CN112014924B - 一种在聚合物光波导表面装饰纳米立方体的方法、由其制造的光波导、生物传感系统及应用 - Google Patents

一种在聚合物光波导表面装饰纳米立方体的方法、由其制造的光波导、生物传感系统及应用 Download PDF

Info

Publication number
CN112014924B
CN112014924B CN202010930678.5A CN202010930678A CN112014924B CN 112014924 B CN112014924 B CN 112014924B CN 202010930678 A CN202010930678 A CN 202010930678A CN 112014924 B CN112014924 B CN 112014924B
Authority
CN
China
Prior art keywords
nanocubes
optical waveguide
polymer
titanium nitride
polymer optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010930678.5A
Other languages
English (en)
Other versions
CN112014924A (zh
Inventor
吴兆鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kejingda Biotechnology Co ltd
Original Assignee
Kejingda Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kejingda Biotechnology Co ltd filed Critical Kejingda Biotechnology Co ltd
Priority to CN202010930678.5A priority Critical patent/CN112014924B/zh
Priority to PCT/CN2020/116725 priority patent/WO2022047848A1/zh
Publication of CN112014924A publication Critical patent/CN112014924A/zh
Application granted granted Critical
Publication of CN112014924B publication Critical patent/CN112014924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides

Abstract

本发明公开了一种在聚合物光波导表面装饰纳米立方体的方法,其中,通过形成化学键将所述纳米立方体装饰在所述聚合物光波导表面上。此外,还提供了根据上述方法制造的装饰有纳米立方体的光波导的应用、包含该光波导的生物传感系统及其应用。本发明的方法工序简单、制造方便、成本降低,还提高了检测精度、提高了结构稳定性。

Description

一种在聚合物光波导表面装饰纳米立方体的方法、由其制造 的光波导、生物传感系统及应用
技术领域
本发明涉及光学领域,特别是涉及一种在聚合物光波导表面装饰纳米立方体的方法、通过该方法制造的光波导、包含该光波导的生物传感系统及其应用。
背景技术
光波导是引导光波在其中传播的介质装置,又称介质光波导,可应用于光电集成器件、光纤传感器或生物芯片中。现有的光波导的应用中,通常采用蚀刻、电镀等工艺在光波导表面装饰纳米立方体,这对工序控制要求非常严格,导致制造不便、成本高昂的缺陷。
另外,在光波导表面布置纳米结构时需要考虑光波导和纳米结构的材料特性。现有的LSPR纳米材料通常为黄金,由于黄金本身的化学惰性,需要添加含硫的化学品进行表面活化,但含硫的化合物保存周期短,在空气中容易氧化,所以用硫化物固定黄金纳米结构并不理想。另一个方法就是利用缩锡的原理,在光波导表面自动生成纳米黄金结构。但是这个方法的先决条件就是光波导基底可以承受550至600摄氏度的高温,所以只适用于玻璃基底。而且,使用黄金纳米结构时成本高昂。
因此,急需一种工序简单、制造方便、成本低的在光波导表面装饰纳米立方体的方法。
发明内容
为了克服现有技术的不足,本发明的目的在于:提供一种工序简单、制造方便、低成本的在聚合物光波导表面装饰纳米立方体的方法、通过该方法制造的光波导、包含该光波导的生物传感系统及其应用。
为实现上述目的,本发明的技术方案是:
在一个方面,本发明提供一种在聚合物光波导表面装饰纳米立方体的方法,其中,通过形成化学键将所述纳米立方体装饰在所述聚合物光波导表面上。
在优选的实施方案中,所述纳米立方体为氮化钛纳米立方体。
在优选的实施方案中,所述聚合物为聚甲基丙烯酸甲酯(PMMA)或聚碳酸酯(PC)的聚合物,更优选为聚甲基丙烯酸甲酯聚合物。
在优选的实施方案中,所述氮化钛纳米立方体通过湿化学法和紫外线固化技术固定在光波导表面上。
在优选的实施方案中,所述氮化钛纳米立方体通过钛-氧化学键装饰在所述光波导表面。
在优选的实施方案中,所述光波导的直径为微米量级。
在优选的实施方案中,所述光波导为柱状体,优选为圆柱体。
在优选的实施方案中,所述氮化钛纳米立方体的尺寸为约45纳米。
在优选的实施方案中,在聚合物光波导表面装饰纳米立方体的方法,包括:(1)预先混合纳米立方体粉末和表面活性剂化合物的溶液;(2)搅拌得到悬浮液,使得所述表面活性剂化合物通过化学键在所述纳米立方体表面生成间隔薄膜;(3)使所述纳米立方体通过间隔薄膜与所述光波导表面接触;(4)使用紫外光对聚合物光波导进行照射固化;由此将所述纳米立方体固定在所述光波导表面。
在更优选的实施方案中,纳米立方体为氮化钛纳米立方体。
在更优选的实施方案中,表面活性剂化合物为含端基碳氧双键官能团的烃化合物。
在更优选的实施方案中,表面活性剂化合物为含12-64个碳原子、含端基碳氧双键官能团的烃化合物。
在更优选的实施方案中,表面活性剂化合物为甲基丙烯酸甲酯单体、六十基2-甲基丙-2-烯酸酯或壬基十六烷基2-甲基丙-2-烯酸酯。
在更优选的实施方案中,溶剂为不含碳氧双键官能团的有机溶剂。溶剂选择为不含碳氧双键官能团的有机溶剂,以避免溶剂和表面活性剂在纳米立方体表面发生竞争吸附。
在更优选的实施方案中,溶剂为2-丙醇或乙醇。
在另一方面,本发明提供一种生物传感系统,其包含根据上述的方法制造的表面装饰有纳米立方体的聚合物光波导。
在另一方面,根据上述的方法制造的表面装饰有纳米立方体的聚合物光波导或包含其的生物传感系统用于流体样品检测中的用途。
本发明的有益效果在于:
1、使用氮化钛纳米材料代替金材料,显著降低了材料成本;另外,氮化钛可以减少涉及的化学物质的数量,提高了检测精度。
2、通过形成化学键使纳米立方体自组装装饰在光波导表面上,不但简化了工序、方便制造而且降低了制造成本。
3、通过采用特定的氮化钛纳米立方体和聚合物光波导,通过钛-氧键使氮化钛纳米立方体自组装形成在光波导表面上,通过钛氧键形成的结构吸附能较高,稳定性较强。
4、PMMA、PC等聚合物作为光波导的组成材料,不但可以实现与BK7玻璃等基本相同的折射率,而且方便制造、提高了制造效率、降低了成本。
综上,本发明的技术方案不但能够简化工序、降低制造成本还能提高检测精度、提高结构稳定性。
附图说明
以下结合附图和实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例或实施方案旨在便于对本发明的理解,而非限制。
图1示出了通过钛-氧键的吸附构型。
图2示出了通过钛-甲基键的吸附构型。
图3示出了通过钛-乙烯基键的吸附构型。
图4示出了通过钛-甲基-氧键的吸附构型。
图5示出了通过平面堆叠的吸附构型。
具体实施方式
根据需要,本文公开了本发明的详细实施方案和实施例。然而,本领域技术人员应该理解,所公开的详细实施方案和实施例仅仅是本发明的示例,本发明可以以各种适当的形式实施。因此,在此公开的具体物质、材料和步骤细节不应被解释为限制,而是作为权利要求的基础和用于教导本领域技术人员选择任何适当的物质、材料、仪器、浓度以各种方式实施本发明的基础。
本发明的在聚合物光波导表面装饰纳米立方体的方法,是制造等离激元生物芯片的核心步骤之一。下面对纳米立方体装饰在聚合物光波导表面上的方法进行示例。
实施例1
本实施例以氮化钛作为纳米立方体材料,以聚甲基丙烯酸甲酯或聚碳酸酯作为聚合物光波导材料,对纳米立方体装饰在光波导表面上的方法进行示例。
(1)预先混合氮化钛纳米立方体粉末和表面活性剂六十基2-甲基丙-2-烯酸酯在2-丙醇中的溶液。其中,氮化钛纳米立方体的浓度为1μg/ml;六十基2-甲基丙-2-烯酸酯的浓度为0.01μM。
(2)超声搅拌1小时得到悬浮液,使得氮化钛纳米立方体表面的钛原子与表面活性剂六十基2-甲基丙-2-烯酸酯的端基碳氧双键官能团发生反应生成钛-氧键,同时表面活性剂六十基2-甲基丙-2-烯酸酯在纳米立方体表面生成间隔薄膜。
(3)将悬浮液注入到光波导阵列内,使氮化钛纳米立方体通过间隔薄膜与光波导表面接触。
(4)用365nm、5W的紫外光光源对光波导进行照射固化。上述生成的间隔薄膜向内以钛-氧键包裹氮化钛纳米方体,向外以表面活性剂六十基2-甲基丙-2-烯酸酯间隔薄膜的碳氢键和聚甲基丙烯酸甲酯(PMMA)的碳氢键经紫外光照射后固化成碳碳单键。
由此,氮化钛纳米方体被装饰固定在PMMA聚合物光波导表面。
实施例2
与实施例1唯一不同的是,实施例2所用的聚合物光波导材料是聚碳酸酯。
实施例3
与实施例1唯一不同的是,实施例3所用的烃化合物表面活性剂是甲基丙烯酸甲酯单体。
实施例4
与实施例1唯一不同的是,实施例4所用的烃化合物表面活性剂是壬基十六烷基2-甲基丙-2-烯酸酯。
实施例5
与实施例1唯一不同的是,实施例5所用的溶剂是乙醇。
实施例6
与实施例1唯一不同的是,实施例6所用的氮化钛纳米立方体的浓度为10μg/ml;六十基2-甲基丙-2-烯酸酯的浓度为0.1μM。
实施例7
与实施例1唯一不同的是,实施例7所用的氮化钛纳米立方体的浓度为100μg/ml;六十基2-甲基丙-2-烯酸酯的浓度为1μM。
通过上述实施例1至7的方法,均得到在表面装饰有纳米立方体结构的光波导。
实施例8
本实施例以氮化钛作为纳米立方体材料,以聚甲基丙烯酸甲酯作为聚合物光波导的材料,以甲基丙烯酸甲酯单体作为表面活性剂,例示纳米立方体结构吸附在聚合物光波导表面的五种吸附构型。
通过密度泛函理论计算,可以得到每个吸附构型的能量变化,从而判断最有机会发生的构型。所有的密度泛函理论计算都是使用QUANTUM ESPRESSO软件包的平面波基组进行。离子核与电子之间的相互作用使用超软拟势(USP)方法和广义梯度近似的Perdew-Burke-Ernzerhof(PBE)参数化表示。使用Grimme的DFT-D3方法处理Van der Waals范德华力的相互作用。所有计算均采用每个元素的标准固态伪势。动能截止的收敛设为55和440Ry。总能量(a.u.)和离子最小化总力的收敛阈值为1×10-5a.u.和0.02eV/
Figure BDA0002670098100000057
在计算开始时,先使用可变单元弛豫来优化由1个钛和1个氮原子组成的TiN原始单晶胞。然后,所有模拟都基于FCC TiN的5×3超晶胞,其中总共包含144个原子。k点的网格是根据Monkhorst-Pack方案生成的,并且所有计算都设置为(6×6×1)。基于以上设置,将TiN的晶格参数优化为
Figure BDA0002670098100000052
这与实验值
Figure BDA0002670098100000054
相似。N-Ti-N的结合角为90.05°,Ti-N的结合长度为
Figure BDA0002670098100000053
面心立方TiN的优化平板结构如图1至图5所示。对于优化的甲基丙烯酸甲酯单体CH2=C(CH3)COOCH3,分子的C=O和C-O的键长分别约为
Figure BDA0002670098100000055
Figure BDA0002670098100000056
C-C=O和O-C=O的角度分别约为124.6°和125.8°,与实验值相似。
参照图1至图5,示出了将纳米立方体与表面活性剂之间产生吸附的处于基态的五种构型。
通过密度泛函理论,可以以下五种键形式将甲基丙烯酸甲酯单体附着在TiN表面上:(i)Ti-O,(ii)Ti-CH3,(iii)Ti-CH2,(iv)Ti-CH3-O和(v)平面堆叠。吸附能的计算公式为Ea=Etot–Esurf–Emol,其中Etot是氮化钛表面吸附甲基丙烯酸甲酯单体后的总能量,Esurf是被分离的氮化钛表面的总能量,Emol是被分离的甲基丙烯酸甲酯单体的总能量,全部为基态。产生最大负吸附能(Ea)的键配置是优选的配置。这些能量是通过开源软件包QuantumEspresso使用密度泛函理论计算的。每种情况的吸附能在下表1中给出,其中吸附能能数值越小,吸附构型越稳定。
表1.甲基丙烯酸甲酯单体在TiN表面上的吸附能
Figure BDA0002670098100000061
由上表可知,Ti-CH3、Ti-CH2、Ti-CH3-O构型较Ti-O键构型不稳定。平坦堆叠构型的稳定性小于Ti-O键的稳定性。Ti-O键是具有最大负吸附能的优选构型,即最稳定的构型。
通过本发明的方法得到的装饰有氮化钛纳米立方体的光波导可以用于生物传感系统,用于流体样品检测的应用中。本领域技术人员应理解,通过本发明的方法得到的装饰有氮化钛纳米立方体的光波导可以用于任何适合采用本发明的光波导的应用中。
应当理解,虽然上文已经详细描述了优选实施方案和实施例,但是本发明不限于这里描述和示出的材料、结构和特征,这些描述仅仅是本发明的示例性优选实施方案,其可以以各种等同的形式实现。

Claims (7)

1.一种在聚合物光波导表面装饰纳米立方体的方法,其特征在于,通过形成化学键将所述纳米立方体装饰在所述聚合物光波导表面上;
所述纳米立方体为氮化钛纳米立方体;
所述聚合物为聚甲基丙烯酸甲酯聚合物;
所述氮化钛纳米立方体通过钛-氧化学键装饰在所述光波导表面。
2.根据权利要求1所述的方法,其特征在于,所述氮化钛纳米立方体通过湿化学法和紫外线固化技术固定在聚合物光波导表面上。
3.根据权利要求1所述的方法,其特征在于,(1)预先混合纳米立方体粉末和表面活性剂化合物的溶液;(2)搅拌得到悬浮液,使得所述表面活性剂化合物通过化学键在所述纳米立方体表面生成间隔薄膜;(3)使所述纳米立方体通过间隔薄膜与所述光波导表面接触;(4)使用紫外光对聚合物光波导进行照射固化;由此将所述纳米立方体固定在所述光波导表面。
4.根据权利要求3所述的方法,其特征在于,步骤(1)中的纳米立方体为氮化钛纳米立方体,表面活性剂化合物为含12-64个碳原子、含端基碳氧双键官能团的烃化合物,溶剂为不含碳氧双键官能团的有机溶剂。
5.根据权利要求4所述的方法,其特征在于,所述表面活性剂化合物为甲基丙烯酸甲酯单体、六十基2-甲基丙-2-烯酸酯或壬基十六烷基2-甲基丙-2-烯酸酯;所述溶剂为2-丙醇或乙醇。
6.一种生物传感系统,其包含根据权利要求1-5中任一项所述的方法制造的表面装饰有纳米立方体的聚合物光波导。
7.根据权利要求1-5中任一项所述的方法制造的表面装饰有纳米立方体的聚合物光波导用于流体样品检测中的用途或权利要求6所述的生物传感系统用于流体样品检测中的用途。
CN202010930678.5A 2020-09-07 2020-09-07 一种在聚合物光波导表面装饰纳米立方体的方法、由其制造的光波导、生物传感系统及应用 Active CN112014924B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010930678.5A CN112014924B (zh) 2020-09-07 2020-09-07 一种在聚合物光波导表面装饰纳米立方体的方法、由其制造的光波导、生物传感系统及应用
PCT/CN2020/116725 WO2022047848A1 (zh) 2020-09-07 2020-09-22 一种在聚合物光波导表面装饰纳米立方体的方法、由其制造的光波导、生物传感系统及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010930678.5A CN112014924B (zh) 2020-09-07 2020-09-07 一种在聚合物光波导表面装饰纳米立方体的方法、由其制造的光波导、生物传感系统及应用

Publications (2)

Publication Number Publication Date
CN112014924A CN112014924A (zh) 2020-12-01
CN112014924B true CN112014924B (zh) 2021-09-28

Family

ID=73517052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010930678.5A Active CN112014924B (zh) 2020-09-07 2020-09-07 一种在聚合物光波导表面装饰纳米立方体的方法、由其制造的光波导、生物传感系统及应用

Country Status (2)

Country Link
CN (1) CN112014924B (zh)
WO (1) WO2022047848A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999784B (zh) * 2020-09-07 2024-03-22 科竟达生物科技有限公司 聚合物用作生物芯片的基底的用途
CN116042927B (zh) * 2022-04-29 2024-01-09 科竟达生物科技有限公司 一种用于检测新型冠状病毒的CRISPR-Cas13系统及其试剂盒和方法
CN115290605B (zh) * 2022-04-29 2024-01-02 科竟达生物科技有限公司 炽热表面等离子体共振生物芯片、其制造方法、包含其的生物传感系统及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002464A1 (en) * 1999-07-01 2001-01-11 Pirelli Cavi E Sistemi S.P.A. Waveguide systems or structures or parts thereof, containing polycyanate copolymers prepared from polyfunctional cyanates and fluorinated monocyanates
JP2006017780A (ja) * 2004-06-30 2006-01-19 Fuji Photo Film Co Ltd プラスチック光学部材用プリフォームの製造方法、プラスチック光学部材用プリフォーム及びプラスチック光ファイバ
CN101321816A (zh) * 2005-10-03 2008-12-10 株式会社钟化 含纳米颗粒的透明聚合物纳米复合材料及其制备方法
CN110452515A (zh) * 2019-08-26 2019-11-15 漳州吉合金属制品有限公司 一种改性塑料及其制备工艺
CN110546000A (zh) * 2017-04-05 2019-12-06 新加坡国立大学 柔性表面等离子共振膜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947485B2 (en) * 2005-06-03 2011-05-24 Hewlett-Packard Development Company, L.P. Method and apparatus for molecular analysis using nanoelectronic circuits
JP2017532024A (ja) * 2014-09-09 2017-11-02 ザ・ブロード・インスティテュート・インコーポレイテッド コンポジット単一細胞核酸分析のための液滴ベースの方法および機器
CN104656189B (zh) * 2015-02-02 2018-07-24 吉林大学 利用稀土纳米粒子与单体共聚制备聚合物光波导放大器增益介质的方法
CN111235004B (zh) * 2020-01-17 2023-11-07 中国科学院苏州生物医学工程技术研究所 一种基因测序芯片的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002464A1 (en) * 1999-07-01 2001-01-11 Pirelli Cavi E Sistemi S.P.A. Waveguide systems or structures or parts thereof, containing polycyanate copolymers prepared from polyfunctional cyanates and fluorinated monocyanates
JP2006017780A (ja) * 2004-06-30 2006-01-19 Fuji Photo Film Co Ltd プラスチック光学部材用プリフォームの製造方法、プラスチック光学部材用プリフォーム及びプラスチック光ファイバ
CN101321816A (zh) * 2005-10-03 2008-12-10 株式会社钟化 含纳米颗粒的透明聚合物纳米复合材料及其制备方法
CN110546000A (zh) * 2017-04-05 2019-12-06 新加坡国立大学 柔性表面等离子共振膜
CN110452515A (zh) * 2019-08-26 2019-11-15 漳州吉合金属制品有限公司 一种改性塑料及其制备工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
聚合物光波导生物传感器的制备与特性研究;邹盼;《中国优秀硕士学位论文全文数据库》;20190715;第3-4章 *
邹盼.聚合物光波导生物传感器的制备与特性研究.《中国优秀硕士学位论文全文数据库》.2019,第3-4章. *

Also Published As

Publication number Publication date
WO2022047848A1 (zh) 2022-03-10
CN112014924A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
CN112014924B (zh) 一种在聚合物光波导表面装饰纳米立方体的方法、由其制造的光波导、生物传感系统及应用
Egen et al. Heterostructures of polymer photonic crystal films
Li et al. Ordered micro/nanostructured arrays based on the monolayer colloidal crystals
Jung et al. Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography
Li et al. Nanosphere lithography at the gas/liquid interface: a general approach toward free-standing high-quality nanonets
Choi et al. Solvent-controlled spin-coating method for large-scale area deposition of two-dimensional silica nanosphere assembled layers
Tawfick et al. Engineering of micro‐and nanostructured surfaces with anisotropic geometries and properties
Bairi et al. Intentional closing/opening of “hole-in-cube” fullerene crystals with microscopic recognition properties
Hsueh et al. Inorganic gyroid with exceptionally low refractive index from block copolymer templating
Yan et al. Inward-growing self-assembly of colloidal crystal films on horizontal substrates
Liu et al. Imaging as-grown [60] fullerene nanotubes by template technique
Bley et al. Characterization of silicon nanoparticles prepared from porous silicon
Long et al. Water-vapor plasma-based surface activation for trichlorosilane modification of PMMA
Huang et al. Surface-initiated thermal radical polymerization on gold
JP6339557B2 (ja) ナノ構造化材料及びその作製方法
Kuila et al. Supramolecular assembly of poly (styrene)-b-poly (4-vinylpyridine) and 1-pyrenebutyric acid in thin film and their use for nanofabrication
Li et al. Wafer-scale nanopillars derived from block copolymer lithography for surface-enhanced Raman spectroscopy
Wang et al. Free-standing plasmonic chiral metamaterials with 3D resonance cavities
Zhang et al. A universal approach to fabricate ordered colloidal crystals arrays based on electrostatic self-assembly
Zhao et al. Chemically responsive polymer inverse-opal photonic crystal films created by a self-assembly method
KR101651108B1 (ko) 센서용 전극의 제조방법 및 이에 따라 제조되는 센서
Hummel et al. Ordered particle arrays via a Langmuir transfer process: Access to any two-dimensional Bravais lattice
Yang et al. Generalized fabrication of monolayer nonclose-packed colloidal crystals with tunable lattice spacing
Sohn et al. Process-dependent photocatalytic properties of polymer thin films containing TiO2 nanoparticles: dip vs spin self-assembly methods
Yang et al. Conformal 3D nanopatterning by block copolymer lithography with vapor-phase deposited neutral adlayer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant