CN112011597A - 一种诱导型变构探针结合滚环扩增的镉离子传感方法 - Google Patents

一种诱导型变构探针结合滚环扩增的镉离子传感方法 Download PDF

Info

Publication number
CN112011597A
CN112011597A CN202010720349.8A CN202010720349A CN112011597A CN 112011597 A CN112011597 A CN 112011597A CN 202010720349 A CN202010720349 A CN 202010720349A CN 112011597 A CN112011597 A CN 112011597A
Authority
CN
China
Prior art keywords
probe
rolling circle
circle amplification
cadmium
cadmium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010720349.8A
Other languages
English (en)
Other versions
CN112011597B (zh
Inventor
黄和
李昺之
张幸
锁缇莹
张世林
谢思盈
夏安祺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN202010720349.8A priority Critical patent/CN112011597B/zh
Publication of CN112011597A publication Critical patent/CN112011597A/zh
Application granted granted Critical
Publication of CN112011597B publication Critical patent/CN112011597B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种诱导型变构探针结合滚环扩增的镉离子传感方法,该方法可以实现对微量镉离子的高灵敏性和特异型的检测。空气、水、土壤中潜在的重金属污染无处不在,严重影响了人们的生活质量和身体健康。重金属离子镉是粮食污染中一种常见的重金属。镉很易蓄积在人体的肾脏、骨组织、眼睛和其他器官组织中,尤其在肾脏和骨组织中的蓄积现象最为严重,可引发肾衰竭、易碎性骨折等疾病,威胁人体健康。由于及其微量的镉离子也会造成人体的严重损伤,所以对于环境的保护以及食品的安全具有重大意义。

Description

一种诱导型变构探针结合滚环扩增的镉离子传感方法
技术领域
本发明涉及分析检测方法,具体涉及一种诱导型变构探针结合滚环扩增的镉离子传感方法。
背景技术
美国环境保护局(EPA),设定了饮用水中的最大镉污染值为5ppb,考虑到它的有害影响,我们需要一种敏感、可靠的镉离子检测技术。常见的镉离子检测技术有原子吸收光谱法、原子荧光光谱法以及诱导耦合等离子体光谱法。虽然这些方法的选择性和准确性很高,但是他们中大多数都是要求有复杂的预处理、复杂的工具以及耗时的工具。
作为一种高效扩增技术,滚环扩增(RCA)是一种简单、高效的等温酶扩增技术,它利用独特的DNA和RNA聚合酶,例如Phi29、Bst、Vent exo-DNA聚合酶以及T7 RNA聚合酶,最终可产生包含数十至数百个串联重复序列的单链DNA或者RNA。这种强大的扩增技术已成为生物医学研究和纳米生物技术中优良的工具。虽然这种扩增方法非常方便、高效,但是RCA系统在实际应用中由于产物量大,会引起非特异性结合。这是其在实际应用中的一个很大的挑战。
采用传统扩增方法检测镉离子,实验步骤繁琐,成本高,费时费力。同时,传统扩增方法对实验环境要求苛刻,需要变温处理。
发明内容
发明目的:本发明的目的在于提供一种诱导型变构探针结合滚环扩增的镉离子传感方法,该方法提高了检测镉离子的灵敏度与特异性,并且克服了现有分析检测方法繁琐与耗时的缺点。
技术方案:本发明所述的诱导型变构探针结合滚环扩增的镉离子传感方法,包括如下步骤:
(1)分别将探针溶液与不同浓度的镉离子样品溶液充分反应;其中,探针5’端环化,中间部分形成双链,另一端成游离状态,当镉离子存在时,探针被诱导成哑铃型;
(2)然后加入引物,进行孵育;
(3)将步骤(2)所得产物加入含有T4连接酶的缓冲液中,孵育,使得整个探针形成闭合哑铃型模板;
(4)将步骤(3)所得产物与Phi 29DNA聚合酶反应,得到滚环扩增产物;
(5)在步骤(4)得到的产物中加入荧光染料SYBR Green I溶液,使染料插入到双链DNA的小沟中,在500-540nm的激发波长下,用紫外分光光度计进行检测样品,然后在477-517nm的激发波下测得的荧光强度;
(6)使用Real-Time PCR方法对(4)中的样品进行检测,验证准确性。
所述的诱导型变构探针结合滚环扩增的镉离子传感方法,步骤(3)中所述的含有T4连接酶的缓冲液含有Tris-HCl、MgCl2、DTT、ATP。
所述的诱导型变构探针结合滚环扩增的镉离子传感方法,步骤(4)中滚环扩增反应所加入的缓冲液含有Tris-HCl、MgCl2、(NH4)2SO4、DTT,同时还加入BSA、dNTP。
所述的诱导型变构探针结合滚环扩增的镉离子传感方法,步骤(5)中所述荧光染料SYBR Green I溶液是用含有EDTA的Tris-HCl缓冲液稀释荧光染料SYBR Green I溶液后所得。
所述的诱导型变构探针结合滚环扩增的镉离子传感方法:
探针序列:
5’P-GGGCAGTGATCCAGAGGAAGGAGAGGATCACTGCCCCCTAGGACTGTTGTGGTATTATTTTTGGTTGTGCTAGG-OH 3’;
引物序列:5’-CTCTCCTTCCTCTG-3’。
所述的诱导型变构探针结合滚环扩增的镉离子传感方法,步骤(5)中加入的SYBRGreen I溶液与步骤(4)得到的产物溶液的体积比1/5-1/15,室温下混合孵育10-40min;测得荧光强度是使用荧光分光光度计进行测量。
所述的一种诱导型变构探针结合滚环扩增的镉离子传感方法,步骤(1)中的含镉离子样品的浓度为0-100μg/L。
本方法的原理如图1所示。当含有目标物时,由于目标物与适配体的相互结合,使得探针构象发生变化,形成哑铃型的DNA模板。以供后续的信号扩增反应。当没有目标物时,无法启动整个扩增反应,使得最终检测到的荧光强度很低。
有益效果:与现有技术相比,本发明具有以下显著优点:1、本发明的方法简单、高敏感、成本效益高。2、本方法特异性高,采用的探针经过精巧的设计,使得只有目标物可以诱导探针形成哑铃型模板,这种探针既可作为识别目标物的元件,又作为启动信号扩增的模板,充分利用了核酸的可编程性,降低了非特异性核酸构象的改变。3、本方法借助了滚环扩增作为信号扩增的手段,避免了传统扩增方法的繁琐。4、整个反应都在恒温下进行,对于实时定点的检测样品具有巨大的意义。5、本发明采用探针设计与恒温的扩增技术相结合形成检测痕量金属元素的传感方法,可用于食品、水样中有害离子的检测,具有无需额外标记、变温处理、高灵敏、低成本、高通量检测的优势,具有良好的应用前景。
附图说明
图1是该方法的整个策略图;
图2是该方法在含有不同浓度的镉离子样品中的荧光强度的变化趋势;
图3是该方法的特异性检测分析;
图4是样品中同时含有镉离子和其他离子时(比例为1:10)进行的荧光对比图;
图5是与图2相同条件下利用Real-Time PCR进行检测相同的样品得到的荧光强度变化的趋势(Cd2+=50ppb)。
具体实施方式
药品和试剂:实验中所使用的的所有DNA均由生工生物工程(上海,中国)合成,并且经HPLC纯化。
实施例1
1)分别取3μL的含有镉离子的不同浓度的样品溶液与3μL的探针序列进行孵育。然后加入3μL的引物,进行孵育10min。然后,将混合液加到含有1μL的T4 DNA连接酶的10×T4DNA连接缓冲液(400mM Tris-HCl、100mM MgCl2、10mM DTT、5mM ATP,pH 7.8)中,在加入4.8μL的DEPC水在室温下共孵育10min。可以得到不同量的连接产物。
表1 DNA序列
Figure BDA0002599735920000031
2)分别取20μL的1)所得的连接产物与4μL的缓冲液2(50mM Tris-HCl,10mM MgCl2,10mM(NH4)2SO4,4mM DTT,pH 7.5@25℃)、1μL的BSA(10mg/mL)、5μL的dNTP(10mM)、1μL的Phi29 DNA聚合酶(10U/μL)以及9μL的DEPC水混合,使得整个反应在37℃下孵育2h。最后得到不同量的DNA链。
3)荧光染料SYBR Green I溶液用10mM Tris-HCl 10mM EDTA pH=8.0的溶液,按照1:10000的比例进行稀释。分别在2)所得到的反应溶液中加入等量的稀释后的SYBRGreen I溶液,具体加入的体积约为终体积的1/10,将混合液孵育30min,最终在520nm的激发波长下,用紫外分光光度计进行检测,然后得到497nm的激发波下的荧光强度。
实施例2
灵敏度实验
选择镉离子浓度分别为0、10、20、30、40、50、60、70、80、90、100ppb的样本溶液进行验证,结果如图2所示。确定了检测线性范围为1-60ppb,检测限达到了0.08ppb。
实施例3
本发明与基于Real-Time PCR的检测结果进行比较
由于该方法与基于荧光染料的荧光来检测最终的荧光强度,所以我们使用了检测荧光强度的金标准方法Real-Time PCR进行验证试验。检测实施例2的样品,Cd 2+=50ppb,结果如图3所示。我们的方法比Real-Time PCR方法更加灵敏和节约时间。
实施例4
选择性实验
重复实施实例1中的步骤,其它条件不变,选择铅离子、镍离子、钴离子作为干扰元素检测荧光,得到本方法的选择性结果图,在相同条件下,检测其他离子与镉离子的荧光值如图4所示,从图中可以看出本发明所述方法对目标分子具有良好的选择性。如图5所示,可以看出该方法具有很好的抗干扰性以及准确性。
实施例5
本发明检测方法的回收率实验
将样品换成去离子水,并向样品中分别加入等量20、40、60ppb的Cd2+,获得本方法在实际样品检目标分子测中的回收率,结果见表2。
表2基于一种诱导型变构探针结合滚环扩增的镉离子传感方法分析
Figure BDA0002599735920000041

Claims (7)

1.一种诱导型变构探针结合滚环扩增的镉离子传感方法,其特征在于,包括如下步骤:
(1)分别将探针溶液与不同浓度的镉离子样品溶液充分反应;其中,探针5’端环化,中间部分形成双链,另一端成游离状态,当镉离子存在时,探针被诱导成哑铃型;
(2)然后加入引物,进行孵育;
(3)将步骤(2)所得产物加入含有T4连接酶的缓冲液中,孵育,使得整个探针形成闭合哑铃型模板;
(4)将步骤(3)所得产物与Phi 29DNA聚合酶反应,得到滚环扩增产物;
(5)在步骤(4)得到的产物中加入荧光染料SYBR Green I溶液,使染料插入到双链DNA的小沟中,在500-540nm的激发波长下,用紫外分光光度计进行检测样品,然后在477-517nm的激发波下测得的荧光强度;
(6)使用Real-Time PCR方法对(4)中的样品进行检测,验证准确性。
2.根据权利要求1所述的诱导型变构探针结合滚环扩增的镉离子传感方法,其特征在于,步骤(3)中所述的含有T4连接酶的缓冲液含有Tris-HCl、MgCl2、DTT、ATP。
3.根据权利要求书1所述的诱导型变构探针结合滚环扩增的镉离子传感方法,其特征在于,步骤(4)中滚环扩增反应所加入的缓冲液含有Tris-HCl、MgCl2、(NH4)2SO4、DTT,同时还加入BSA、dNTP。
4.根据权利要求书1所述的诱导型变构探针结合滚环扩增的镉离子传感方法,其特征在于,步骤(5)中所述荧光染料SYBR Green I溶液是用含有EDTA的Tris-HCl缓冲液稀释荧光染料SYBR Green I溶液后所得。
5.根据权利要求1所述的诱导型变构探针结合滚环扩增的镉离子传感方法,其特征在于:
探针序列:
5’P-GGGCAGTGATCCAGAGGAAGGAGAGGATCACTGCCCCCTAGGACTGTTGTGGTATTATTTTTGGTTGTGCTAGG-OH3’;
引物序列:5’-CTCTCCTTCCTCTG-3’。
6.根据权利要求1所述的诱导型变构探针结合滚环扩增的镉离子传感方法,其特征在于,步骤(5)中加入的SYBR Green I溶液与步骤(4)得到的产物溶液的体积比1/5-1/15,室温下混合孵育10-40min;测得荧光强度是使用荧光分光光度计进行测量。
7.根据权利要求1所述的一种诱导型变构探针结合滚环扩增的镉离子传感方法,其特征在于,步骤(1)中的含镉离子样品的浓度为0-100μg/L。
CN202010720349.8A 2020-07-24 2020-07-24 一种诱导型变构探针结合滚环扩增的镉离子传感方法 Active CN112011597B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010720349.8A CN112011597B (zh) 2020-07-24 2020-07-24 一种诱导型变构探针结合滚环扩增的镉离子传感方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010720349.8A CN112011597B (zh) 2020-07-24 2020-07-24 一种诱导型变构探针结合滚环扩增的镉离子传感方法

Publications (2)

Publication Number Publication Date
CN112011597A true CN112011597A (zh) 2020-12-01
CN112011597B CN112011597B (zh) 2023-03-21

Family

ID=73498530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010720349.8A Active CN112011597B (zh) 2020-07-24 2020-07-24 一种诱导型变构探针结合滚环扩增的镉离子传感方法

Country Status (1)

Country Link
CN (1) CN112011597B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113355400A (zh) * 2021-04-06 2021-09-07 南京师范大学 一种基于t3 dna连接酶的镉离子检测方法
CN116179654A (zh) * 2022-12-30 2023-05-30 军事科学院军事医学研究院环境医学与作业医学研究所 一种检测水中镉离子的滚环扩增检测体系及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876323A (zh) * 2012-10-25 2013-01-16 中国科学院新疆理化技术研究所 一种镉离子荧光探针及制备方法和用途
CN102936501A (zh) * 2012-11-01 2013-02-20 华东理工大学 量子点-有机染料复合物关/开型镉离子比率荧光探针及其制备方法
CN104311548A (zh) * 2014-11-10 2015-01-28 苏州太湖电工新材料股份有限公司 镉离子传感器和功能性发泡聚氨酯
CN104673279A (zh) * 2015-03-24 2015-06-03 郑州大学 一种水溶性镉离子荧光探针分子及其制备方法与应用
CN107966436A (zh) * 2017-10-27 2018-04-27 中国农业大学 一种基于镉的功能核酸的可视化传感器及其应用
CN110257415A (zh) * 2019-07-05 2019-09-20 中国农业大学 一种用于金属离子检测的核酸蛋白复合型微生物全细胞传感器构建及阈值调控技术

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876323A (zh) * 2012-10-25 2013-01-16 中国科学院新疆理化技术研究所 一种镉离子荧光探针及制备方法和用途
CN102936501A (zh) * 2012-11-01 2013-02-20 华东理工大学 量子点-有机染料复合物关/开型镉离子比率荧光探针及其制备方法
CN104311548A (zh) * 2014-11-10 2015-01-28 苏州太湖电工新材料股份有限公司 镉离子传感器和功能性发泡聚氨酯
CN104673279A (zh) * 2015-03-24 2015-06-03 郑州大学 一种水溶性镉离子荧光探针分子及其制备方法与应用
CN107966436A (zh) * 2017-10-27 2018-04-27 中国农业大学 一种基于镉的功能核酸的可视化传感器及其应用
CN110257415A (zh) * 2019-07-05 2019-09-20 中国农业大学 一种用于金属离子检测的核酸蛋白复合型微生物全细胞传感器构建及阈值调控技术

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIN ZHOU等: "Label-free fluorescent aptasensor of Cd2+ detection based on the conformational switching of aptamer probe and SYBR green I", 《MICROCHEMICAL JOURNAL》 *
QINGWANG XUE等: "Target-responsive dumbbell probe-mediated rolling circle amplifification strategy for highly sensitive Hg2+ detection", 《RSC ADV》 *
YUAN LIU等: "Cd-Aptamer Electrochemical Biosensor Based on", 《JOURNAL OF BIOMEDICAL NANOTECHNOLOGY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113355400A (zh) * 2021-04-06 2021-09-07 南京师范大学 一种基于t3 dna连接酶的镉离子检测方法
CN113355400B (zh) * 2021-04-06 2023-08-22 南京师范大学 一种基于t3 dna连接酶的镉离子检测方法
CN116179654A (zh) * 2022-12-30 2023-05-30 军事科学院军事医学研究院环境医学与作业医学研究所 一种检测水中镉离子的滚环扩增检测体系及其应用
CN116179654B (zh) * 2022-12-30 2023-09-15 军事科学院军事医学研究院环境医学与作业医学研究所 一种检测水中镉离子的滚环扩增检测体系及其应用

Also Published As

Publication number Publication date
CN112011597B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
Boesenberg-Smith et al. Assessment of DNA yield and purity: an overlooked detail of PCR troubleshooting
Nie et al. Electrochemical detection of tobramycin based on enzymes-assisted dual signal amplification by using a novel truncated aptamer with high affinity
Zhang et al. Double strand DNA-templated copper nanoparticle as a novel fluorescence indicator for label-free detection of polynucleotide kinase activity
Ma et al. A ratiometric fluorescent biosensing platform for ultrasensitive detection of Salmonella typhimurium via CRISPR/Cas12a and silver nanoclusters
Qiu et al. A novel label-free fluorescence aptamer-based sensor method for cocaine detection based on isothermal circular strand-displacement amplification and graphene oxide absorption
Kuhn et al. Comparison of ten different DNA extraction procedures with respect to their suitability for environmental samples
CN112011597B (zh) 一种诱导型变构探针结合滚环扩增的镉离子传感方法
Song et al. Label-free and sensitive detection of Ochratoxin A based on dsDNA-templated copper nanoparticles and exonuclease-catalyzed target recycling amplification
CN108359714B (zh) 一种检测汞离子的生物传感器
Yin et al. Ligation Chain Reaction based gold nanoparticle assembly for ultrasensitive DNA detection
CN112176035A (zh) 一种新型crispr核酸检测方法及应用
Li et al. ExoIII and TdT dependent isothermal amplification (ETDA) colorimetric biosensor for ultra-sensitive detection of Hg2+
CN105675565A (zh) 一种快速检测黄曲霉毒素b1的方法
Xi et al. A highly sensitive strategy for base excision repair enzyme activity detection based on graphene oxide mediated fluorescence quenching and hybridization chain reaction
Chen et al. Superior fluorescent probe for detection of potassium ion
Zhou et al. Fluorometric determination of the activity and inhibition of terminal deoxynucleotidyl transferase via in-situ formation of copper nanoclusters using enzymatically generated DNA as template
Liu et al. A graphene oxide-based fluorescence assay for the sensitive detection of DNA exonuclease enzymatic activity
CN105400781A (zh) 一种双嵌段分子探针及其快速检测核酸方法
CN107884565B (zh) 一种砷离子的检测方法及检测试剂盒
Zhou et al. Gold nanoparticles based colorimetric detection of target DNA after loop-mediated isothermal amplification
CN111505266B (zh) 基于双色荧光分析法定量检测氯霉素的试剂盒及方法
Chen et al. Dual-channel fluorescence detection of antibiotic resistance genes based on DNA-templated silver nanoclusters
CN103305605B (zh) 基于dna自组装的非酶离子检测方法
CN113355400B (zh) 一种基于t3 dna连接酶的镉离子检测方法
Li et al. Robust and highly specific fluorescence sensing of Salmonella typhimurium based on dual-functional phi29 DNA polymerase-mediated isothermal circular strand displacement polymerization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant