic and other properties | |
CN101285381B (zh) | 一种泄漏模式波反演软地层横波速度的方法 | |
US10955581B2 (en) | Using an adjusted drive pulse in formation evaluation | |
CN108019207A (zh) | 一种对称电磁波电阻率的测量方法 | |
EP2488722A1 (en) | Estimating formation stresses using radial profiles of three shear moduli | |
WO2020251581A1 (en) | Depth-dependent mud density determination and processing for horizontal shear slowness in vertical transverse isotropy environment using full-waveform sonic data | |
CN115017779A (zh) | 一种测量压裂缝几何参数的方法及系统 | |
CN113720745B (zh) | 含碳屑碎屑岩储层地球物理测井计算孔隙度的方法 | |
CN209132435U (zh) | 一种用于连通井对接的地面监控系统 | |
US11693141B2 (en) | Methods and systems for processing borehole dispersive waves with a physics-based machine learning analysis | |
US20180031722A1 (en) | Systems and methods employing a menu-based graphical user interface (gui) to derive a shear slowness log | |
US5987386A (en) | Interpolation of induction tool response using geometrical factors as basis functions | |
WO2020142057A1 (en) | Shear velocity radial profiling based on flexural mode dispersion | |
CN108756867A (zh) | 基于声波测井曲线和电阻率测井曲线进行压裂选层的方法 | |
US11892586B2 (en) | Interpretation of dielectric tool measurements using general mixing laws | |
US11940581B2 (en) | Dynamic filter for smoothing velocity model for domain-converting seismic data | |
CN114114401A (zh) | 利用轴对称探头在地面激发的sh波进行浅层勘探的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |