CN112019064A - 一种高精度稳压模块 - Google Patents

一种高精度稳压模块 Download PDF

Info

Publication number
CN112019064A
CN112019064A CN202010993347.6A CN202010993347A CN112019064A CN 112019064 A CN112019064 A CN 112019064A CN 202010993347 A CN202010993347 A CN 202010993347A CN 112019064 A CN112019064 A CN 112019064A
Authority
CN
China
Prior art keywords
voltage
circuit
output
precision
filter circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010993347.6A
Other languages
English (en)
Inventor
曹礼松
孙明洋
曹青青
郭正方
江鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bengbu Shangcheng Electronic Technology Co ltd
Original Assignee
Bengbu Shangcheng Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bengbu Shangcheng Electronic Technology Co ltd filed Critical Bengbu Shangcheng Electronic Technology Co ltd
Priority to CN202010993347.6A priority Critical patent/CN112019064A/zh
Publication of CN112019064A publication Critical patent/CN112019064A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/461Regulating voltage or current wherein the variable actually regulated by the final control device is dc using an operational amplifier as final control device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开一种高精度稳压模块,该模块包括DC/DC变换电路以及低压差线性稳压电路;所述DC/DC变换电路为单端反激式拓扑结构,具体包括依次连接的输入滤波电路、脉冲变压器、输出滤波电路以及连接于脉冲变压器两端的PWM控制电路;所述PWM控制电路通过控制开关管输出稳定电压,所述低压差线性稳压电路对输出滤波电路输出的电压进行修正。本发明将5V直流电压转换为±15V的直流电压。模块采用反激式DC/DC拓扑结构,将5V输入变换为±16V,再经低压差线性调整器对输出进行调整,以满足输出高精度的要求。

Description

一种高精度稳压模块
技术领域
本发明涉及稳压技术领域,尤其涉及一种高精度稳压模块。
背景技术
高精度控制系统中,由于其要求体积小,输入电压范围宽,供电系统中大量使用了DC/DC电源模块,而DC/DC电源由于其工作模式的缘故,必然产生纹波谐振干扰,串入后级电路中,影响后级电路正常工作,会造成控制系统无法提取有用信号或误把纹波谐振信号认为是有用信号进行采集处理,造成丢失追踪或错误输出,而造成实际输出电压精度不高。
基于此,现急需一种适应范围宽、控制简单且实际输出电压范围符合设计要求的高精度稳压模块。
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。
发明内容
本发明的主要目的在于提供了一种适应范围宽、控制简单且实际输出电压范围符合设计要求的高精度稳压模块。
为实现上述目的,本发明提供了一种高精度稳压模块,该模块包括DC/DC变换电路以及低压差线性稳压电路;所述DC/DC变换电路为单端反激式拓扑结构,具体包括依次连接的输入滤波电路、脉冲变压器、输出滤波电路以及连接于脉冲变压器两端的PWM控制电路;所述PWM控制电路通过控制开关管输出稳定电压,所述低压差线性稳压电路对输出滤波电路输出的电压进行修正。
优选的,所述输入滤波电路包括固态钽电解电容以及瓷介电容并联网络。
优选的,所述固态钽电解电容用于低频滤波,采用两个47uF电容并联;所述瓷介电容并联网络用于高频滤波,取值为0.1uF。
优选的,所述脉冲变压器包括罐形瓷芯以及相应绕组,所述脉冲变压器采用反激工作方式。
优选的,所述罐形瓷芯选用TDK公司的P14/8型PC40材料的罐形磁材,所述相应绕组包括输入原边绕组、电压反馈绕组以及输出绕组并采用圆形铜漆包线绕制。
优选的,所述PWM控制电路采用低功耗的PWM控制器,电路型号为UCC1803,通过电阻R6和电容C9设定PWM控制器的振荡频率;通过V7、R4、R5、R7、C17组成软起动控制,V6和V9用于改善PWM的边缘特性,FB端用于反馈控制,采用反馈绕组进行反馈。
优选的,所述输出滤波电路为整流滤波电路,包括快恢复二极管、电容以及电感,所述快恢复二极管、电容以及电感组成高频LC滤波网络,用于减小输出电压的高频纹波。
优选的,所述宽电压高精度运放包括正电压输出误差放大、调整电路以及负电压输出误差放大、调整电路,N2A、R12、R16、R19、R20、V10组成正电压输出误差放大、调整电路,N2B、R11、R15、R21、R22、V8组成负电压输出误差放大、调整电路,以实现高精度的输出,V14、V15提供电压基准源,V8和V10为输出调整晶体管;V16和V17实现过流保护功能
优选的,所述模块采用陶瓷基板、表面组装工艺,用平行缝封焊封装在51mm×51mm×10mm的金属壳体内,引脚采用陶瓷绝缘子烧结在壳体上,电路板与壳体间用导热绝缘胶进行粘接。
本发明将5V直流电压转换为±15V的直流电压。模块采用反激式DC/DC拓扑结构,将5V输入变换为±16V,再经低压差线性调整器对输出进行调整,以满足输出高精度的要求。
通过以上技术手段,本发明具有以下有益效果:
(1)输出精度高:实测输出电压15V±0.05V,负载调整率小于5mV,电压调整率小于5mV,输出纹波电压小于25mV。
(2)工作温度范围宽:可在-55℃~105℃范围内可靠工作。
(3)高可靠性:设计中采用了厚膜集成电路技术、表面组装技术和导热胶灌封技术,尤其是导热胶灌封即实现了优良的体散热,又满足了严酷的振动、湿热、高低温等环境实验的要求,保证了模块工作的高可靠性。
(4)体积小,重量轻,安装简便;外围连接、控制简单;适应范围宽。
(5)良好的电磁兼容性。
附图说明
图1是实施例中的高精度稳压模块的功能结构示意图;
图2为实施例中的DC/DC变换电路原理图;
图3为实施例中的高频LC滤波网络图;
图4为实施例中的低压差线性稳压电路原理图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
参见图1-4:本实施例提供了一种高精度稳压模块,该模块包括DC/DC变换电路以及低压差线性稳压电路;所述DC/DC变换电路为单端反激式拓扑结构,具体包括依次连接的输入滤波电路、脉冲变压器、输出滤波电路以及连接于脉冲变压器两端的PWM控制电路;所述PWM控制电路通过控制开关管输出稳定电压,所述低压差线性稳压电路对输出滤波电路输出的电压进行修正。
需要说明的是,本实施例的输入滤波电路对外部提供的电源进行滤波,同时平滑由于变压器工作时对外部电源的干扰;PWM控制器根据反馈电压值控制开关管的导通占空比,以得到稳定的电压输出;脉冲变压器根据PWM提供的振荡频率将输入电源转变为脉冲电压输出;输出滤波电路对脉冲变压器输出的脉冲电压进行整流和滤波,减小输出的高频纹波,降低高次谐波和共模干扰,以获得满意的直流电压输出供后级使用;低压差线性稳压对DC/DC输出电压进行二次调整,从而满足高精度输出的要求。
参见图2:在一具体的实例中,所述输入滤波电路包括固态钽电解电容以及瓷介电容并联网络,所述固态钽电解电容用于低频滤波,采用两个47uF电容并联;所述瓷介电容并联网络用于高频滤波,取值为0.1uF,所述脉冲变压器包括罐形瓷芯以及相应绕组,所述脉冲变压器采用反激工作方式,所述罐形瓷芯选用TDK公司的P14/8型PC40材料的罐形磁材,所述相应绕组包括输入原边绕组、电压反馈绕组以及输出绕组并采用圆形铜漆包线绕制,所述PWM控制电路采用低功耗的PWM控制器,电路型号为UCC1803,通过电阻R6和电容C9设定PWM控制器的振荡频率;通过V7、R4、R5、R7、C17组成软起动控制,V6和V9用于改善PWM的边缘特性,FB端用于反馈控制,采用反馈绕组进行反馈。
参见图3:所述输出滤波电路为整流滤波电路,包括快恢复二极管、电容以及电感,所述快恢复二极管、电容以及电感组成高频LC滤波网络,用于减小输出电压的高频纹波。
参见图4:所述宽电压高精度运放包括正电压输出误差放大、调整电路以及负电压输出误差放大、调整电路,N2A、R12、R16、R19、R20、V10组成正电压输出误差放大、调整电路,N2B、R11、R15、R21、R22、V8组成负电压输出误差放大、调整电路,以实现高精度的输出,V14、V15提供电压基准源,V8和V10为输出调整晶体管;V16和V17实现过流保护功能
需要说明的是,所述模块采用陶瓷基板、表面组装工艺,用平行缝封焊封装在51mm×51mm×10mm的金属壳体内,引脚采用陶瓷绝缘子烧结在壳体上,电路板与壳体间用导热绝缘胶进行粘接,既能满足机械强度的要求又可保证良好的散热。
以下为本实施例的设计难点与关键技术
变压器的设计:
该电源为低输入电压的升压式DC/DC变换器,变压器的设计是关键难点之一,由于所选择的PWM控制电路的截止门限电压为3.6V,在4.75V输入时,如果满载输出或负载波动很大时,容易造成输入电压的波动,从而使瞬时输入电压低于3.6V,使电路工作不正常,因而在设计变压器时应在允许的条件下加大其功率容量。同时,受模块总体体积的限制,要求变压器的体积尽可能的小,尤其是高度。为了降低高次谐波和输出纹波,在变压器设计时使绕组充满整个骨架,并要求绕组紧密,无交叉。
低纹波和低电流调整率的实现:
该电源要求纹波≤25mV,电流调整率≤5mV,DC/DC转换部分设计时在保证效率的情况下,增加对尖峰电压的吸收处理,尽可能减小纹波的产生。并使用共模扼流圈对共模干扰进行衰减,并可提高电源的抗负载突变和带不对称负载的能力。为了满足电流调整率的要求,设计出低压差线性稳压电路,用电压基准源控制输出电压,并在版图设计时将输出线和地线集中放置,尽可能地缩短导线的长度。
工作温度范围宽:
模块要求的工作温度范围在-55℃~105℃,超出SJ20668微电路模块总规范的要求。设计中首先提高电路的工作效率,设计出高效率的DC/DC转换电路,降低自身功耗;其次是采用合理的结构形式和工艺手段,利用表面贴装工艺,将电子元件贴装到陶瓷基板上,陶瓷基板通过导热胶和壳体粘接,使电路的热量通过金属壳体散发出来;元器件的选用尤其是关键件采用国外大公司生产的宽工作温度范围器件,从而保证模块在全温度范围内工作稳定,性能可靠。
电磁兼容性设计:
由于该模块是为高精度的运算放大器提供精密的工作电源,用于舰船的控制系统,因而对电磁兼容性有严格的要求。设计时首先利用电磁兼容设计理论进行设计计算,合理地进行元器件的布局,尽量减小布线引起的干扰;同时,电路设计中增加对纹波的处理和对共模干扰的吸收,降低电路对外的传导干扰;在结构设计上采用全金属结构封装,屏蔽电路工作时对空间的辐射干扰。通过上述设计处理后生产出的模块电磁兼容性效果良好,得到用户的认可。
综上所述:本实施例客服了以上技术难点以及关键技术,产生了以下技术优点:
(1)输出精度高:实测输出电压15V±0.05V,负载调整率小于5mV,电压调整率小于5mV,输出纹波电压小于25mV。
(2)工作温度范围宽:可在-55℃~105℃范围内可靠工作。
(3)高可靠性:设计中采用了厚膜集成电路技术、表面组装技术和导热胶灌封技术,尤其是导热胶灌封即实现了优良的体散热,又满足了严酷的振动、湿热、高低温等环境实验的要求,保证了模块工作的高可靠性。
(4)体积小,重量轻,安装简便;外围连接、控制简单;适应范围宽。
(5)良好的电磁兼容性。
如下表所示为:本实施例的稳压模块与美国DATEL公司型号为BMP-15/150-D5A的电源模块的各项性能测试参数列表对比:
Figure DEST_PATH_IMAGE001
从以上列表的比较情况可以看出,本实施例的稳压模块的各项指标已达到协议书的要求,并且各项指标都留有充分的余量;和国外同类产品相比,在诸多关键性的指标上都有所超越。可见,本实施例的研究成果在同类产品中应处于国际领先水平。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述 实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通 过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的 技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体 现出来,该计算机软件产品存储在一个存储介质(如只读存储器/随机存取存储器、磁碟、光 盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种高精度稳压模块,其特征在于,该模块包括DC/DC变换电路以及低压差线性稳压电路;所述DC/DC变换电路为单端反激式拓扑结构,具体包括依次连接的输入滤波电路、脉冲变压器、输出滤波电路以及连接于脉冲变压器两端的PWM控制电路;所述PWM控制电路通过控制开关管输出稳定电压,所述低压差线性稳压电路对输出滤波电路输出的电压进行修正。
2.如权利要求1所述的高精度稳压模块,其特征在于,所述输入滤波电路包括固态钽电解电容以及瓷介电容并联网络。
3.如权利要求2所述的高精度稳压模块,其特征在于,所述固态钽电解电容用于低频滤波,采用两个47uF电容并联;所述瓷介电容并联网络用于高频滤波,取值为0.1uF。
4.如权利要求1所述的高精度稳压模块,其特征在于,所述脉冲变压器包括罐形瓷芯以及相应绕组,所述脉冲变压器采用反激工作方式。
5.如权利要求4所述的高精度稳压模块,其特征在于,所述罐形瓷芯选用TDK公司的P14/8型PC40材料的罐形磁材,所述相应绕组包括输入原边绕组、电压反馈绕组以及输出绕组并采用圆形铜漆包线绕制。
6.如权利要求1所述的高精度稳压模块,其特征在于,所述PWM控制电路采用低功耗的PWM控制器,电路型号为UCC1803,通过电阻R6和电容C9设定PWM控制器的振荡频率;通过V7、R4、R5、R7、C17组成软起动控制,V6和V9用于改善PWM的边缘特性,FB端用于反馈控制,采用反馈绕组进行反馈。
7.如权利要求1所述的高精度稳压模块,其特征在于,所述输出滤波电路为整流滤波电路,包括快恢复二极管、电容以及电感,所述快恢复二极管、电容以及电感组成高频LC滤波网络,用于减小输出电压的高频纹波。
8.如权利要求1所述的高精度稳压模块,其特征在于,所述低压差线性稳压电路包括宽电压高精度运放和调整晶体管、电压基准源以及外围电路。
9.如权利要求8所述的高精度稳压模块,其特征在于,所述宽电压高精度运放包括正电压输出误差放大、调整电路以及负电压输出误差放大、调整电路,N2A、R12、R16、R19、R20、V10组成正电压输出误差放大、调整电路,N2B、R11、R15、R21、R22、V8组成负电压输出误差放大、调整电路,以实现高精度的输出,V14、V15提供电压基准源,V8和V10为输出调整晶体管;V16和V17用于实现过流保护功能。
10.如权利要求1所述的高精度稳压模块,其特征在于,所述模块采用陶瓷基板、表面组装工艺,用平行缝封焊封装在51mm×51mm×10mm的金属壳体内,引脚采用陶瓷绝缘子烧结在壳体上,电路板与壳体间用导热绝缘胶进行粘接。
CN202010993347.6A 2020-09-21 2020-09-21 一种高精度稳压模块 Withdrawn CN112019064A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010993347.6A CN112019064A (zh) 2020-09-21 2020-09-21 一种高精度稳压模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010993347.6A CN112019064A (zh) 2020-09-21 2020-09-21 一种高精度稳压模块

Publications (1)

Publication Number Publication Date
CN112019064A true CN112019064A (zh) 2020-12-01

Family

ID=73522090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010993347.6A Withdrawn CN112019064A (zh) 2020-09-21 2020-09-21 一种高精度稳压模块

Country Status (1)

Country Link
CN (1) CN112019064A (zh)

Similar Documents

Publication Publication Date Title
Tang et al. Highly reliable transformerless photovoltaic inverters with leakage current and pulsating power elimination
US6952355B2 (en) Two-stage converter using low permeability magnetics
US9847710B2 (en) Universal system structure for low power adapters
Kushwaha et al. Interleaved landsman converter fed EV battery charger with power factor correction
Mack Demystifying switching power supplies
US9231481B2 (en) Power converter apparatus
EP2939337B1 (en) Apparatus for resonant converters
EP3038246B1 (en) Dc-ac conversion circuit topologie
Wang et al. A two-terminal active inductor with minimum apparent power for the auxiliary circuit
JP2008161031A (ja) フライバックPFC(PowerFactorCorrection)・コンバーターにおける効率化技術
JP2004023825A (ja) 電力変換回路
JP5721355B2 (ja) 電源回路
Suryawanshi et al. Optimized resonant converter by implementing shunt branch element as magnetizing inductance of transformer in electric vehicle chargers
Khodabandeh et al. A highly reliable single-phase AC to three-phase AC converter with a small link capacitor
JP2004254355A (ja) 電力変換装置
Matiushkin et al. Cost-Effective Piggyback Forward dc-dc Converter
Mousavi et al. A bidirectional single‐phase Z‐source AC‐AC converter with reduced voltage stress on switches and safe commutation strategy
CN112366928A (zh) 一种超低纹波干扰稳压电路及装置
CN112019064A (zh) 一种高精度稳压模块
Panov et al. Single-loop control of buck power-pulsation buffer for AC-DC converter system
Itoh et al. DC to single‐phase AC grid connected inverter with boost‐type active buffer circuit operated in discontinuous current mode
Hafezinasab et al. Universal input AC three-phase power factor correction with adaptive intermediate bus voltage to optimize efficiency
Tarateeraseth Magnetic integration techniques of inductors used in a buck converter with EMI filter
CN114583934B (zh) 控制单元、电源变换装置及抑制输出电压纹波的方法
US11764692B2 (en) DC to DC boost converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20201201

WW01 Invention patent application withdrawn after publication