CN112014639A - 一种交流电力谐波向量测量方法 - Google Patents

一种交流电力谐波向量测量方法 Download PDF

Info

Publication number
CN112014639A
CN112014639A CN202010911150.3A CN202010911150A CN112014639A CN 112014639 A CN112014639 A CN 112014639A CN 202010911150 A CN202010911150 A CN 202010911150A CN 112014639 A CN112014639 A CN 112014639A
Authority
CN
China
Prior art keywords
data
channel
harmonic
reconstruction
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010911150.3A
Other languages
English (en)
Other versions
CN112014639B (zh
Inventor
张四海
李令东
李瑜
潘结兵
严良占
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Onesky Power Quality Tech Co ltd
Original Assignee
Anhui Onesky Power Quality Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Onesky Power Quality Tech Co ltd filed Critical Anhui Onesky Power Quality Tech Co ltd
Priority to CN202010911150.3A priority Critical patent/CN112014639B/zh
Publication of CN112014639A publication Critical patent/CN112014639A/zh
Application granted granted Critical
Publication of CN112014639B publication Critical patent/CN112014639B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明公开了一种交流电力谐波向量测量方法,包括以下步骤:整序和计算电网基波运行周期T1q;重构tq时刻无频率跟踪误差的通道数据yg(n),
Figure DDA0002663318620000011
重构tq时刻无同步误差的通道数据zg(n),
Figure DDA0002663318620000012
整序并输出重构数据pg(n),pg(n)=zg(n+1)。本发明通过基于多通道异步数据采集和矩形窗口重构数据的方法来对交流电力谐波向量进行测量;将谐波向量测量精度提高一个数量级;提高电能质量治理工程的技术水平和经济效益。

Description

一种交流电力谐波向量测量方法
技术领域
本发明属于电力技术领域,特别是涉及一种交流电力谐波向量测量方法,具体为一种基于多通道异步数据采集和矩形窗口重构数据的交流电力谐波向量测量方法。
背景技术
(1)谐波辨识及关键技术
谐波辨识是谐波治理的基础,谐波辨识的主要内容是辨识谐波源、确定谐波传输特性和谐波相序特性;辨识谐波源的基本方法是功率方向法,即当负荷注入系统谐波功率为正值时,则判定该负荷存在谐波源。
辨识谐波源的关键技术是准确地测量谐波功率大小与功率因数角,即准确地测量同测量点、同相、同次谐波电压和谐波电流的幅值与相位差。
确定谐波传输特性的基本方法是阻抗比较法:若谐波电流源传输阻抗大于供电母线系统阻抗,则谐波电流传输网络存在并联谐振特性;若谐波电流源传输阻抗小于供电母线系统阻抗,则谐波电流传输网络具有滤波特性;若谐波电压源传输阻抗小于供电母线负载阻抗,则谐波电压传输网络存在串联谐振特性;若谐波电压源传输阻抗大于供电母线负载阻抗,则谐波电压传输网络具有衰减特性。
为了有效地治理谐波,必须将谐波电流传输网络中存在并联谐振特性变为滤波特性,将谐波电压传输网络中存在串联谐振特性变为衰减特性,这就需要准确地测量谐波阻抗的幅值与阻抗角。
确定谐波传输特性和治理谐波的关键技术是准确地测量谐波阻抗的幅值与阻抗角,即准确地测量同测量点、同相、同次谐波电压和谐波电流的幅值与相位差。
确定谐波的相序特性的基本方法是对称分量法,其关键是要准确地测量同测量点、不同相间、同次谐波电压(或电流)的幅值与相位差。
总之,谐波辨识的关键技术是准确地测量同测量点同相、同次谐波电压和谐波电流的幅值与相位差,准确地测量同测量点、不同相间、同次谐波电压(或电流)的幅值与相位差。简单地说,谐波辨识的关键技术是高精度谐波向量(幅值与相位)测量技术。
(2)现有技术
①谐波向量测量系统基本参数的计算
根据需求确定测量通带内的谐波次数上限hmax、测量通道数G
确定傅里叶变换窗口数据总数N=kNhmax,一般kN=412
给出基波基准周期T1R和基波运行周期T1q的变化范围:T1q=T1R±ΔT1
根据上列参数和测量精度要求设计抗混叠滤波器,确定系统巡回数据采集周期ts,通道数据采集周期tsg=Gts、仪器信息容量等。
②基于多通道同步数据采集和矩形窗口截取数据的谐波向量测量方法
在20世纪90年代,由于多通道数据采集单元硬件成本占整机成本高,采用多通道同步数据采集单元成本远大于采用多通道异步采集单元成本,对于同步要求不高的仪器一般采用多通道异步采集单元。到了21世纪初,多通道数据采集单元硬件成本大幅度降低,采用同步数据采集单元还是采用异步数据采集单元对整机成本影响很小。获取傅里叶变换时域数据的通用方法是“矩形窗口截取数据”,为了减小同步误差,现在多采用同步数据采集单元,即图1所示的“基于多通道同步数据采集和矩形窗口截取数据的谐波向量测量方法”。
如附图1,其为现有技术中基于多通道同步数据采集和矩形窗口截取数据的谐波向量测量方法,图中:
u(t):相电压模拟信号,i(t):线电流模拟信号,t:时间;
xg(n):g通道采集数据,g=0、1、...、G-1为通道编号,G为信号通道总数,n为数据采集序号;
T1q为t=tq时(对应n=nq)的基波运行周期;
pg(n):t=tq时(对应n=nq)整序后的矩形窗口截取的数据,n=0、1、...、N-1,N为矩形窗口截取数据总数。
Uh:复数相电压,U0:相电压直流分量,Uh:相电压交流分量有效值,h=1为基波分量,hmax≥h≥2为测量通带内谐波次数的范围,hmax为测量通带最高谐波次数,αh:相电压交流分量相位角;
Ih:复数相电流,I0:相电流直流分量,Ih:相电流交流分量有效值,h=1为基波分量,hmax≥h≥2为测量通带内谐波次数的范围,hmax为测量通带最高谐波次数,βh:相电流交流分量相位角;
抗混叠滤波器:在误差分配中,图1和图2中(图2为本发明提出的基于多通道异步数据采集和矩形窗口重构数据的交流电力谐波向量测量方法的流程图)的抗混叠滤波器产生的幅值与随机相位误差与其它单元产生的幅值与随机相位误差相比较可忽略不计。
在本发明专利的所有申请文件中,所有涉及测量误差的讨论,不包含信号输入电路所产生的误差。
(3)现有技术存在的问题
①多通道同步数据采集产生的同步误差使通道间相位差的测量误差增大
对于多通道同步数据采集,由于各通道采用独立的采样电路和A/D转换器,其不一致性使任意两通道的数据采集产生同步误差Δtsy,Δtsy为使这两个通道h次谐波电压与h次谐波电流(或h次谐波电压与h次谐波电压或h次谐波电流与h次谐波电流)相位差的增大Δθh,Δθh=Δtsyf1h×360°,f1为基波频率。
案例:目前Δtsy为μS数量级,若Δtsy=6×10-6 Sf1=50HZ h=60,则Δα60=6.5°。
②矩形窗口截取数据产生的频谱泄漏使谐波电压和谐波电流幅值的测量误差增大
通常电力系统基波频率变化小于1%,为了在使用同一组采样数据进行多种电能质量指标分析时统一时标,多数仪器各通道采用固定采样周期ts。谐波分析时一般首先计算电力系统基波运行周期T1q,再用宽度为T1q的矩形窗口截取数据,设矩形窗口内含N个采样数据,则被截取的信号长度为TA=Nts,-ts/2≥TA-T1q≤ts/2,δF=[(TA-T1,q)/T1,q]×100%,δF称之为频率跟踪误差。
对于周期信号的频域分析,│δF│越大,频谱泄漏越严重,谐波电压和谐波电流幅值的测量误差越大。
案例:对于带宽不大于6kHz的多通道谐波分析仪、傅里叶变换窗口宽度为单周期、基波频率为50Hz、单通道采样频率为25.6kHz时,频率跟踪误差在0.1%左右。
发明内容
本发明的目的在于提供一种交流电力谐波向量测量方法,通过基于多通道异步数据采集和矩形窗口重构数据的方法来对交流电力谐波向量进行测量;将谐波向量测量精度提高一个数量级;提高电能质量治理工程的技术水平和经济效益;谐波向量测量技术将从根本上解决谐波的辨识问题,从而更加科学地制定电能质量治理方案,使电能质量治理更加经济有效。
为解决上述技术问题,本发明是通过以下技术方案实现的:
本发明为一种交流电力谐波向量测量方法,以下步骤:stp1,多通道异步数据采集;stp2,计算基波运行周期;stp3,矩形窗口重构数据;stp4,傅里叶变换;stp5,数据输出;矩形窗口重构数据包括以下步骤:
步骤1、整序和计算电网基波运行周期T1q
(1)输入:x(n),G,ts;其中,x(n)为系统多通道巡回采集数据,n=0、1、...、∞为x(n)的多通道巡回采集数据序号;G为信号通道总数;ts为系统巡回数据采集周期;
(2)整序:g为信号通道编号,g=0、1、...、G-1;
xg(n)=x(nG+g)
式中:xg(n)为通道数据,n=0、1、...、∞为xg(n)的数据序号;
(3)计算tq时刻的T1q
tq为约定分析计算时间点
选择测量通道中的一个交流电压信号通道计算T1q
Figure BDA0002663318600000051
式中:tsg为通道采样周期,tsg=Gts;nq为tq时刻对应的通道数据序号;n1为nq前距离第E个零点左边最近的xg(n)的单通道数据序号;n2为nq后距离第E+1个零点右边最近的xg(n)的单通道数据序号;E为(n2-n1)tsg时间内周期数;
(4)输出:xg(n),G,tq,tsg,T1q
步骤2、重构tq时刻无频率跟踪误差的通道数据yg(n)
(1)输入:xg(n),G,tq,tsg,T1q,N;
(2)计算t=tq时刻无频率跟踪误差的采样周期tSq
Figure BDA0002663318600000052
N为基波周期内的单通道数据重构点的总数
(3)重构tq时刻无频率跟踪误差的通道数据yg(n)
Figure BDA0002663318600000061
式中:n=0、1、...、N;
(4)输出:yg(n),G,tq,tsq,N;
步骤3、重构tq时刻无同步误差的通道数据zg(n)
(1)输入:yg(n),G,tq,tsq,N;
(2)重构tq时刻无同步误差的通道数据zg(n)
Figure BDA0002663318600000062
式中:n=1、2、...、N;
(4)输出:zg(n),G,tq,tsq,N;
步骤4、整序并输出重构数据pg(n)
(1)输入:zg(n),G,tq,tsq,N;
(2)整序重构数据:pg(n)=zg(n+1),n=0、1、...、N-1;
(3)输出:pg(n),G,tq,tsq,N。
本发明具有以下有益效果:
本发明通过基于多通道异步数据采集和矩形窗口重构数据的方法来对交流电力谐波向量进行测量;将谐波向量测量精度提高一个数量级;提高电能质量治理工程的技术水平和经济效益;谐波向量测量技术将从根本上解决谐波的辨识问题,从而更加科学地制定电能质量治理方案,使电能质量治理更加经济有效。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中基于多通道同步数据采集和矩形窗口截取数据的谐波向量测量方法的流程图;
图2为本发明提出的基于多通道异步数据采集和矩形窗口重构数据的交流电力谐波向量测量方法的流程图;
图3为本发明提出的电压数据和电流数据的重构流程流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1所示,现有方法和本发明方法的测量计算功能模块数目相同,所不同的是有两个模块功能实现方法不同:多通道数据采集模块的采集方法不同,前者为同步采集,后者为异步采集;矩形窗口数据获取模块的获取方法不同,前者为截取方法,后者为重构方法。
图2中:x(e):系统巡回采集数据;
e为数据采集序号;
pg(n)为t=tq时(对应n=nq)整序后的矩形窗口重构的数据;
n=0、1、...、N-1,N为矩形窗口重构数据总数;
请参阅图2-3所示,本发明为一种交流电力谐波向量测量方法,以下步骤:stp1,多通道异步数据采集;stp2,计算基波运行周期;stp3,矩形窗口重构数据;stp4,傅里叶变换;stp5,数据输出;矩形窗口重构数据包括以下步骤:
步骤1、整序和计算电网基波运行周期T1q
(1)输入:x(n),G,ts;其中,x(n)为系统多通道巡回采集数据,n=0、1、...、∞为x(n)的多通道巡回采集数据序号;G为信号通道总数;ts为系统巡回数据采集周期;
(2)整序:g为信号通道编号,g=0、1、...、G-1;
xg(n)=x(nG+g)
式中:xg(n)为通道数据,n=0、1、...、∞为xg(n)的数据序号;
(3)计算tq时刻的T1q
tq为约定分析计算时间点
选择测量通道中的一个交流电压信号通道计算T1q
Figure BDA0002663318600000081
式中:tsg为通道采样周期,tsg=Gts;nq为tq时刻对应的通道数据序号;n1为nq前距离第E个零点左边最近的xg(n)的单通道数据序号;n2为nq后距离第E+1个零点右边最近的xg(n)的单通道数据序号;E为(n2-n1)tsg时间内周期数;
(4)输出:xg(n),G,tq,tsg,T1q
步骤2、重构tq时刻无频率跟踪误差的通道数据yg(n)
(1)输入:xg(n),G,tq,tsg,T1q,N;
(2)计算t=tq时刻无频率跟踪误差的采样周期tSq
Figure BDA0002663318600000091
N为基波周期内的单通道数据重构点的总数(3)重构tq时刻无频率跟踪误差的通道数据yg(n)
Figure BDA0002663318600000092
式中:n=0、1、...、N;
(4)输出:yg(n),G,tq,tsq,N;
步骤3、重构tq时刻无同步误差的通道数据zg(n)
(1)输入:yg(n),G,tq,tsq,N;
(2)重构tq时刻无同步误差的通道数据zg(n)
Figure BDA0002663318600000093
式中:n=1、2、...、N;
(4)输出:zg(n),G,tq,tsq,N;
步骤4、整序并输出重构数据pg(n)
(1)输入:zg(n),G,tq,tsq,N;
(2)整序重构数据:pg(n)=zg(n+1),n=0、1、...、N-1;(3)输出:pg(n),G,tq,tsq,N。
具体实施例一:
如表1为现有技术与本发明技术的谐波向量测量
Figure BDA0002663318600000094
Figure BDA0002663318600000101
Figure BDA0002663318600000111
表1
对带宽不大于6kHz的多通道谐波分析仪、傅里叶变换窗口宽度为单周期基波周期为50Hz、单通道采样频率为25.6kHz时,现有技术与本发明技术的谐波向量测量方法与精度指标对比如表2所示。
Figure BDA0002663318600000112
Figure BDA0002663318600000121
表2
结合表1和表2可以看出本发明相比现有技术具有以下优点:
(1)将谐波向量测量精度提高一个数量级。
(2)推动了电力测量的技术进步;谐波向量测量问题是电力向量测量技术的关键和难点,电力向量测量技术是智能电网的关键技术,我国电力向量测量仪器高端市场目前大部分被美国公司占领,本发明技术的应用将使我国电力向量测量仪器的制造技术和电力向量测量技术达到甚至超过国际先进水平。
(3)提高电能质量治理工程的技术水平和经济效益;谐波向量测量技术将从根本上解决谐波的辨识问题,从而更加科学地制定电能质量治理方案,使电能质量治理更加经济有效。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (1)

1.一种交流电力谐波向量测量方法,包括以下步骤:stp1,多通道异步数据采集;stp2,计算基波运行周期;stp3,矩形窗口重构数据;stp4,傅里叶变换;stp5,数据输出;其特征在于;矩形窗口重构数据包括以下步骤:
步骤1、整序和计算电网基波运行周期T1q
(1)输入:x(n),G,ts;其中,x(n)为系统多通道巡回采集数据,n=0、1、...、∞为x(n)的多通道巡回采集数据序号;G为信号通道总数;ts为系统巡回数据采集周期;
(2)整序:g为信号通道编号,g=0、1、...、G-1;
xg(n)=x(nG+g)
式中:xg(n)为通道数据,n=0、1、...、∞为xg(n)的数据序号;
(3)计算tq时刻的T1q
tq为约定分析计算时间点
选择测量通道中的一个交流电压信号通道计算T1q
Figure FDA0002663318590000011
式中:tsg为通道采样周期,tsg=Gts;nq为tq时刻对应的通道数据序号;n1为nq前距离第E个零点左边最近的xg(n)的单通道数据序号;n2为nq后距离第E+1个零点右边最近的xg(n)的单通道数据序号;E为(n2-n1)tsg时间内周期数;
(4)输出:xg(n),G,tq,tsg,T1q
步骤2、重构tq时刻无频率跟踪误差的通道数据yg(n)
(1)输入:xg(n),G,tq,tsg,T1q,N;
(2)计算t=tq时刻无频率跟踪误差的采样周期tSq
Figure FDA0002663318590000021
N为基波周期内的单通道数据重构点的总数
(3)重构tq时刻无频率跟踪误差的通道数据yg(n)
Figure FDA0002663318590000022
式中:n=0、1、...、N;
(4)输出:yg(n),G,tq,tsq,N;
步骤3、重构tq时刻无同步误差的通道数据zg(n)
(1)输入:yg(n),G,tq,tsq,N;
(2)重构tq时刻无同步误差的通道数据zg(n)
Figure FDA0002663318590000023
式中:n=1、2、...、N;
(4)输出:zg(n),G,tq,tsq,N;
步骤4、整序并输出重构数据pg(n)
(1)输入:zg(n),G,tq,tsq,N;
(2)整序重构数据:pg(n)=zg(n+1),n=0、1、...、N-1;
(3)输出:pg(n),G,tq,tsq,N。
CN202010911150.3A 2020-09-02 2020-09-02 一种交流电力谐波向量测量方法 Active CN112014639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010911150.3A CN112014639B (zh) 2020-09-02 2020-09-02 一种交流电力谐波向量测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010911150.3A CN112014639B (zh) 2020-09-02 2020-09-02 一种交流电力谐波向量测量方法

Publications (2)

Publication Number Publication Date
CN112014639A true CN112014639A (zh) 2020-12-01
CN112014639B CN112014639B (zh) 2022-07-05

Family

ID=73516452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010911150.3A Active CN112014639B (zh) 2020-09-02 2020-09-02 一种交流电力谐波向量测量方法

Country Status (1)

Country Link
CN (1) CN112014639B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751540A (zh) * 2003-01-20 2006-03-22 特因诺夫音频公司 使用多通道信号控制再生单元的方法和装置
US20060235633A1 (en) * 2005-04-15 2006-10-19 The Regents Of The University Of California Poynting-vector based method for determining the bearing and location of electromagnetic sources
CN1902573A (zh) * 2003-12-31 2007-01-24 3M创新有限公司 采用脉冲重构的触敏装置
JP2009074941A (ja) * 2007-09-20 2009-04-09 Fujitsu Ltd 周期信号の振幅測定方法および装置並びに磁気ヘッドの試験方法および装置
CN101706532A (zh) * 2009-11-25 2010-05-12 国网电力科学研究院武汉南瑞有限责任公司 一种谐波阻抗测量方法及测量装置
CN102539915A (zh) * 2012-01-06 2012-07-04 中国矿业大学 时延傅立叶变换测频法精确计算电力谐波参数方法
CN103389492A (zh) * 2013-07-25 2013-11-13 西安电子科技大学 多通道随机谐波调制采样雷达接收机及其方法
CN106532705A (zh) * 2015-12-31 2017-03-22 安徽天电能质量技术有限公司 多同步旋转坐标系下分次谐波补偿的三相四线制apf计算方法
CN106872757A (zh) * 2017-02-17 2017-06-20 国网天津市电力公司 电弧炉电流信号检测中抑制谐波及间谐波噪声的方法
CN109633262A (zh) * 2019-01-29 2019-04-16 国网湖南省电力有限公司 基于组合窗多谱线fft的三相谐波电能计量方法、装置
CN110244199A (zh) * 2019-05-16 2019-09-17 上海金艺检测技术有限公司 基于时域重构的局部放电脉冲统计方法
CN110632387A (zh) * 2019-09-23 2019-12-31 中国计量科学研究院 一种基于交流量子电压的谐波电压测量方法
CN111183364A (zh) * 2017-08-16 2020-05-19 加利福尼亚大学董事会 脉冲磁粒子成像系统和方法
CN111224672A (zh) * 2020-01-16 2020-06-02 哈尔滨工业大学 一种基于多通道延时的多谐波信号欠采样方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751540A (zh) * 2003-01-20 2006-03-22 特因诺夫音频公司 使用多通道信号控制再生单元的方法和装置
CN1902573A (zh) * 2003-12-31 2007-01-24 3M创新有限公司 采用脉冲重构的触敏装置
US20060235633A1 (en) * 2005-04-15 2006-10-19 The Regents Of The University Of California Poynting-vector based method for determining the bearing and location of electromagnetic sources
JP2009074941A (ja) * 2007-09-20 2009-04-09 Fujitsu Ltd 周期信号の振幅測定方法および装置並びに磁気ヘッドの試験方法および装置
CN101706532A (zh) * 2009-11-25 2010-05-12 国网电力科学研究院武汉南瑞有限责任公司 一种谐波阻抗测量方法及测量装置
CN102539915A (zh) * 2012-01-06 2012-07-04 中国矿业大学 时延傅立叶变换测频法精确计算电力谐波参数方法
CN103389492A (zh) * 2013-07-25 2013-11-13 西安电子科技大学 多通道随机谐波调制采样雷达接收机及其方法
CN106532705A (zh) * 2015-12-31 2017-03-22 安徽天电能质量技术有限公司 多同步旋转坐标系下分次谐波补偿的三相四线制apf计算方法
CN106872757A (zh) * 2017-02-17 2017-06-20 国网天津市电力公司 电弧炉电流信号检测中抑制谐波及间谐波噪声的方法
CN111183364A (zh) * 2017-08-16 2020-05-19 加利福尼亚大学董事会 脉冲磁粒子成像系统和方法
CN109633262A (zh) * 2019-01-29 2019-04-16 国网湖南省电力有限公司 基于组合窗多谱线fft的三相谐波电能计量方法、装置
CN110244199A (zh) * 2019-05-16 2019-09-17 上海金艺检测技术有限公司 基于时域重构的局部放电脉冲统计方法
CN110632387A (zh) * 2019-09-23 2019-12-31 中国计量科学研究院 一种基于交流量子电压的谐波电压测量方法
CN111224672A (zh) * 2020-01-16 2020-06-02 哈尔滨工业大学 一种基于多通道延时的多谐波信号欠采样方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BLASKO,V 等: "A Novel Method for Selective Harmonic Elimination in Power Electronic Equipment", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 *
逄增吉: "基于小波变换与傅里叶分析的谐波检测方法研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 *
高云鹏等: "三相多功能谐波电能表设计", 《湖南大学学报(自然科学版)》 *

Also Published As

Publication number Publication date
CN112014639B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
CN101915874B (zh) 一种基于傅立叶变换的谐波检测方法
US9170986B2 (en) Power quality meter and method of waveform anaylsis and compression
Djokic et al. Phase measurement of distorted periodic signals based on nonsynchronous digital filtering
CN103257271A (zh) 一种基于stm32f107vct6的微电网谐波与间谐波检测装置及检测方法
Barros et al. A discussion of new requirements for measurement of harmonic distortion in modern power supply systems
CN110244116A (zh) 直流瞬时功率的计量电路及其准同步计算方法
CN109507480A (zh) 一种邻近基波/谐波的间谐波检测方法和装置
CN102495250A (zh) 一种基于Hilbert算法的准同步宽频无功电能表及其采样方法
CN114966194A (zh) 一种基于adc的低频计量三相电能表
CN112014639B (zh) 一种交流电力谐波向量测量方法
CN209342802U (zh) 直流瞬时功率的计量电路
CN109239463B (zh) 一种基于线性修正算法的介质损耗测量方法
CN112014638B (zh) 基于周期优化和数据重构的交流电力谐波向量测量方法
Kitzig et al. Accuracy of power quality measurement based on interpolated sampling
Rodrigues et al. Low-cost embedded measurement system for power quality frequency monitoring
Fromm et al. Accurate measurement of wide-range power system frequency changes for generator protection
KR101997633B1 (ko) Teo 및 desa를 이용한 자동 동기화 파라미터 측정 장치
CN103616580B (zh) 合并单元数据转换角差测试方法
CN103513115B (zh) 一种工厂配电电缆充电电容在线测量装置及方法
CN113835674A (zh) 一种可变速率的电能表计量用四象限乘法器
de Araújo et al. Dedicated hardware implementation of a high precision power quality meter
Xian-chun et al. Design of three-phase multi-purpose standard electric energy meter
CN102147428A (zh) 一种变频器输出电压的数字测量方法和测量装置
Ferrigno et al. A study on the feasibility and effectiveness of digital filters approach for power quality monitoring in compliance with IEC 61000-4-7
Zhou et al. Study on Self-Monitoring Scheme of the Accuracy Deviation for the Merging Unit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant