WO2012109844A1 - 一种探测金属套管外地层电阻率的井中时域脉冲电磁法 - Google Patents
一种探测金属套管外地层电阻率的井中时域脉冲电磁法 Download PDFInfo
- Publication number
- WO2012109844A1 WO2012109844A1 PCT/CN2011/076930 CN2011076930W WO2012109844A1 WO 2012109844 A1 WO2012109844 A1 WO 2012109844A1 CN 2011076930 W CN2011076930 W CN 2011076930W WO 2012109844 A1 WO2012109844 A1 WO 2012109844A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resistivity
- casing
- well
- time
- pulse
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/18—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
- G01V3/26—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device
- G01V3/28—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device using induction coils
Definitions
- the invention relates to the technical field of geophysical measurement and oilfield development in a well, in particular to obtaining distribution information of the resistivity of the outer layer of the casing outside the casing by exciting and observing the change of the electromagnetic field in the casing well, and then evaluating the development of the reservoir in the reservoir.
- the electrical parameters of the reservoir medium are closely related to the porosity of the reservoir, the nature of the pore fluid and the saturation, the electrical properties of the reservoir containing oil and gas are very different from those of the reservoir containing water.
- the electrical parameters of the reservoir medium It is a major parameter for determining and evaluating the hydrocarbon-bearing properties of reservoirs. Therefore, electrical or electromagnetic methods have always been an important method for quantitative evaluation of reservoir hydrocarbon-bearing properties. Logging is the most reproducible method of all geophysical methods because it can be measured directly in or near the reservoir.
- Electrical logging methods for formation resistance measurement of open hole wells include DC resistivity logging and induction logging.
- the DC resistivity method obtains the resistivity of the formation by supplying a current in the well or by the well wall to the ground, and measuring the potential difference at a certain offset distance; and the induction logging is based on the principle of electromagnetic induction, and is provided in the transmitting coil.
- An alternating current is generated to generate an alternating magnetic field excitation, and a secondary field generated by the eddy current induced in the formation is measured at a certain offset to obtain formation conductivity.
- CT interwell electromagnetic tomography
- the casing wall needs to be cleaned before measurement. This cleaning work is costly, and if it is not thoroughly cleaned, it can lead to poor contact and large measurement errors.
- This problem is caused by the limitations of the observation method. Measurements of direct contact with the pipe wall are more susceptible to casing collars and perforation points, causing difficulties in data interpretation.
- the method uses direct current to supply power through the casing to diffuse into the formation.
- the DC diffusion field itself has no ability to measure the depth, and the resistivity of the formations at different depths can only be identified by the change of the electrode distance; due to the limitation of the logging cable,
- the supply current is also not very large ( ⁇ 6), so the depth of detection of this method is very limited.
- the cementing cement ring has an important influence on the observation data, and needs to be finely processed and corrected in the interpretation, and the resistivity distribution information of the reservoir within a certain distance from the well wall is not available. Summary of the invention
- the object of the present invention is to provide a high-power pulse source excitation in a metal casing well, observe the change of the magnetic induction electromotive force with time in the well, obtain the radial distribution information of the outer layer resistivity of the casing through data processing, and then evaluate the development oil.
- a well-in-situ electromagnetic method for the distribution of remaining oil in a reservoir is to provide a high-power pulse source excitation in a metal casing well, observe the change of the magnetic induction electromotive force with time in the well, obtain the radial distribution information of the outer layer resistivity of the casing through data processing, and then evaluate the development oil.
- the apparatus used in the present invention is composed of two parts, a ground device and a downhole device.
- the ground device supplies power and control to the downhole device through a cable (the device or device used in the present invention can be referred to another case filed on the same day).
- the specific steps of the present invention are as follows:
- the transmitting coil of the high-power pulse emitting source of the downhole device is pulsed to generate an instantaneous high-power pulsed magnetic field excitation;
- the receiving and recording system of the downhole device is at a certain distance from the transmitting source The receiving coil is used to record the data of the induced electromotive force ⁇ generated by the vertical component of the magnetic field with time; the transmission waveform and the received signal are simultaneously digitally recorded in full time;
- the high power pulsed emission source of the downhole device includes:
- the pulse waveform is a pseudo-Gaussian pulse
- Pulse instantaneous power maximum > 1 OOkW; Pulse width ⁇ 1001118;
- the receiving and recording system of the downhole device includes:
- Multi-channel magnetic induction sensor receiving the distance between the channels is 0.25m;
- the minimum transmission distance is 1.0m
- the calculation of the metal casing response is obtained by a numerical solution of the axially symmetric radial layered model magnetic dipole source response; the typical values of the metal casing parameters are:
- the relative magnetic permeability of the sleeve is 10 2 - 10 5 .
- the distribution of the remaining oil in the reservoir can be determined from the distribution of the resistivity of the reservoir outside the casing.
- the electromagnetic excitation and measurement in the casing well proposed by the invention is an induction mode, and the transmitting and receiving devices are not directly in contact with the casing wall; the receiving system records the data of the magnetic induction electromotive force with time, and has the function of time domain sounding.
- Data processing and inversion can obtain radial change information of wellbore formation resistivity; using the resistivity measurement data at completion to calibrate, the oil saturation distribution or variation image of the reservoir within a certain radial distance of the well can be obtained. , to achieve the remaining oil evaluation of the development of the reservoir.
- the invention does not need to wash the well when working, and the detection radius is large. While obtaining a large instantaneous current, the average power consumption of the power supply is not large.
- the present invention employs a special technique to house all of the power supply and measurement equipment in the tube, and the surveyor can control the instrument on the ground for exploration work.
- the invention greatly reduces the weight of the instrument, while also saving energy, and the instantaneous power is huge.
- the response value of high-power electromagnetic pulse, using resistivity to describe the distribution around the well can see the information related to the geological structure, and provide an effective detection method for evaluating the distribution of remaining oil in the reservoir.
- FIG. 1 is a schematic diagram of a time domain pulse electromagnetic method observation scheme in a casing well designed according to the present invention
- FIG. 2 is a schematic view showing the principle of detecting the resistivity of the formation by the metal casing according to the present invention
- FIG. 3 is a schematic diagram of a pseudo-Gaussian pulse excitation current waveform used in the present invention.
- FIG. 4 is a schematic diagram of an induced electromotive force curve observed in a well of different casing electrical conductivity according to the present invention
- Figure 5 is a schematic view showing the difference of induced electromotive force observed in the well of different formation conductivity of the present invention.
- Fig. 6 is a schematic view showing the conductivity curve of the formation obtained by inversion of the electromotive force difference observed in the well.
- the field data collected by the metal casing to detect the formation resistivity is measured by the time domain pulse electromagnetic method of transmitting electromagnetic pulse in the casing well and receiving the magnetic induction signal in the casing well.
- the observation scheme is shown in Fig. 1.
- Power is supplied to the launching system of the downhole device 4 by the generator 1 through the launch control device 2, through the wellhead control device 3.
- the receiving and recording system of the downhole device records data on the induced electromotive force in the well as a function of time under excitation of the electromagnetic pulse.
- the working principle of the downhole device is shown in Figure 2.
- the metal casing 5 for the development of the well is consolidated by the cementing cement 6 and the formation is divided into a surrounding rock formation 7 and a reservoir 8 having a certain porosity, the reservoir containing fluid (oil, water or gas). . Due to the heterogeneity of the reservoir, the oil-water interface of the remaining oil in the reservoir may be far away from the well wall and the distribution state is relatively complicated.
- the object of the present invention is to obtain the radial distribution of the formation resistivity by observing the decay of the electromagnetic pulse with time. Information, in turn, inferring the distribution of fluids in the reservoir.
- the outer casing 9 of the downhole device is made of a non-metallic material.
- the transmitting coil 10 is supplied with a high power pulse current by a downhole emission control device that induces eddy currents 12 in the metal casing and in the formation outside the casing.
- the induced eddy current in the formation is very weak, usually less than one ten thousandth of the induced eddy current in the casing; but the smaller the casing wall thickness, the higher the pulse power and the longer the pulse duration, The greater the effect of induced eddy currents in the formation.
- the secondary induction field 13 generated by the eddy current in the formation affects the distribution of the electromagnetic field in the casing.
- the receiving coil 11 records the change of the induced electromotive force in the casing with time. After processing, the distribution information of the outer layer resistivity of the casing can be obtained. .
- the transmission power is required to be sufficiently large, and the pulse duration is long enough.
- the pseudo-Gaussian pulse waveform used in the present invention is as shown in FIG.
- the instantaneous current peak of pulse 14 occurs around 0.01s, the maximum value exceeds 45A, and the pulse duration is close to 0.1s.
- the magnetic induction electromotive force observed in the receiving coil 11 at a distance from the transmitting coil 10 in the casing is as shown in FIG.
- the curves 15, 16 and 17 are casing resistivity of 7x 10- 5, 1 x 10- 6 and perpendicular magnetic field induced electromotive force of 1.5x 10- 6 ⁇ observed when the sleeve obtained. It can be seen that different casing resistivities have the effect of attenuation and time shift on the observed electromagnetic field, and the casing resistivity has a significant influence on the response of the observation in the well.
- FIG. 5 shows the relative response of different formations calculated according to equation (1) when the casing conductivity is 10 6 S/m. Curves 18-22 are the conductivity of the formation, 1, 0.5, 0.2, respectively. A plot of the relative change in induced electromotive force at 0.1 and 0.04 S/m. It can be seen that the magnitude of the relative response of the induced electromotive force is a good reflection of the change in formation conductivity.
- the apparent conductivity curve of the formation as a function of time is shown in Fig. 6.
- the curves 23-27 correspond to the formations with conductivity of 1, 0.5, 0.2, 0.1 and 0.04 S/m, respectively. It can be seen that the maximum value of the apparent conductivity curve is very close to the true conductivity value of the formation.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开了一种探测金属套管外地层电阻率的井中时域脉冲电磁法,步骤为:1)井下构建大功率脉冲发射源;接收记录系统记录磁场垂直分量Bz产生的感应电动势ε随时间变化的数据;对发射波形和接收信号同时进行记录;2)进行多次发射-接收,将信号叠加,提高信噪比;3)按套管参数和记录的发射源电流波形计算套管响应,获得套管外地层相对感生电动势:4)对相对感生电动势值进行校正;5)进行一维反演,将随时间变化的观测信号转换成井周地层电阻率的径向变化信息;6)由反演电阻率值获得井段套管外地层电阻率纵向与径向分布的二维图像;7)按完井时的测量资料和解释结果,由套管外储层电阻率的分布可确定储层中剩余油的分布状况。
Description
一种探测金属套管外地层电阻率的井中时域脉冲电磁法 技术领域
本发明涉及井中地球物理测量和油田开发技术领域, 特别是一种通过在套管井中激 发和观测电磁场的变化获得套管外井周地层电阻率的分布信息, 进而可评价开发油藏储 层中剩余油分布状态的井中电磁探测方法。 背景技术
由于储层介质的电性参数与储层孔隙度、 孔隙流体性质和饱和度都有密切关系, 储 层中含油气时与含地层水时的电性差异很大, 储层介质的电性参数是判定与评价储层含 油气性的一个主要参数, 因而电法或电磁法一直是定量评价储层含油气性的重要方法。 由于可以直接在井中通过靠近或在储层中间进行测量, 测井是所有地球物理探测方法中 分辨率最高的一类方法。
用于裸眼井地层电阻率测量的电测井方法有直流电阻率测井和感应测井两类方法。 直流电阻率法通过在井中或靠井壁给地中供一直流电流, 在一定偏移距处测量电位差来 获得地层的电阻率; 而感应测井是基于电磁感应原理, 在发射线圈中供一交流电流, 产 生交流磁场激发, 在一定偏移距处测量在地层中感应出的涡流产生的二次场来获得地层 电导率。
近年来, 借助于信息技术的发展, 国内外地球物理界研究和发展了井间电磁波层析 成像(CT)技术用于井间电阻率分布的测量和成像, 与常规电测井相比具有更深更大的 探测范围; 与地面电磁法相比, 它具有更高的精度和分辨能力且不受井深的影响。 井中 电磁波 CT面临的挑战之一是探测距离和分辨能力的矛盾。有利于油气储集的地层对电磁 波来讲一般为强损耗介质, 欲增加探测距离, 必须增加发射功率, 降低发射信号的频率, 而降低频率又会影响到分辨率。 在油田开发中应用还面临金属套管的强衰减问题。 理论 研究表明, 用一个垂直磁偶极源在套管井中发射, 在另一口裸眼井中接收, 如果发射源 的频率为数百赫兹时, 信号能穿透套管而辐射到地层中。 而对于双边均为套管井时, 则 信号的探测就几乎不可能。 当套管接箍为绝缘连接时, 每节套管可以作为发射天线, 其 效果更好, 但这样在实际的石油钻井施工中也是不现实的。
对于开发油藏中储层电阻率的测量问题, 面对的主要挑战仍是开发油井的金属套管 对电磁场的强烈屏蔽作用, 使得无论是直流场还是感应场的测量都非常困难。 随着电子
技术的发展, 弱信号检测技术的提高, 国外学者研究和实现了在套管管壁上供电, 在管 壁上测量超弱的电位梯度信号, 然后转换成直流电阻率曲线, 获得套管外地层的电阻率 信息。 美国的几大测井技术服务公司, 如 Schlumberger, Haliburton, Baker Atlas都已研制 出基于直流电位测量的过套管电阻率测井的仪器。 这种过套管地层电阻率测井方法在实 际应用中仍受许多因素的影响导致推广困难。 首先, 由于供电和测量都必须紧贴井壁进 行, 在进行测量前, 需对套管壁进行清洁处理。 这种清洁工作成本高, 如果清洁不彻底 还会导致接触不好而产生很大的测量误差, 这一问题是由于观测方法的局限性造成的。 直接接触管壁的测量更易受到套管接箍和射孔点的影响,造成资料解释上的困难。再者, 该方法采用直流电流供电通过套管向地层中扩散, 直流扩散场本身没有测深的能力, 只 能靠电极距的变化来识别不同深度地层的电阻率; 由于测井电缆的限制, 供电电流也不 可能很大(<6 ), 故该方法的探测深度非常有限。这样, 固井水泥环对观测数据有重要影 响, 需要在解释中进行精细的处理和校正, 而对距井壁一定距离内储层的电阻率分布信 息更是无从获取。 发明内容
本发明的目的是提供一种在金属套管井中采用大功率脉冲源激发, 在井中观测磁感 应电动势随时间的变化, 通过资料处理获取套管外地层电阻率的径向分布信息, 进而评 价开发油藏储层中剩余油分布情况的井中电磁方法。
本发明的目的通过以下技术方案来实现:
本发明采用的设备由地面设备和井下装置两部分组成,地面设备通过电缆对井下装 置进行供电和控制(本发明中所用的的设备或装置可参阅同日申请的另一件案子)。本发 明的具体操作步骤为:
1 ) 在含有金属套管的目标井段中, 给井下装置大功率脉冲发射源的发射线圈通以 脉冲电流, 产生瞬时大功率的脉冲磁场激发; 井下装置的接收记录系统在距发射源一定 距离处用接收线圈记录磁场垂直分量 产生的感应电动势 ε随时间变化的数据;对发射波 形和接收信号同时进行全时段数字记录;
所述的井下装置的大功率脉冲发射源包括:
脉冲波形为拟高斯脉冲;
脉冲瞬时电流最大值 >30Α;
脉冲瞬时功率最大值> 1 OOkW;
脉冲宽度<1001118;
所述的井下装置的接收记录系统包括:
多道磁感应传感器接收, 道间距离 0.25m;
收―发距最小 1.0m;
接收信号时间序列记录长度 Is;
2) 在同一深度点进行多次发射一接收, 将多次接收信号叠加, 提高信噪比; 所述的多次发射的次数为 30— 100个脉冲;
3 )根据已知的套管(内径、 厚度、 电导率、 磁导率)等参数和记录的发射源电流波 形计算相应的套管响应, 获得套管外地层的相对感生电动势
(1) 式中 ε。为观测的感生电动势, εε为计算得到的套管的响应;
所述的金属套管响应的计算由轴对称径向分层模型磁偶极源响应的数值解获得; 所述的金属套管参数的典型值为:
套管内径 0.08— 0.12 m;
套管壁厚 0.006— 0.02 m;
套管电导率 105— 107 S/m;
套管的相对磁导率为 102— 105。
4) 根据套管的接箍和射孔位置等信息, 对相对感生电动势值进行校正;
5 )进行一维反演,将随时间变化的观测信号转换成井周地层电阻率的径向变化信息;
6)根据不同测点的反演电阻率值,获得测量井段套管外地层电阻率纵向与径向分布 的二维图像;
7)根据完井时的电测井资料和解释结果, 由套管外储层电阻率的分布可以确定储层 中剩余油的分布状况。
所述本发明提出的套管井中电磁激发与测量为感应方式, 发射和接收装置均不直接 接触套管管壁;接收系统记录磁感应电动势随时间变化的数据,具有时间域测深的功能, 经过资料处理与反演, 可获得井周地层电阻率的径向变化信息; 利用完井时的电阻率测 量数据进行标定, 可以获得井周一定径向距离内储层的含油饱和度分布或变化图像, 实 现开发油藏的剩余油评价。
本发明工作时无需洗井, 探测半径大。 在获得很大的瞬时电流的同时, 电源的平均 功率消耗不大, 目前大多数测井仪器无法突破钢套管的束缚, 在钢套管井中无法使用。 而该发明可以突破钢套管的束缚。 由于平均功率小, 测井仪器的电缆无需任何改动都可 以连接, 降低了使用成本。
本发明采用特殊技术, 将所有的供电与测量设备装在管内, 勘探人员可以在地面控 制仪器进行勘探工作。 本发明大大地减轻了仪器的重量, 同时还节约了能源, 且瞬间功 率巨大。 大功率电磁脉冲的响应值, 用电阻率来描述井间周围分布, 可以看到与地质结 构有关的信息, 为评价开发油藏储层中剩余油分布状态提供了一种有效的探测方法。 附图说明
图 1为本发明设计的套管井中时域脉冲电磁法观测方案示意图;
图 2为本发明实现过金属套管探测地层电阻率的原理示意图;
图 3为本发明采用的拟高斯脉冲激励电流波形示意图;
图 4为本发明不同套管电导率时井中观测的感应电动势曲线示意图;
图 5为本发明不同地层电导率时井中观测的感应电动势差异示意图;
图 6为本发明由井中观测的电动势差异反演得到的地层电导率曲线示意图。
具体实施方式
下面结合附图及实施例对本发明作进一步描述:
过金属套管探测地层电阻率的野外资料采集采用套管井中发射电磁脉冲、 套管井中 接收磁感应信号的时间域脉冲电磁方法, 观测方案如图 1所示。 由发电机 1通过发射控制 装置 2、通过井口控制装置 3向井下装置 4的发射系统供电。井下装置的接收记录系统记录 在电磁脉冲激励下井中感生电动势随时间变化的数据。
井下装置的工作原理如图 2所示。开发油井的金属套管 5由固井水泥 6将套管和地层固 结, 地层分为围岩地层 7和具有一定孔隙度的储集层 8, 储集层含有流体(油、 水或气) 。 由于储集层的非均质性,储层中剩余油的油水分界面可能远离井壁且分布状态比较复杂, 本发明的目的就是通过观测电磁脉冲随时间的衰变获取地层电阻率径向分布的信息, 进 而推断储层中的流体分布情况。为了避免电磁屏蔽影响,井下装置的外壳 9采用非金属材 料制作。 由井下发射控制装置给发射线圈 10供给大功率的脉冲电流, 所产生的磁场会在 金属套管中和套管外的地层中感应出涡流 12。 地层中的感应涡流很弱, 通常情况下不足 套管中感应涡流的万分之一; 但套管壁厚越小, 脉冲功率越大, 脉冲持续时间越长, 则
地层中感应涡流的作用越大。 地层中的涡流产生的二次感应场 13又会影响到套管内电磁 场的分布, 通过接收线圈 11记录套管内感生电动势随时间的变化, 经处理后可以获得套 管外地层电阻率的分布信息。
为了能过突破金属套管的屏蔽影响, 要求发射功率足够大, 脉冲持续时间足够长, 本发明采用的拟高斯脉冲波形如图 3所示。 脉冲 14的瞬时电流峰值发生在 0.01s左右, 最 大值超过 45A, 脉冲持续时间接近 0.1s。
当发射线圈 10中通以大功率脉冲电流 14时, 在套管中距发射线圈 10—定距离的接收 线圈 11中观测到的磁感应电动势如图 4所示。 图中曲线 15、 16和 17分别是套管电阻率为 7x 10— 5、 1 x 10— 6和 1.5x 10— 6ΩΜ时在套管中观测得到的垂直磁场的感生电动势。 可见不同 的套管电阻率对观测的电磁场具有衰减和时移的作用, 套管电阻率对井中观测的响应影 响非常突出。
当套管外地层电导率 (电阻率的倒数) 值不同时, 井中观测的电磁响应因受到金属 套管的屏蔽作用仅呈现非常微弱的变化, 通过研究不同地层电导率响应的相对变化可以 提取与地层电导率相关的微弱响应。 图 5所示为当套管电导率为 106S/m时, 根据式 (1 ) 计算得到的不同地层电导率的相对响应, 曲线 18— 22分别为地层电导率为 1、 0.5、 0.2、 0.1和 0.04 S/m时的感生电动势的相对变化的曲线。 可以看出, 感生电动势的相对响应的 幅值很好地反映了地层电导率的变化。 据此反演得到的地层视电导率随时间变化的曲线 如图 6所示, 曲线 23— 27分别对应电导率为 1、 0.5、 0.2、 0.1和 0.04 S/m时的地层, 由图中 可以看出, 视电导率曲线的最大值与地层的真电导率值非常接近。
Claims
1、一种探测金属套管外地层电阻率的井中时域脉冲电磁法, 其特征在于: 具体操作 步骤为:
1 )在含有金属套管的目标井段中,给井下装置大功率脉冲发射源的发射线圈通以脉 冲电流, 产生瞬时大功率的脉冲磁场激发; 井下装置的接收记录系统在距发射源一定距 离处用接收线圈记录磁场垂直分量 产生的感应电动势 ε随时间变化的数据;对发射波形 和接收信号同时进行全时段数字记录;
2) 在同一深度点进行多次发射一接收, 将多次接收信号叠加, 提高信噪比;
3)根据已知的套管参数和记录的发射源电流波形计算相应的套管响应,获得套管外 地层的相对感生电动势 Δ¾ :
式中 为观测的感生电动势, εε为计算得到的套管的响应;
4) 根据套管的接箍和射孔位置信息, 对相对感生电动势值进行校正;
5)进行一维反演,将随时间变化的观测信号转换成井周地层电阻率的径向变化信息;
6)根据不同测点的反演电阻率值,获得测量井段套管外地层电阻率纵向与径向分布 的二维图像;
7)根据完井时的电测井资料和解释结果, 由套管外储层电阻率的分布可以确定储层 中剩余油的分布状况。
2、 如权利要求 1所述的一种探测金属套管外地层电阻率的井中时域脉冲电磁法, 其 特征在于: 所述的井中瞬变电磁测量为感应方式, 发射和接收装置均不直接接触套管管 壁。
3、 如权利要求 1所述的一种探测金属套管外地层电阻率的井中时域脉冲电磁法, 其 特征在于: 所述的在套管井中记录磁感应电动势 ε随时间变化的数据, 具有时间域测深的 功能, 由此可获得井周地层电阻率的径向变化信息。
4、 如权利要求 1所述的一种探测金属套管外地层电阻率的井中时域脉冲电磁法, 其 特征在于: 所述的井下装置的大功率脉冲发射源包括:
脉冲波形为拟高斯脉冲;
脉冲瞬时电流最大值 >30A;
脉冲瞬时功率最大值〉100kW;
脉冲宽度<1001^。
5、 如权利要求 1所述的一种探测金属套管外地层电阻率的井中时域脉冲电磁法, 其 特征在于: 所述的井下装置的接收记录系统包括:
多道磁感应传感器接收, 道间距离 0.25m;
收一发距最小 1.0m;
接收信号时间序列记录长度 ls。
6、 如权利要求 1所述的一种探测金属套管外地层电阻率的井中时域脉冲电磁法, 其 特征在于: 所述的多次发射的次数为 30— 100个脉冲。
7、 如权利要求 1所述的一种探测金属套管外地层电阻率的井中时域脉冲电磁法, 其 特征在于: 所述的金属套管响应的计算由轴对称径向分层模型磁偶极源响应的数值解获 得。
8、 如权利要求 1所述的一种探测金属套管外地层电阻率的井中时域脉冲电磁法, 其 特征在于: 所述的金属套管参数的典型值为:
套管内径 0.08— 0.12 m;
套管壁厚 0.006— 0.02 m;
套管电导率 105— 107 S/m;
套管的相对磁导率为 102— 105。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11817190.9A EP2514915A4 (en) | 2011-02-17 | 2011-07-07 | Downhole time-domain pulsed electromagnetic method for detecting resistivity of stratum outside metal cased pipe |
US13/178,548 US8756017B2 (en) | 2011-02-17 | 2011-07-08 | Method for detecting formation resistivity outside of metal casing using time-domain electromagnetic pulse in well |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100393350A CN102121374B (zh) | 2011-02-17 | 2011-02-17 | 一种探测金属套管外地层电阻率的井中时域脉冲电磁法 |
CN201110039335.0 | 2011-02-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/178,548 Continuation US8756017B2 (en) | 2011-02-17 | 2011-07-08 | Method for detecting formation resistivity outside of metal casing using time-domain electromagnetic pulse in well |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012109844A1 true WO2012109844A1 (zh) | 2012-08-23 |
Family
ID=44250022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/076930 WO2012109844A1 (zh) | 2011-02-17 | 2011-07-07 | 一种探测金属套管外地层电阻率的井中时域脉冲电磁法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2514915A4 (zh) |
CN (1) | CN102121374B (zh) |
WO (1) | WO2012109844A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108287367A (zh) * | 2018-02-11 | 2018-07-17 | 合肥晟北辰智能科技有限公司 | 一种基于时域电磁法的地面-孔中联合探测系统及应用方法 |
CN110242292A (zh) * | 2019-07-15 | 2019-09-17 | 北京华晖盛世能源技术股份有限公司 | 一种裸眼井地层垂直方向电阻率测量装置、方法及系统 |
CN111983704A (zh) * | 2020-09-28 | 2020-11-24 | 西安石油大学 | 一种井间三维电磁探测方法和系统 |
CN112012725A (zh) * | 2019-05-30 | 2020-12-01 | 天津大学青岛海洋技术研究院 | 一种瞬变电磁浅层全波勘探高分辨率仪器 |
CN112034257A (zh) * | 2020-09-11 | 2020-12-04 | 斯伦贝谢油田技术(山东)有限公司 | 一种井下电阻率的计算方法 |
CN112302624A (zh) * | 2020-11-03 | 2021-02-02 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | 一种井中发射井中接收的瞬变过套管电阻率仪及其运行方法 |
CN112610204A (zh) * | 2020-12-21 | 2021-04-06 | 中国地质大学(北京) | 一种地层视电导率测量方法 |
CN113006782A (zh) * | 2021-03-31 | 2021-06-22 | 西安石油大学 | 半线圈阵列感应测井装置 |
CN116701844A (zh) * | 2023-07-26 | 2023-09-05 | 北京建工环境修复股份有限公司 | 基于全波形的高密度电阻率数据筛选和处理方法及系统 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2011381057B2 (en) * | 2011-11-18 | 2014-10-02 | Halliburton Energy Services, Inc. | Methods and systems for analyzing formation properties when performing subterranean operations |
CN102678106B (zh) * | 2012-05-02 | 2015-04-01 | 中国电子科技集团公司第二十二研究所 | 随钻电磁波电阻率测井仪器的数据处理方法 |
CN102966349A (zh) * | 2012-11-28 | 2013-03-13 | 褚万泉 | 一种井间电磁瞬变监测系统及其监测方法 |
CN106646635B (zh) * | 2016-12-26 | 2018-06-19 | 张鑫 | 变线源电阻率连续测量方法 |
CN107589461B (zh) * | 2017-09-04 | 2019-11-05 | 长江大学 | 一种基于双向编码的尖脉冲时域电磁深层探测方法 |
CN107575220B (zh) * | 2017-09-23 | 2020-11-27 | 天津大学 | 一种过套管地层微分电阻率测井方法 |
CN107939386B (zh) * | 2017-10-23 | 2021-05-25 | 天津大学 | 过套管微分电阻率测井的时域信号处理方法 |
CN109001823B (zh) * | 2018-04-04 | 2021-04-06 | 杭州迅美科技有限公司 | 一种电磁大地透镜探测方法和探测装置 |
CN108594313A (zh) * | 2018-06-05 | 2018-09-28 | 中煤科工集团西安研究院有限公司 | 一种煤矿井下钻孔中手推式时域电磁测井装置及方法 |
CN109209354B (zh) * | 2018-10-15 | 2019-11-22 | 中国石油大学(华东) | 一种时间域瞬变电磁波测井边界远探测方法 |
CN111075426B (zh) * | 2018-10-18 | 2023-02-24 | 中国石油化工股份有限公司 | 一种井下管柱套管内径变形程度的检测方法 |
CN110426744B (zh) * | 2019-04-23 | 2021-07-30 | 王晓龙 | 一种用于套管井状态下地层表观电阻率的检测方法及装置 |
CN110596771A (zh) * | 2019-10-08 | 2019-12-20 | 西安石油大学 | 一种基于时间域电磁法的储层监测方法、系统及计算机存储介质 |
CN111983703B (zh) * | 2020-07-24 | 2023-07-25 | 中国石油天然气集团有限公司 | 井间电磁测量流体成像方法、系统及装置 |
CN112327376B (zh) * | 2020-10-13 | 2022-06-24 | 长江大学 | 一种探测射孔金属套管外地层电阻率的井中时域电磁法 |
CN112431586B (zh) * | 2020-11-16 | 2024-04-16 | 中煤科工集团西安研究院有限公司 | 一种有缆瞬变电磁探管钻孔内采集数据的方法和装置 |
CN113238285B (zh) * | 2021-05-08 | 2023-05-09 | 桂林理工大学 | 用于地球物理充电法勘探的电阻率计算方法及系统、终端 |
CN113236206B (zh) * | 2021-06-21 | 2023-01-17 | 中国石油大学(华东) | 一种电磁弹射井下水力脉动发生装置及其使用方法 |
CN114876455B (zh) * | 2022-05-30 | 2024-09-20 | 天津大学 | 一种裸眼井地层z方向电阻率测量装置及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1168722A (zh) * | 1994-12-05 | 1997-12-24 | 国际壳牌研究有限公司 | 地层电导率的测定 |
US5809458A (en) * | 1996-09-05 | 1998-09-15 | Western Atlas International, Inc. | Method of simulating the response of a through-casing electrical resistivity well logging instrument and its application to determining resistivity of earth formations |
CN101438188A (zh) * | 2004-08-05 | 2009-05-20 | Kjt企业公司 | 从带套管的井筒内部测量岩层电导率的方法和装置 |
US20090302852A1 (en) * | 2008-06-05 | 2009-12-10 | Cyrille Levesque | Measuring casing attenuation coefficient for electro-magnetics measurements |
US20100277177A1 (en) * | 2009-04-29 | 2010-11-04 | Alumbaugh David L | Analysis of subsurface electromagnetic data through inversion with constrained casing correction coefficients |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4849699A (en) * | 1987-06-08 | 1989-07-18 | Mpi, Inc. | Extended range, pulsed induction logging tool and method of use |
WO2002021161A2 (en) * | 2000-09-02 | 2002-03-14 | Em-Tech Llc | Measurements of electrical properties through non magnetically permeable metals using directed magnetic beams and magnetic lenses |
US7937222B2 (en) * | 2008-12-02 | 2011-05-03 | Schlumberger Technology Corporation | Method of determining saturations in a reservoir |
US8456166B2 (en) * | 2008-12-02 | 2013-06-04 | Schlumberger Technology Corporation | Single-well through casing induction logging tool |
CN101609169B (zh) * | 2009-04-08 | 2011-08-31 | 中国石油集团钻井工程技术研究院 | 一种提高电磁波电阻率测量精度和扩展其测量范围的方法 |
-
2011
- 2011-02-17 CN CN2011100393350A patent/CN102121374B/zh not_active Expired - Fee Related
- 2011-07-07 WO PCT/CN2011/076930 patent/WO2012109844A1/zh active Application Filing
- 2011-07-07 EP EP11817190.9A patent/EP2514915A4/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1168722A (zh) * | 1994-12-05 | 1997-12-24 | 国际壳牌研究有限公司 | 地层电导率的测定 |
US5809458A (en) * | 1996-09-05 | 1998-09-15 | Western Atlas International, Inc. | Method of simulating the response of a through-casing electrical resistivity well logging instrument and its application to determining resistivity of earth formations |
CN101438188A (zh) * | 2004-08-05 | 2009-05-20 | Kjt企业公司 | 从带套管的井筒内部测量岩层电导率的方法和装置 |
US20090302852A1 (en) * | 2008-06-05 | 2009-12-10 | Cyrille Levesque | Measuring casing attenuation coefficient for electro-magnetics measurements |
US20100277177A1 (en) * | 2009-04-29 | 2010-11-04 | Alumbaugh David L | Analysis of subsurface electromagnetic data through inversion with constrained casing correction coefficients |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108287367B (zh) * | 2018-02-11 | 2023-07-18 | 合肥晟北辰智能科技有限公司 | 一种基于时域电磁法的地面-孔中联合探测系统及应用方法 |
CN108287367A (zh) * | 2018-02-11 | 2018-07-17 | 合肥晟北辰智能科技有限公司 | 一种基于时域电磁法的地面-孔中联合探测系统及应用方法 |
CN112012725B (zh) * | 2019-05-30 | 2024-03-01 | 天津大学青岛海洋技术研究院 | 一种瞬变电磁浅层全波勘探高分辨率仪器 |
CN112012725A (zh) * | 2019-05-30 | 2020-12-01 | 天津大学青岛海洋技术研究院 | 一种瞬变电磁浅层全波勘探高分辨率仪器 |
CN110242292A (zh) * | 2019-07-15 | 2019-09-17 | 北京华晖盛世能源技术股份有限公司 | 一种裸眼井地层垂直方向电阻率测量装置、方法及系统 |
CN112034257B (zh) * | 2020-09-11 | 2023-09-29 | 斯伦贝谢油田技术(山东)有限公司 | 一种井下电阻率的计算方法 |
CN112034257A (zh) * | 2020-09-11 | 2020-12-04 | 斯伦贝谢油田技术(山东)有限公司 | 一种井下电阻率的计算方法 |
CN111983704B (zh) * | 2020-09-28 | 2023-09-12 | 西安石油大学 | 一种井间三维电磁探测方法和系统 |
CN111983704A (zh) * | 2020-09-28 | 2020-11-24 | 西安石油大学 | 一种井间三维电磁探测方法和系统 |
CN112302624A (zh) * | 2020-11-03 | 2021-02-02 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | 一种井中发射井中接收的瞬变过套管电阻率仪及其运行方法 |
CN112610204A (zh) * | 2020-12-21 | 2021-04-06 | 中国地质大学(北京) | 一种地层视电导率测量方法 |
CN112610204B (zh) * | 2020-12-21 | 2023-02-10 | 中国地质大学(北京) | 一种地层视电导率测量方法 |
CN113006782A (zh) * | 2021-03-31 | 2021-06-22 | 西安石油大学 | 半线圈阵列感应测井装置 |
CN113006782B (zh) * | 2021-03-31 | 2024-02-02 | 西安石油大学 | 半线圈阵列感应测井装置 |
CN116701844A (zh) * | 2023-07-26 | 2023-09-05 | 北京建工环境修复股份有限公司 | 基于全波形的高密度电阻率数据筛选和处理方法及系统 |
CN116701844B (zh) * | 2023-07-26 | 2024-04-05 | 北京建工环境修复股份有限公司 | 基于全波形的高密度电阻率数据筛选和处理方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN102121374B (zh) | 2012-07-11 |
EP2514915A4 (en) | 2017-11-22 |
CN102121374A (zh) | 2011-07-13 |
EP2514915A1 (en) | 2012-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012109844A1 (zh) | 一种探测金属套管外地层电阻率的井中时域脉冲电磁法 | |
US8756017B2 (en) | Method for detecting formation resistivity outside of metal casing using time-domain electromagnetic pulse in well | |
EP3167152B1 (en) | Deep azimuthal inspection of wellbore pipes | |
US10914856B2 (en) | High resolution downhole imaging | |
US6534986B2 (en) | Permanently emplaced electromagnetic system and method for measuring formation resistivity adjacent to and between wells | |
RU2405932C2 (ru) | Способы и устройства для осуществления связи сквозь обсадную колонну | |
CA2745013C (en) | Single-well through casing induction logging tool | |
JP4996615B2 (ja) | 炭化水素貯留層マッピング方法およびその方法実施のための装置 | |
US9803466B2 (en) | Imaging of wellbore pipes using deep azimuthal antennas | |
US10670562B2 (en) | Micro-focused imaging of wellbore pipe defects | |
CN107575220B (zh) | 一种过套管地层微分电阻率测井方法 | |
CN102865071B (zh) | 一种过金属套管磁声电阻率成像测井方法和装置 | |
CN110275223A (zh) | 一种深水地质灾害的随钻监测系统及随钻监测与识别方法 | |
CN111538093A (zh) | 一种用于浅层地表探测方法及瞬变电磁仪器 | |
WO2019089371A2 (en) | Multiple casing inspection tool combination with 3d arrays and adaptive dual operational modes | |
US20100213943A1 (en) | Method for accentuating signal from ahead of the bit | |
US20110063949A1 (en) | Tdem forward focusing system for downhole use | |
Sheng et al. | Through-casing formation conductivity measurement based on transient electromagnetic logging data | |
Xue et al. | Signal Processing in Logging While Drilling | |
CN116224445A (zh) | 一种随钻电磁成像装置及方法 | |
CN116066096A (zh) | 一种储层监测装置及声波和电磁联合油水界面监测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2011817190 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11817190 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |