CN112023060A - 一种靶向软骨具光热响应特征的双药负载纳米微球及其制备方法和应用 - Google Patents
一种靶向软骨具光热响应特征的双药负载纳米微球及其制备方法和应用 Download PDFInfo
- Publication number
- CN112023060A CN112023060A CN202010974419.2A CN202010974419A CN112023060A CN 112023060 A CN112023060 A CN 112023060A CN 202010974419 A CN202010974419 A CN 202010974419A CN 112023060 A CN112023060 A CN 112023060A
- Authority
- CN
- China
- Prior art keywords
- solution
- mpda
- cartilage
- mpm
- washing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/409—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having four such rings, e.g. porphine derivatives, bilirubin, biliverdine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/436—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0042—Photocleavage of drugs in vivo, e.g. cleavage of photolabile linkers in vivo by UV radiation for releasing the pharmacologically-active agent from the administered agent; photothrombosis or photoocclusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
- A61K47/6435—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the peptide or protein in the drug conjugate being a connective tissue peptide, e.g. collagen, fibronectin or gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
- A61K47/6929—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
- A61K47/6931—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
- A61K47/6935—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/0002—General or multifunctional contrast agents, e.g. chelated agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0002—Galenical forms characterised by the drug release technique; Application systems commanded by energy
- A61K9/0009—Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Rheumatology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Immunology (AREA)
- Pain & Pain Management (AREA)
- Biotechnology (AREA)
- Medical Informatics (AREA)
- Physical Education & Sports Medicine (AREA)
- Biomedical Technology (AREA)
- Gastroenterology & Hepatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明涉及一种靶向软骨、具光热响应特征的双药负载纳米微球的制备方法及应用,其由小粒径介孔聚多巴胺作为基体,依次与FeCl3·6H2O、H3BTC进行循环反应,在介孔聚多巴胺表面修饰形成金属有机框架。所合成的MPDA‑MOF(下简称MPM)纳米微球再经过与EDC、NHS溶液反应后,活化MOF表面的羧基,并通过与二型胶原靶向肽(WYRGRL)中的氨基进行连接,形成表面负载软骨靶向肽的复合纳米微球(MPMW)。胆红素(Br)、雷帕霉素(Rap)双因子则相应负载于MOF壳层及介孔聚多巴胺的孔道内,最终获得RB@MPMW。其具有较强的光热响应特性、良好的生物相容性、主动靶向软骨以及延缓体内软骨退变等优点,可用于骨性关节炎软骨退变的靶向治疗。
Description
技术领域
本发明涉及生物医学工程技术领域,具体地说,是一种靶向软骨具光热响应特征的双药负载纳米微球及其制备方法和应用。
背景技术
骨关节炎(OA)是一种软骨慢性退行性疾病。由于缺乏神经和血管,关节软骨对疼痛的本体感知能力非常弱。软骨损伤后也会导致其自我修复能力进一步降低,致使损伤进一步加重。既往研究表明,软骨退变在早期阶段施加物理、药物等干预可以在一定程度上预防OA进展,因而利用影像学技术对早期骨关节炎进行确诊的同时施加有效干预,为OA的综合治疗和预防提供了有效的解决办法。现今常用的几种治疗药物,包括非甾体抗炎类药物(NSAIDs)等常用来缓解主观疼痛的症状,但不能从根本上延缓OA的进展,尚且存在潜在的治疗副作用,此外这类药物的治疗效率低的另外一个原因是口服或外用药物不能被软骨组织的有效靶向吸收。因此探索更多具软骨靶向效应且疗效可靠的治疗方法是提高OA治疗效果的重要措施。
当软骨细胞受到多种外界炎症因子、机械应力等因素刺激,胞内氧化应激水平常处于较高水平,胞内活性氧的水平也因此较高;而既往研究表明抗氧化剂的在OA治疗中具有巨大潜力,但一些氧自由基清除剂表现出潜在的细胞毒性,这也限制了它的进一步应用。最近研究发现,胆汁酸代谢产物之一胆红素具有多种生物功能,其中包括清除自由基,但其在OA治疗中的功效仍然未知。自噬作为细胞受到应激性刺激后的一种自身保护性反应,在防御多种外界不利因素的作用下发挥重要功能。该过程与细胞凋亡有所不同,其在一定程度上是对细胞施加保护作用,因此在维持适应性细胞反应和机体功能平衡中起着重要的作用。雷帕霉素是一种mTOR抑制剂,能有效激活细胞自噬过程,并被多项研究证实在骨关节炎的治疗中发挥一定保护性作用。基于以上,我们首次尝试探索将这两种化合物联合以期实现优势互补,进而用于OA的治疗。
目前骨关节炎的早期诊断与治疗是OA治疗的重要一环,而纳米材料不断地推陈出新为骨关节炎的诊疗提供了新的契机,有望解决既往OA治疗中所遇到的瓶颈问题。介孔聚多巴胺因其具有良好的生物亲和性、生物可降解性及较好的组织粘附性等特征,近年来已经被广泛用于包括生物传感器、生物造影剂及药物载体等多种生物医学工程的研究。此外,介孔聚多巴胺所具备表面易修饰的特征,使其成为了一种潜在的多功能纳米载体。诸多研究证实在介孔聚多巴胺表面修饰有机或无机框架一方面能有效提高纳米载体多模态诊疗效率,另一方面能够显著提高药物的负载容量;而金属有机壳层兼具上述优点,介孔聚多巴胺外壳借助表面易于修饰的基团与金属有机壳层结合后形成的复合纳米载体,能够有效增加整体的药物负载容量并且提高纳米载体的核磁显像能力,近年来也被认为是一种极具吸引性和研究价值的纳米载体。
发明内容
本发明的目的是针对现有技术的不足,提供一种靶向软骨具光热响应特征的双药负载纳米微球及其制备方法。
为实现上述目的,本发明采取的技术方案是:
首先,本发明提供了一种靶向软骨具光热响应特征的双药负载纳米微球,直径在50nm左右,该种纳米微球能够有效渗透入致密的二型胶原网络,提高了纳米微球的软骨滞留时间。它的主体材料是金属有机框架修饰的介孔聚多巴胺,雷帕霉素主要负载在介孔孔道内,胆红素则负载于金属有机框架壳层上。本发明结合近红外激光刺激响应性效应,其能够吸收808nm近红外,具高效的光热转换效果,介孔聚多巴胺也将快速降解,从而实现内部雷帕霉素的快速释放。由于纳米微球中含有六水合三氯化铁,赋予了整体材料高分辨率核磁共振成像的性能。其表面通过二型胶原靶向多肽的修饰,可以实现纳米材料主动渗透至软骨组织内,并且利于软骨细胞的吸收。该纳米材料不仅为早中期骨关节炎提供了靶向治疗的可能,同时也能够实时监测纳米材料的靶向治疗效果。
所述靶向软骨具光热响应特征的双药负载纳米微球的制备方法包括步骤:
(1)制备介孔聚多巴胺(MPDA)溶液;
(2)将雷帕霉素加入到步骤(1)制备的溶液中,离心及真空处理,所得上清经离心后洗涤,可得负载雷帕霉素的介孔聚多巴胺(Rap@MPDA);
(3)在制备的Rap@MPDA溶液中逐滴加入六水合三氯化铁(FeCl3·6H2O),所得混溶液混匀后于室温孵育1h,经离心、水洗后再与均苯三甲酸(H3BTC)溶液反应,如此循环反应可得金属有机壳层(MOF)修饰的Rap@MPDA(Rap@MPM);
(4)在Rap@MPM溶液中加入胆红素(Br)溶液,避光搅拌过夜,在经过真空处理、离心和洗涤之后得到负载雷帕霉素和胆红素的MPM(RB@MPM);
(5)在RB@MPM经过N-(3-二甲氨基丙基)-N’-乙基碳二亚胺盐酸盐/羟基琥珀酰亚胺体系活化后,向溶液中加入二型胶原靶向肽WYRGRL,经过离心、洗涤后得到接枝二型胶原靶向肽的RB@MPM(RB@MPMW)。
优选地,步骤(2)中雷帕霉素和MPDA的质量比为(1:2)~4。
优选地,步骤(3)中六水合三氯化铁浓度为0.05-0.5mol/L、均苯三甲酸的浓度为0.05-0.5mol/L,步骤(3)中MPDA与所加FeCl3·6H2O的质量体积比为10-30mg:5-20ml;MPDA与所加H3BTC的质量体积比为10-30mg:5-25ml。
优选地,步骤(4)中胆红素和MPDA含量的质量比为(1:2)~4。
优选地,步骤(5)中N-(3-二甲氨基丙基)-N’-乙基碳二亚胺盐酸盐、羟基琥珀酰亚胺分别为7.5-30mg和5-20mg;步骤(5)中二型胶原靶向肽WYRGRL的加入量为1.5-5mg。
其次,本发明还提供了所述靶向软骨具光热响应特征的双药负载纳米微球在制备防治骨性关节炎软骨退变疾病的药物中的应用。
优选地,所述的骨性关节炎软骨退变疾病包括早、中期骨性关节炎软骨退变疾病。
本发明优点在于:本发明采用合成技术简单、制备周期较快、试验装置简易、容易大规模生产的制备方法制备得到靶向软骨的双药负载纳米微球,该双药负载纳米微球具有光热相应特征、核磁成像、光热成像等特征,可以实现体内治疗效果的有效监测和药物的可控释放,且靶向软骨组织内软骨细胞的能力较强、稳定性好,可显著提高纳米材料的治疗效率,具有生物相容性好、能显著延缓动物模型中软骨退变等优点。
附图说明
附图1是已制备的三种纳米微球的扫描电镜图,显示了不同纳米材料的表面形态及粒径分布。
附图2是已制备的纳米微球的孔隙率、比表面积分布图及表面电势变化图。
附图3是已制备的纳米微球的体内、外光热成像图。
附图4是已制备的纳米微球的组织摄取后的荧光成像图。
附图5是已制备的不同的纳米微球体外MR成像效果图。
附图6是已制备的不同的纳米微球关节腔内注射后,关节软骨核磁显像效果,证实不同纳米材料的软骨靶向效率。
附图7和图8分别为已制备的不同的纳米微球在体外水平作用36h和72h后,抑制IL-β所诱导的炎症因子、分解代谢酶和软骨组成成份基因的表达情况。
附图9是已制备的不同的纳米微球延缓ACLT动物模型软骨退变的效果。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明记载的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
(一)材料和方法
1.纳米微球的合成及表征:
(1)将等比例的F127和1,3,5-三甲基苯(TMB)(各为0.36g)均匀地溶解在水中(65ml);
(2)将90mgTris均匀溶解在10ml水中,并与(1)溶液混合,然后用超声波处理10分钟;
(3)将多巴胺(60mg)均匀地溶于5ml水中,进而滴加到(2)溶液中;
(4)将混合溶液避光缓慢(300rpm)搅拌4h,反应系统以18000rpm离心,并且将获得的产物分散在乙醇(100ml)和丙酮(50ml)的混合物中,随后洗涤3次以除去模板;
(5)在移除模板后,称取20mg的MPDA并分散在水中,进而加入5mg雷帕霉素。在暗室中室温下搅拌过夜。真空处理后,离心并收集上清、洗涤后即为Rap@MPDA;
(6)将(5)中制备的20mgRap@MPDA均匀分散在10ml水中,然后向混合物中逐滴加入10mlFeCl3·6H2O(0.1M),将混合物搅拌并在室温下孵育1小时;
(7)通过离心收集产物并反复用水洗涤,然后均匀分散在预先溶解了H3BTC(0.1M,10ml)的乙醇溶液中,进一步施加超声处理;整个体系在70℃的温浴环境中孵育并搅拌30分钟,最后用乙醇将负载了MOF的纳米材料洗涤3次,即得到Rap@MPM;
(8)在(7)体系中加入5ml胆红素溶液(1mg/ml),暗室搅拌过夜,最后将得到的RB@MPM进行真空处理、离心和洗涤;此外为获得单纯负载胆红素的Br@MPM即在上述步骤(5)中不加入雷帕霉素,其余步骤和剂量不变;
(9)将(8)中RB@MPM均匀分散在15ml去离子水中,并通过EDC(15mg)和NHS(10mg)活化2小时,用双蒸水洗涤几次后,将3mgWYRGRL肽添加到溶液中。然后将混合物在室温孵育12小时,通过离心获得RB@MPMW,然后用水洗涤几次;同理为获得Rap@MPMW和Br@MPMW,则分别将Rap@MPM和Br@MPM进行上述过程中的多肽修饰;
(10)所获纳米载体分别进行扫描电镜显示纳米材料表面特征,使用BI-200SM多角度动态激光发射器完成水相粒径的分布图;
(11)利用BET和BJH方法,计算已制备的纳米微球孔隙率分布和比表面积分布;
(12)利用ZetasizerNanoZSapparatus检测已制备的纳米微球表面电势情况;
2.已制备的纳米微球光热效率检测
首先将MPMW分散在PBS(100μg/ml)中,分装到Eppendorf管中,然后用808nm(1W/cm2)的近红外激光照射600秒,将PBS设置为体外成像的对照组。使用近红外相机用于收集光热成像图像及激光照射过程中相应温度的变化。按照上述类似的方法,将MPMW溶液(100μg/ml)和PBS分别注射20μl到两组SD大鼠膝关节中(每组5只),12小时后用808nm(1W/cm2)的近红外激光照射600秒,同样用近红外相机收集光热成像图像及激光照射过程中相应温度的变化。
3.检测离体软骨组织对纳米微球的吸收情况
首先制备罗丹明B(RhB)标记的MPMW或MPM(RhB-MPM或RhB-MPM),将200μl RhB溶液(0.2mg/ml)加入到纳米颗粒悬浮液中并搅拌过夜。真空处理并离心后,得到RhB-MPMW或RhB-MPM。然后从三只正常的六周龄SD大鼠中成功取出六个大鼠股骨头,在PBS中清洗三遍,然后随机分为两组(每组三个股骨头):1)含有RhB-MPM(50μg/ml)的高糖DMEM完全培养基;2)含有RhB-MPMW(50μg/ml)的高糖DMEM完全培养基。将这些股骨头与完全培养基共培养两天后脱钙制备石蜡切片,行进一步的组织荧光检测。
4.骨关节炎动物模型的构建
运用前叉韧带离断(ACLT)的方法进行SD大鼠骨性关节炎造模。主要步骤如下:大鼠麻醉后,备皮、消毒、膝关节屈曲后用无菌手术刀逐层切开直到切开关节囊,直视下离断大鼠的前交叉韧带,然后进行缝合。
5.检测纳米微球的核磁显像能力
首先在体外水平分别配置了Fe含量从0.025、0.05、0.1、0.2和0.4mM浓度的溶液,置于0.5TNMI20-AnalystNMR分析成像系统下扫描,以确定每个样品的T1弛豫度;对构建好的ACLT大鼠进行麻醉,然后将MPM和MPMW溶液(50μg/ml,20μl)分别行关节内注射至ACLT大鼠模型中。然后将大鼠固定在头部线圈的中央,并使用孔径为16cm,最大梯度强度为300mT/m的7.0TMicro-MRI扫描仪进行扫描。最后在预定时间收集两个样本T1加权的MR图像。
6.探讨载药纳米微球体外对IL-1β诱导的炎症因子、分解代谢酶及软骨组成成份基因表达的影响
首先我们设置了五组,分别是对照组、单IL-1β诱导组、Rap@MPMW(50μg/ml)预处理后用IL-1β诱导组、Br@MPMW(50μg/ml)预处理后用IL-1β诱导、RB@MPMW(50μg/ml)预处理后用IL-1β诱导组。IL-1β模拟体外水平的软骨细胞炎症模型,后三组使用相应的纳米材料(50μg/ml)预处理细胞2小时,IL-1β再加入培养基中,分别处理36h、72h后使用Trizol法提取RNA,利用实时定量PCR的方法检测炎症因子(IL-6和TNF-α)、分解代谢酶(MMP9和ADAMTS5)和软骨基质成分(Aggrecan和Col2a1)的表达水平。
7.探讨不同纳米材料对骨关节炎动物模型的保护作用
ACLT术后第3天开始关节腔内注射不同的纳米微球,本实验共分为5组,第一组假手术组,该组大鼠不做前叉韧带离断手术,大鼠作为空白对照;第二组大鼠行前叉韧带离断术造骨性关节炎模型;第三组行骨关节炎造模后,每隔四天行一次关节腔内注射Rap@MPMW(50μg/ml);第四组行骨关节炎造模,每隔四天行一次关节腔内注射Br@MPMW(50μg/ml);第五组行骨关节炎造模,每隔四天行一次关节腔内注射RB@MPMW(50μg/ml),每次关节腔注射纳米微球后12小时开始行近红外激光照射10分钟。术后第6周取材,大鼠关节标本用4%多聚甲醛固定后,脱钙,脱水包埋,切片,行后续H&E染色,SafraninO/Fastgreen染色检测软骨破坏程度,并对组织学结果进行OARSI关节组织学评分,同时行免疫组化染色检测NF-κB信号通路重要转录因子P65、基质金属蛋白酶MMP9和自噬标志基因LC3B的表达水平,综合判断体内OA模型中,关节腔注射不用纳米微球对于前叉韧带离断所导致的软骨磨损的延缓作用。
(二)结果
(1)图1中展示了已制备的三种纳米微球载体的透射电镜图,其中MPDA的表面上能观察到清晰的介孔结构,并且粒径约为50nm。但在构造MOF结构之后,表面上出现了清晰的薄膜边界。MPM和MPMW之间则没有显着差异。DLS结果表明MPDA的流体动力学直径约为89.7nm,但是随着MOF层的构建,流体动力学直径增加到114.1nm。
(2)图2氮吸附-解吸等温线结果显示MPDA存在迟滞环,表明纳米颗粒表面存在介孔结构。我们还发现MPDA的孔径约为3.36nm,表面积约为204.31m2/g,在构建好MOF结构后,观察到平均孔径大小增加至5.17nm,其表面积增加到467.07m2/g,进一步提示MOF的成功构建。此外各种纳米颗粒的表面电势发生了显著变化,MPDA纳米微球的表面电荷为-7.1mV,而MOF壳层修饰的MPDA带有正电荷,这可能是由于MOF壳层中的Fe3+含量很高。但是在进一步修饰二型胶原靶向肽后,表面电势略有下降。
(3)图3中显示了纳米载体体外的光热响应效果,我们将MPMW分散至PBS达到200μg/ml,对照组为PBS;在近红外激光(808nm,1W/cm2)照射600s,监测到MPMW组Eppendrof管内光热信号强度在体外照射10分钟后逐渐增加,温度升高约28℃。但对照组在NIR照射后,仅检测到3℃的升高,进一步提示MPMW具有很好的光热响应效应。
而在体内水平,MPMW注射至关节腔后,随着近红外照射时间延长,与对照组相比,关节注射部位的温度升高约为20℃,而对照组温度升高约4℃,进一步提示该纳米材料具有较好的近红外刺激响应性。
(4)图4中显示了罗丹明标记的负载多肽的纳米微球及未载多肽的纳米材料在模拟体内软骨的培养条件下,相对于未负载多肽组,负载了二型胶原靶向肽的纳米材料具有更好的软骨靶向效率,更容易被软骨细胞所吸收从而发挥相应功能。
(5)图5显示在体外水平,MPM和MPMW均具有随着Fe含量增加而MR信号逐渐增强的特性,其中MPM和MPMW的弛豫率分别为4.4593和5.7247mm-1s-1,两组间则无明显统计学差异。
(6)图6将MPM和MPMW溶液注射至ACLT大鼠模型的膝关节后,通过小动物MR成像系统检测MPM和MPMW在体内的软骨靶向能力。注射1小时后,MPMW治疗组的软骨表面T1加权MR成像信号略有增强。然而注射12小时后,MPMW组的T1加权MR成像信号强度明显高于MPM组。该结果表明具有胶原II靶向肽接枝的MPMW具有更强的软骨亲和性。
(7)图7和图8分别为共孵育36h和72h后的6种基因表达水平变化。IL-1β处理后均呈现炎症因子、分解代谢酶基因的表达显著增加及软骨基质成份基因表达显著下调的特征,证实了IL-1β在诱导炎症启动中的有效性;而在加入三种不同纳米材料后,两个时间点的结果均显示Rap@MPMW,Br@MPMW和RB@MPMW能在不同程度上抑制软骨细胞炎症因子的分泌,保护软骨基质。但在加入RB@MPMW后的效果最显著,即说明体外水平雷帕霉素和胆红素能较好地协同发挥保护软骨细胞的炎性退变。
(8)我们检测了在ACLT大鼠模型的关节腔中注射了不同的纳米材料后软骨组织的改变,如图9所示,H&E、SafraninO/Fastgreen组织学染色结果显示软骨组织的结构改变,可以得出与对照组相比,ACLT模型组中软骨磨损、丢失及退变情况严重,而在注射Rap@MPMW、Br@MPMW及RB@MPMW治疗后,大鼠关节软骨的退变情况逐渐减轻,软骨完整性也逐渐改善。我们也进一步开展了免疫组织化学染色以评估P65,LC3B和MMP9的表达水平。ACLT组中P65和MMP9阳性细胞表达水平在五组中最高。而在用Rap@MPMW,Br@MPMW和RB@MPMW处理后,上述两种蛋白的表达水平均降低,且在双药负载组降低最为显著。在使用Rap@MPMW和RB@MPMW处理后,LC3B表达量均显著增加。综合单药及双药负载的纳米材料的体内效果,RB@MPMW具有协同促进的软骨修复、延缓软骨退变的作用。
综上所述:本发明所制备的多功能复合纳米微球具有粒径小、生物相容性良好、软骨靶向性强、光热刺激响应性控制递送药物的特征,一方面能够释放胆红素,有效抑制炎症微环境中软骨细胞内部氧化应激的水平,进而减少软骨细胞炎性损伤;另一方面可控释放雷帕霉素,促进软骨细胞自我修复,维持软骨组织的稳态,因此具有协同的骨性关节炎靶向治疗效果。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。
Claims (10)
1.一种靶向软骨具光热响应特征的双药负载纳米微球,其特征在于,所述靶向软骨具光热响应特征的双药负载纳米微球主体材料是:金属有机框架修饰的MPDA、雷帕霉素、胆红素和二型胶原靶向肽,其制备方法包括步骤:
(1)制备MPDA溶液;
(2)将雷帕霉素加入到步骤(1)制备的MPDA溶液中,离心并真空处理,所得上清经离心后洗涤,得到Rap@MPDA;
(3)在制备的Rap@MPDA溶液中逐滴加入六水合三氯化铁,所得溶液混合均匀后于室温状态下孵育1h,经离心、水洗后再与均苯三甲酸溶液反应,如此经过循环反应可得金属有机壳层修饰的Rap@MPM;
(4)在Rap@MPM溶液中加入胆红素溶液,避光搅拌过夜,经过真空处理、离心和洗涤之后即得到负载雷帕霉素和胆红素双因子的RB@MPM;
(5)在RB@MPM经过N-(3-二甲氨基丙基)-N’-乙基碳二亚胺盐酸盐/羟基琥珀酰亚胺体系活化后,向溶液中加入二型胶原靶向肽WYRGRL,经过离心、洗涤后得到接枝二型胶原靶向肽的RB@MPMW。
2.根据权利要求1所述的靶向软骨具光热响应特征的双药负载纳米微球,其特征在于,步骤(1)中MPDA溶液制备方法为:将F127、1,3,5-三甲基苯和Tris溶解并混合,用超声波处理10分钟,将溶解后的多巴胺溶液加入其中,并避光缓慢搅拌、离心,最后将获得的产物分散在乙醇和丙酮的混合物中,洗涤即得。
3.根据权利要求1所述的靶向软骨具光热响应特征的双药负载纳米微球,其特征在于,步骤(2)中雷帕霉素和MPDA的质量比为(1:2)~4。
4.根据权利要求1所述的靶向软骨具光热响应特征的双药负载纳米微球,其特征在于,步骤(3)中六水合三氯化铁浓度为0.05-0.5mol/L、均苯三甲酸溶液的浓度为0.05-0.5mol/L;其中,六水合三氯化铁溶液和均苯三甲酸溶液的加入量为:每10-30mg MPDA加入5-20ml六水合三氯化铁溶液,每10-30mg MPDA加入5-25ml均苯三甲酸溶液。
5.根据权利要求1所述的靶向软骨具光热响应特征的双药负载纳米微球,其特征在于,步骤(4)中胆红素和MPDA的质量比为(1:2)~4。
6.根据权利要求1所述的靶向软骨具光热响应特征的双药负载纳米微球,其特征在于,步骤(5)中加入N-(3-二甲氨基丙基)-N’-乙基碳二亚胺盐酸盐、羟基琥珀酰亚胺的质量分别为7.5-30mg和5-20mg;加入二型胶原靶向肽WYRGRL的质量为1.5-5mg。
7.权利要求1所述的靶向软骨具光热响应特征的双药负载纳米微球的制备方法,其特征在于,包括步骤:
(1)制备MPDA溶液;
(2)将雷帕霉素加入到步骤(1)制备的MPDA溶液中,离心并真空处理,所得上清经离心后洗涤,得到Rap@MPDA;
(3)在制备的Rap@MPDA溶液中逐滴加入六水合三氯化铁,所得溶液混合均匀后于室温状态下孵育1h,经离心、水洗后再与均苯三甲酸溶液反应,如此经过循环反应可得金属有机壳层修饰的Rap@MPM;
(4)在Rap@MPM溶液中加入胆红素溶液,避光搅拌过夜,经过真空处理、离心和洗涤之后即得到负载雷帕霉素和胆红素双因子的RB@MPM;
(5)在RB@MPM经过N-(3-二甲氨基丙基)-N’-乙基碳二亚胺盐酸盐/羟基琥珀酰亚胺体系活化后,向溶液中加入二型胶原靶向肽WYRGRL,经过离心、洗涤后得到接枝二型胶原靶向肽的RB@MPMW。
8.根据权利要求7所述的制备方法,其特征在于,包括步骤:
(1)制备MPDA溶液:将F127、1,3,5-三甲基苯和Tris溶解并混合,用超声波处理10分钟,之后将溶解后的多巴胺溶液加入其中,并避光缓慢搅拌、离心,最后将获得的产物分散在乙醇和丙酮的混合物中,洗涤,即得MPDA溶液;
(2)按照雷帕霉素和MPDA的质量比为(1:2)~4的剂量将雷帕霉素加入到步骤(1)制备的MPDA溶液中,离心并真空处理,所得上清经离心后洗涤,得到Rap@MPDA;
(3)在制备的Rap@MPDA溶液中逐滴加入浓度为0.05-0.5mol/L的六水合三氯化铁,所得溶液混合均匀后于室温状态下孵育1h,经离心、水洗后再与浓度为0.05-0.5mol/L的均苯三甲酸溶液反应,如此经过循环反应可得金属有机壳层修饰的Rap@MPM;
(4)按照胆红素和MPDA的质量比为(1:2)~4的剂量在Rap@MPM溶液中加入胆红素溶液,避光搅拌过夜,经过真空处理、离心和洗涤之后即得到负载雷帕霉素和胆红素双因子的RB@MPM;
(5)在RB@MPM经过N-(3-二甲氨基丙基)-N’-乙基碳二亚胺盐酸盐/羟基琥珀酰亚胺体系活化后,向溶液中加入二型胶原靶向肽WYRGRL,经过离心、洗涤后得到接枝二型胶原靶向肽的RB@MPMW。
9.权利要求1-6任一所述的靶向软骨具光热响应特征的双药负载纳米微球在制备防治骨性关节炎软骨退变疾病的药物中的应用。
10.根据权利要求9所述的应用,其特征在于,所述的骨性关节炎软骨退变疾病包括早、中期骨性关节炎软骨退变疾病。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010974419.2A CN112023060B (zh) | 2020-09-16 | 2020-09-16 | 一种靶向软骨具光热响应特征的双药负载纳米微球及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010974419.2A CN112023060B (zh) | 2020-09-16 | 2020-09-16 | 一种靶向软骨具光热响应特征的双药负载纳米微球及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112023060A true CN112023060A (zh) | 2020-12-04 |
CN112023060B CN112023060B (zh) | 2023-06-13 |
Family
ID=73589520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010974419.2A Active CN112023060B (zh) | 2020-09-16 | 2020-09-16 | 一种靶向软骨具光热响应特征的双药负载纳米微球及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112023060B (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112870377A (zh) * | 2021-01-29 | 2021-06-01 | 中南大学湘雅医院 | 用于肿瘤光热和光动力协同治疗的复合纳米粒及制备方法 |
CN112979968A (zh) * | 2021-04-16 | 2021-06-18 | 四川大学 | 软骨靶向两性离子聚合物及其制备方法和应用 |
CN113041393A (zh) * | 2021-03-18 | 2021-06-29 | 苏州大学 | 可调控活性氧自由基的复合材料及其制备方法与应用 |
CN113121846A (zh) * | 2021-04-16 | 2021-07-16 | 四川大学 | 具备募集ii型胶原的两性离子水凝胶及其制备方法和应用 |
CN113332442A (zh) * | 2021-06-10 | 2021-09-03 | 愈美明德(成都)生物医药科技有限公司 | 一种靶向递送分子、粒子及其制备方法、应用 |
CN114042147A (zh) * | 2021-10-22 | 2022-02-15 | 川北医学院附属医院 | 靶向调控线粒体呼吸链的微纳水凝胶微球及其制备与应用 |
CN114225048A (zh) * | 2021-12-30 | 2022-03-25 | 上海交通大学医学院附属第九人民医院 | 介孔多巴胺给药系统及其在治疗膝骨关节炎的应用 |
CN114621924A (zh) * | 2022-04-03 | 2022-06-14 | 中国科学院长春应用化学研究所 | 一种多孔碳球纳米酶掺杂的氢键有机框架壳层及其制备方法 |
CN115671279A (zh) * | 2022-09-13 | 2023-02-03 | 宁波大学附属人民医院 | 一种新型多功能中西药纳米胶囊及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170028076A1 (en) * | 2013-12-27 | 2017-02-02 | Korea Advanced Institute Of Science And Technology | Bilirubin nanoparticle, use thereof, and preparation method therefor |
CN108187046A (zh) * | 2018-01-18 | 2018-06-22 | 中国科学院长春应用化学研究所 | 一种改性透明质酸遮蔽的金属有机框架、纳米粒子、纳米粒子的制备方法及其应用 |
CN110404069A (zh) * | 2019-08-19 | 2019-11-05 | 浙江理工大学 | 一种基于聚多巴胺@MOF-Al双载体靶向-光热-光动力协同治疗的纳米复合材料 |
CN111110652A (zh) * | 2020-01-06 | 2020-05-08 | 重庆医科大学 | 一种载药透明质酸聚多巴胺包覆介孔聚多巴胺纳米粒及其制备方法 |
-
2020
- 2020-09-16 CN CN202010974419.2A patent/CN112023060B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170028076A1 (en) * | 2013-12-27 | 2017-02-02 | Korea Advanced Institute Of Science And Technology | Bilirubin nanoparticle, use thereof, and preparation method therefor |
CN108187046A (zh) * | 2018-01-18 | 2018-06-22 | 中国科学院长春应用化学研究所 | 一种改性透明质酸遮蔽的金属有机框架、纳米粒子、纳米粒子的制备方法及其应用 |
CN110404069A (zh) * | 2019-08-19 | 2019-11-05 | 浙江理工大学 | 一种基于聚多巴胺@MOF-Al双载体靶向-光热-光动力协同治疗的纳米复合材料 |
CN111110652A (zh) * | 2020-01-06 | 2020-05-08 | 重庆医科大学 | 一种载药透明质酸聚多巴胺包覆介孔聚多巴胺纳米粒及其制备方法 |
Non-Patent Citations (1)
Title |
---|
JIANG, T等: "Development of Targeted Nanoscale Drug Delivery System for Osteoarthritic Cartilage Tissue" * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112870377A (zh) * | 2021-01-29 | 2021-06-01 | 中南大学湘雅医院 | 用于肿瘤光热和光动力协同治疗的复合纳米粒及制备方法 |
CN113041393A (zh) * | 2021-03-18 | 2021-06-29 | 苏州大学 | 可调控活性氧自由基的复合材料及其制备方法与应用 |
CN113041393B (zh) * | 2021-03-18 | 2022-04-26 | 苏州大学 | 可调控活性氧自由基的复合材料及其制备方法与应用 |
CN112979968A (zh) * | 2021-04-16 | 2021-06-18 | 四川大学 | 软骨靶向两性离子聚合物及其制备方法和应用 |
CN113121846A (zh) * | 2021-04-16 | 2021-07-16 | 四川大学 | 具备募集ii型胶原的两性离子水凝胶及其制备方法和应用 |
CN113332442A (zh) * | 2021-06-10 | 2021-09-03 | 愈美明德(成都)生物医药科技有限公司 | 一种靶向递送分子、粒子及其制备方法、应用 |
CN114042147A (zh) * | 2021-10-22 | 2022-02-15 | 川北医学院附属医院 | 靶向调控线粒体呼吸链的微纳水凝胶微球及其制备与应用 |
CN114042147B (zh) * | 2021-10-22 | 2023-07-28 | 川北医学院附属医院 | 靶向调控线粒体呼吸链的微纳水凝胶微球及其制备与应用 |
CN114225048A (zh) * | 2021-12-30 | 2022-03-25 | 上海交通大学医学院附属第九人民医院 | 介孔多巴胺给药系统及其在治疗膝骨关节炎的应用 |
CN114621924A (zh) * | 2022-04-03 | 2022-06-14 | 中国科学院长春应用化学研究所 | 一种多孔碳球纳米酶掺杂的氢键有机框架壳层及其制备方法 |
CN114621924B (zh) * | 2022-04-03 | 2024-05-17 | 中国科学院长春应用化学研究所 | 一种多孔碳球纳米酶掺杂的氢键有机框架壳层及其制备方法 |
CN115671279A (zh) * | 2022-09-13 | 2023-02-03 | 宁波大学附属人民医院 | 一种新型多功能中西药纳米胶囊及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112023060B (zh) | 2023-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112023060B (zh) | 一种靶向软骨具光热响应特征的双药负载纳米微球及其制备方法和应用 | |
Xue et al. | Cartilage-targeting peptide-modified dual-drug delivery nanoplatform with NIR laser response for osteoarthritis therapy | |
Ding et al. | Bioinspired multifunctional black phosphorus hydrogel with antibacterial and antioxidant properties: a stepwise countermeasure for diabetic skin wound healing | |
Cavalli et al. | Preparation and characterization of dextran nanobubbles for oxygen delivery | |
Shen et al. | Anti‐inflammatory nanotherapeutics by targeting matrix metalloproteinases for immunotherapy of spinal cord injury | |
Xiao et al. | A bioinspired injectable, adhesive, and self‐healing hydrogel with dual hybrid network for neural regeneration after spinal cord injury | |
Saleh et al. | Tagged halloysite nanotubes as a carrier for intercellular delivery in brain microvascular endothelium | |
Xue | Carbon nanotubes for biomedical applications | |
Prikhozhdenko et al. | Target delivery of drug carriers in mice kidney glomeruli via renal artery. Balance between efficiency and safety | |
Chen et al. | Pushing the science forward: chitosan nanoparticles and functional repair of CNS tissue after spinal cord injury | |
CN114042147B (zh) | 靶向调控线粒体呼吸链的微纳水凝胶微球及其制备与应用 | |
Zhou et al. | Gold nanoclusters conjugated berberine reduce inflammation and alleviate neuronal apoptosis by mediating M2 polarization for spinal cord injury repair | |
JP2022188222A (ja) | 活性化cd44分子を標的とするセラソーム送達システム、その調製方法および使用 | |
Lin et al. | Carboxymethyl chitosan-assisted MnOx nanoparticles: Synthesis, characterization, detection and cartilage repair in early osteoarthritis | |
Chiu et al. | Effects of PEGylation on capture of dextran-coated magnetic nanoparticles in microcirculation | |
US20150196668A1 (en) | Nanomedicines for early nerve repair | |
CN113679670A (zh) | 一种载氯喹化合物的囊泡纳米药物及其制备方法与应用 | |
Shen et al. | High rapamycin-loaded hollow mesoporous Prussian blue nanozyme targets lesion area of spinal cord injury to recover locomotor function | |
Li et al. | Nanoformulated metformin enhanced the treatment of spinal cord injury | |
Yao et al. | Hesperetin nanoparticle targeting neutrophils for enhanced TBI therapy | |
Le et al. | Magnetic stem cell targeting to the inner ear | |
Yang et al. | Low intensity ultrasound-mediated drug-loaded nanoparticles intravaginal drug delivery: an effective synergistic therapy scheme for treatment of vulvovaginal candidiasis | |
Cao et al. | ROS filter coating scaffold protects 3D mesenchymal stem cell spheroids for dual-phase treatment of spinal cord injury | |
Chen et al. | Pioglitazone-loaded cartilage-targeted nanomicelles (Pio@ C-HA-DOs) for osteoarthritis treatment | |
Yi et al. | Visually controlled pulsatile release of insulin from chitosan poly-acrylic acid nanobubbles triggered by focused ultrasound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |