CN112011016B - 一种超拉伸、超强韧、耐疲劳水凝胶及其制备方法 - Google Patents

一种超拉伸、超强韧、耐疲劳水凝胶及其制备方法 Download PDF

Info

Publication number
CN112011016B
CN112011016B CN202010966837.7A CN202010966837A CN112011016B CN 112011016 B CN112011016 B CN 112011016B CN 202010966837 A CN202010966837 A CN 202010966837A CN 112011016 B CN112011016 B CN 112011016B
Authority
CN
China
Prior art keywords
hydrogel
super
fatigue
peg
micelle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010966837.7A
Other languages
English (en)
Other versions
CN112011016A (zh
Inventor
雒春辉
谢帅
陈熙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North Minzu University
Original Assignee
North Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Minzu University filed Critical North Minzu University
Priority to CN202010966837.7A priority Critical patent/CN112011016B/zh
Publication of CN112011016A publication Critical patent/CN112011016A/zh
Application granted granted Critical
Publication of CN112011016B publication Critical patent/CN112011016B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于水凝胶制备技术领域,涉及一种超拉伸、超强韧、耐疲劳水凝胶及制备方法。本发明先将端羟基(或端氨基)PEG,碳原子数大于8的烷基酰氯(或烷基羧酸)和催化剂按摩尔比1︰5~15︰1~4溶于无水溶剂,室温反应2~24 h,得到疏水改性PEG。再将去离子水和疏水改性PEG混合,在35~55℃下搅拌8~48 h,使疏水改性PEG水溶液自组装,得到花状胶束水溶液。最后将去离子水、亲水单体、花状胶束水溶液、引发剂和交联剂按质量比为100︰20~35︰1~5︰0.5~1.5︰0~0.5混合均匀,通N2除氧后放入模具,55‑65℃下反应6‑12h,即得。本发明所得水凝胶具有十分优异的弹性、韧性以及耐疲劳特性。

Description

一种超拉伸、超强韧、耐疲劳水凝胶及其制备方法
技术领域
本发明属于水凝胶制备技术领域,具体涉及一种超拉伸、超强韧、耐疲劳水凝胶的制备方法。
背景技术
水凝胶是一种兼具液体与固体优点的聚合物三维网络材料,由于材质柔软,含水率高,生物相容性好,因此广泛应用于组织工程,传感器以及可穿戴设备等领域。而水凝胶在使用过程中除了具备较高断裂强度(兆帕级别),韧性和耐疲劳性能也十分重要。韧性是表征材料耐久性的最重要参数。例如玻璃的强度显著高于塑料,但是篮球很容易砸碎玻璃,而塑料在相同的冲击力作用下能够保持完好无损。这是因为塑料的变形消耗了大量的外界能量,而玻璃等脆性材料很容易出现应力集中。这就需要材料不仅具有较高抗拉强度,还应具备超高韧性,这对拓宽水凝胶在载重领域的应用并延长寿命至关重要。
传统水凝胶由于交联密度不均匀,缺乏能量耗散机制,因此断裂伸长率较低,严重限制了水凝胶的应用。此外,大多数水凝胶在外力作用下会发生不可逆的形变,不具备耐疲劳和自恢复性能。人体组织材料如肌腱和软骨往往有纳米尺度到宏观尺度的多层次结构,能够承受数百兆帕压力而不发生性能劣化。人体活动如行走或跳跃对材料施加了交替压力,这就要求材料不仅强度高,韧性好,还应具备耐疲劳性能。所谓耐疲劳性能是指材料在反复施压-卸载之后韧性和抗压强度与初始值的百分比。例如,软骨替换手术,需要材料服役5年以上,如果材料在承受交替压力时抗压强度迅速衰减,会导致材料提前失效,这会增加患者治疗成本。然而,常见强韧水凝胶不具备耐疲劳特性。如何提高水凝胶的拉伸性能以及耐疲劳特性,是该领域亟待解决的问题。
聚丙烯酰胺(PAM)是一种制备水凝胶的常用聚合物,然而常见PAM水凝胶断裂伸长率在200%左右。在PAM中引入胶束颗粒充当多官能团交联剂,可以构筑胶束交联水凝胶。胶束交联水凝胶中的胶束颗粒不仅能够充当多官能团交联剂,还能够通过变形有效地耗散外界应力,从而赋予水凝胶优异的拉伸性能的韧性,是一种广泛采用的水凝胶增韧技术。
例如,中国专利CN 107936180 A公开了一种笼状中空多孔结构乳液粒子增强增韧疏水缔合水凝胶的制备方法。水凝胶聚合单体贯穿于多孔微球,使多孔微球与水凝胶基体有很强的作用力,所得水凝胶的拉伸强度平均值为1.0MPa左右,拉伸比可达30倍,但是不具备耐疲劳性能。中国专利CN 105085791 A公开 了一种疏水微球增韧水凝胶的制备方法,由于明胶双螺旋结构以及甲基丙烯酸十六酯的疏水缔合作用,所得水凝胶拉伸比可达60倍,也不具备耐疲劳性能。综上,现有胶束交联水凝胶的拉伸比均小于100、韧性低于40 MJ/m3,而且大多不具备耐疲劳性能。兼具高弹性(拉伸比高于100倍)、高韧性(韧性大于40 MJ/m3)以及耐疲劳水凝胶(自恢复效率接近100%)还未见报道。
Zhou等人在2020年报道了一种胶束增韧水凝胶(Super tough, ultra-stretchable, and fast recoverable double network hydrogels physicallycrosslinked by triple non-covalent interactions,polymer,2020, 192: 122319),尽管其韧性高达10.830 MJ/m3,但是水凝胶在第二次压缩时的韧性迅速减低至初次值的~20%。
随着研究的不断深入和技术的不断进步,迫切需要开发兼具超拉伸、超强韧、耐疲劳的水凝胶以拓展其应用领域。
此外,胶束增韧水凝胶合成胶束的过程中表面活性剂(十二烷基硫酸钠、十二烷基苯磺酸钠等)起到了重要作用。但残余表面活性剂难以除去,而且对人体皮肤会产生致敏性、毒性和致癌性等负面作用,极大地限制了水凝胶在生物医疗方面的应用。
超拉伸高强韧水凝胶通常作为软骨或皮肤的替代品被广泛研究,如何提高水凝胶的拉伸性能以及耐疲劳特性,同时避免制备水凝胶过程中残余表面活性剂带来的副作用,是该领域亟待解决的问题。
发明内容
为了解决现有技术中存在的问题,克服现有技术的不足,本发明的首要目的是提供一种以α,ω-双端基疏水改性PEG在水溶液中自组装所得胶束作为多官能团交联点的超拉伸耐疲劳水凝胶。与ABA三嵌段聚合物类似,末端基疏水改性PEG在水溶液里易于形成花状胶束。其外层具有柔性亲水长链,方便单体在聚合时原位形成拓扑结构水凝胶。这种结构的水凝胶在外力作用下通过链缠结点的动态滑移,赋予了水凝胶优异的拉伸性能;胶束内核的疏水链在外力作用下能够发生可逆断裂与重组,耗散了大量外力;这两种非共价键动态可逆的协同作用赋予水凝胶材料优异的抗拉伸和自恢复性能。
本发明的另一个目的是提供一种以α,ω-双端基疏水改性PEG在水溶液中自组装所得胶束作为多官能团交联点的超拉伸耐疲劳水凝胶的制备方法。
为实现上述目的,本发明通过以下技术方案实现:
一种超拉伸、超强韧、耐疲劳水凝胶,其特征在于,所述水凝胶以α,ω-双端基疏水改性PEG在水溶液中自组装所得胶束作为多官能团交联点;所述胶束为花状胶束,其外层具有柔性亲水长链,方便单体在聚合时原位形成拓扑结构水凝胶。
一种超拉伸、超强韧、耐疲劳水凝胶的制备方法,其特征在于,包括以下步骤:
S01. 聚乙二醇(PEG)疏水改性
将具有端羟基或端氨基的聚乙二醇(PEG)、碳原子数大于8的烷基酰氯或烷基羧酸和催化剂按照摩尔比为1︰5~15︰1~4溶于适量无水溶剂中,于室温下反应2 h ~ 24 h;然后将所得产物依次通过洗涤、透析、冷冻干燥的方式除去杂质后得到疏水改性聚乙二醇(PEG),所述疏水改性聚乙二醇(PEG)为α,ω-双端基疏水改性聚乙二醇(PEG)。
S02. 疏水改性聚乙二醇(PEG)水溶液自组装
按照去离子水︰疏水改性PEG为100︰1~5的质量比,取去离子水和由步骤S01所得疏水改性PEG,置单口瓶中,在密闭条件下,于35 ℃ ~ 55 ℃搅拌8 h ~ 48 h,得到花状胶束水溶液。
S03. 花状胶束交联水凝胶的制备
将去离子水、亲水单体、花状胶束水溶液、引发剂和交联剂按照质量比为100︰20~35︰1~5︰0.5~1.5︰0~0.5混合均匀,通N2除氧后放入模具,在55 ℃ ~ 65 ℃条件下反应6 h~ 12 h,得到目标水凝胶。
进一步,步骤S01中所述具有端羟基或端氨基的聚乙二醇的数均分子量大于1000。
进一步,步骤S01中所述催化剂为三乙胺或二环乙基碳二亚胺中至少一种。
进一步,步骤S01中所述无水溶剂为极性无水溶剂,具体为二氯甲烷、二甲基甲酰胺(DMF)、四氢呋喃中至少一种,其用量为(50 mL~100 mL)。
进一步,步骤S03中所述亲水单体为含双键的亲水单体,具体为丙烯酰胺、二甲基丙烯酰胺、丙烯酸、甲基丙烯酸羟乙酯中的一种或多种。
进一步,步骤S03中所述引发剂为水溶性引发剂,具体为过硫酸钾、过硫酸铵中的一种或两种。
本发明所得水凝胶在外力作用下通过链缠结点的动态滑移,赋予了水凝胶优异的拉伸性能;胶束内核的疏水链在外力作用下能够发生可逆断裂与重组,耗散了大量外力;这两种非共价键动态可逆的协同作用赋予水凝胶材料优异的抗拉伸和自恢复性能。
本发明的有益效果:
本发明与现有技术相比具有如下突出的实质性特点和显著进步。
(1)本发明所得水凝胶具有十分优异的弹性、韧性以及耐疲劳特性。本发明所得水凝胶的抗拉强度可达1.3 MPa,拉伸比可达140倍,韧性高达72.0 MJ/m3,抗压强度高达120.0 MPa,而且循环压缩10次以后其强度保持率仍在100%左右,韧性保持率在90%以上。发明人将本发明实施例4所得水凝胶的性能参数与文献进行了对比,详见表1:
Figure 73452DEST_PATH_IMAGE001
(2)本发明水凝胶制备过程中不使用乳化剂,避免了残余乳化剂带来的不良影响。
(3)本发明制备超拉伸、超强韧、耐疲劳水凝胶的增韧机理与现有胶束交联水凝胶相比,具有显著差异,如图1所示。由图1可以看出:普通胶束只能依靠物理吸附作用与聚丙烯酰胺链(PAM)作用,因此界面相互作用力很弱,弹性韧性和耐疲劳性能欠佳。而本发明所得α,ω-双端基疏水改性PEG在水溶液中会自发组装成花状胶束,这就增大了PAM链与PEG链之间通过原位聚合形成拓扑交联结构水凝胶的概率,极大提高了界面作用力。这种凝胶PAM与PEG之间的交联点可以发生“滑动”从而使交联网络均匀化。这种滑动与胶束变形有效耗散了外力,赋予了材料优异的弹性、韧性以及耐疲劳性质。
附图说明
图1是本发明水凝胶与现有胶束交联水凝胶相比的增韧机理示意图。
图2为本发明实施例1中使用的改性前PEG与由实施例1所得疏水改性PEG的红外谱图。
图3为由本发明实施例3所得花状胶束粒径分布图。
图4为由本发明实施例3所得水凝胶拉伸前后的照片。
图5为由本发明实施例3所得水凝胶的拉伸应力-应变曲线。
图6为由本发明实施例3所得水凝胶的压缩应力-应变曲线。
图7为由本发明实施例4所得水凝胶的拉伸应力-应变曲线。
图8为由本发明实施例4所得水凝胶经过10次循环压缩的应力-应变曲线以及韧性恢复率示意图。
图9为由本发明实施例4所得水凝胶经过10次循环压缩后强度恢复率示意图。
具体实施方式
下面结合附图对本发明的技术方案进行详细说明,但本发明的实施并不局限于此。
实施例1:
聚乙二醇(PEG)疏水改性
将聚乙二醇(分子量8000)、十二烷基酰氯和三乙胺按照摩尔比为1︰10︰4的比例,溶于无水二氯甲烷(用量90 mL)中,室温下反应4 h。将反应所得产物依次通过过滤、洗涤、透析、冷冻干燥后得到改性PEG。
红外测试:
用美国Thermo公司生产的Nicolet Avatar 380 傅立叶变换红外光谱仪对疏水改性前后的PEG进行扫描分析。
实施例1中使用的改性前PEG与由实施例1所得改性PEG的红外谱图,如图2所示。
实施例2:
聚乙二醇(PEG)疏水改性
将端氨基聚乙二醇(分子量2000)、硬脂酸和二环乙基碳二亚胺按照摩尔比为1︰6︰2的比例,溶于无水四氢呋喃(用量 60 mL)中,室温下反应12 h。将反应所得产物依次通过过滤、洗涤、透析、冷冻干燥后得到改性PEG。
实施例3:
由实施例1所得疏水改性PEG制备目标水凝胶,并进行机械性能测试,具体操作如下:
1、疏水改性聚乙二醇水溶液自组装
取100份去离子水和3份由实施例1所得疏水改性PEG,置单口瓶中,脱氧,在40 ℃条件下搅拌12 h,得到花状胶束水溶液。
采用纳米粒度仪测量所得花状胶束水溶液。由实施例3所得花状胶束粒径分布图,如图3所示。由图3可知,花状胶束平均粒径为163 nm。
2、目标水凝胶的制备
取去离子水、二甲基丙烯酰胺、实施例3所得胶束水溶液、过硫酸铵,按照质量比为100︰20︰1︰1混合均匀。将所得混合溶液除氧后放入模具中,在60℃条件下反应12 h,得到目标水凝胶。
3、目标水凝胶机械性能测试:
拉伸试验:采用HZ-1003B型电子拉力机(东莞市力显仪器科技有限公司)对所得水凝胶进行拉伸试验。拉伸试样尺寸为50 mm×10 mm×1.5 mm,断裂伸长率定义为样品断裂时的应变,拉伸的速度为100 mm/min。每组进行五组实验,结果取平均值。
机械性能测试结果表明:由实施例3制备所得目标水凝胶的抗拉强度为0.2 MPa,拉伸比为270倍,韧性为42.1 MJ/m3,抗压强度为106 MPa。
由实施例3所得水凝胶拉伸前后的照片,如图4所示;由图4可以看出水凝胶在拉伸比为246倍时依然完好,没有发生断裂。
由实施例3所得水凝胶的拉伸应力-应变曲线,如图5所示。
由实施例3所得水凝胶的压缩应力-应变曲线,如图6所示。
实施例4:
由实施例2所得疏水改性PEG制备目标水凝胶,并进行机械性能测试,具体操作如下:
1、疏水改性聚乙二醇水溶液自组装
取100份去离子水和3份由实施例2所得疏水改性PEG,置单口瓶中,脱氧,在50℃条件下搅拌24 h,得到花状胶束水溶液。
2、目标水凝胶的制备
取去离子水、丙烯酰胺、实施例4所得胶束水溶液、过硫酸钾、双丙烯酰胺,按照质量比为100︰30︰5︰1︰0.2混合均匀。将所得混合溶液除氧后放入模具中,在65℃条件下反应8h,得到目标水凝胶。
3、目标水凝胶机械性能测试:
拉伸试验:采用HZ-1003B型电子拉力机(东莞市力显仪器科技有限公司)对所得水凝胶进行拉伸试验。拉伸试样尺寸为50 mm×10 mm×1.5 mm,断裂伸长率定义为样品断裂时的应变,拉伸的速度为100 mm/min。每组进行五组实验,结果取平均值。
由实施例4所得水凝胶的拉伸应力-应变曲线,如图7所示。由图可以看出,由实施例4制备所得目标水凝胶的抗拉强度为1.3 MPa,拉伸比为140倍,韧性为72.0 MJ/m3,抗压强度为120.0 MPa。
滞后实验:采用HZ-1003B型电子拉力机(东莞市力显仪器科技有限公司)对所得水凝胶进行循环压缩试验。固定形变为75%,将样品压缩到预定应变然后卸载,完成加载-卸载实验,通过应力-应变,10次循环后的强度与韧性恢复率(经过10次循环压缩后第n次抗压强度与韧性和第一次数值的百分比)评价水凝胶耐疲劳性质。
由实施例4所得水凝胶经过10次循环压缩的应力-应变曲线以及韧性恢复率,如图8所示。由图8可知,水凝胶10次循环压缩曲线几乎重合,韧性恢复率大于90%。
由实施例4所得水凝胶经过10次循环压缩后强度恢复率,如图9所示。由图9可知,水凝胶10次循环压缩曲线几乎重合,强度恢复率接近100%,表明所得水凝胶具有优异的耐疲劳性质。
以上所述,仅是本发明的较佳实施例,并非用以限制本发明的权利范围。任何以本申请专利范围所涵盖的权利范围实施的技术方案,或者任何熟悉本领域的技术人员,利用上述揭示的方法内容做出许多可能的变动和修饰的方案,均属于本发明的保护范围。

Claims (7)

1.一种超拉伸、超强韧、耐疲劳水凝胶,其特征在于,所述水凝胶以α,ω-双端基疏水改性PEG在水溶液中自组装所得胶束作为多官能团交联点;所述胶束为花状胶束,其外层具有柔性亲水长链,方便单体在聚合时原位形成拓扑结构水凝胶;所述疏水改性PEG是由碳原子数大于8的烷基酰氯或烷基羧酸对具有端羟基或端氨基的聚乙二醇进行疏水改性得到;所述具有端羟基或端氨基的聚乙二醇的数均分子量大于1000。
2.一种如权利要求1所述的超拉伸、超强韧、耐疲劳水凝胶的制备方法,其特征在于,包括以下步骤:
S01. PEG疏水改性
将具有端羟基或端氨基的PEG、碳原子数大于8的烷基酰氯或烷基羧酸和催化剂按照摩尔比为1︰5~15︰1~4溶于适量无水溶剂中,于室温下反应2 h ~ 24 h;然后将所得产物依次通过洗涤、透析、冷冻干燥的方式除去杂质后得到疏水改性聚乙二醇;所述无水溶剂为极性无水溶剂;所述具有端羟基或端氨基的聚乙二醇的数均分子量大于1000;
S02. 疏水改性PEG水溶液自组装
按照去离子水︰疏水改性PEG为100︰1~5的质量比,取去离子水和由步骤S01所得疏水改性PEG,置单口瓶中,在密闭条件下,于35 ℃ ~ 55 ℃搅拌8 h ~ 48 h,得到花状胶束水溶液;
S03. 花状胶束交联水凝胶的制备
将去离子水、亲水单体、花状胶束水溶液、引发剂和交联剂按照质量比为100︰20~35︰1~5︰0.5~1.5︰0~0.5混合均匀,通N2除氧后放入模具,在55 ℃ ~ 65 ℃条件下反应6 h ~ 12h,得到目标水凝胶;所述亲水单体为含双键的亲水单体。
3.如权利要求2所述的超拉伸、超强韧、耐疲劳水凝胶的制备方法,其特征在于,步骤S01中所述催化剂为三乙胺或二环乙基碳二亚胺中至少一种。
4.如权利要求2所述的超拉伸、超强韧、耐疲劳水凝胶的制备方法,其特征在于,步骤S01中所述无水溶剂为二氯甲烷、二甲基甲酰胺、四氢呋喃中至少一种,其用量为50 mL~100mL。
5.如权利要求2所述的超拉伸、超强韧、耐疲劳水凝胶的制备方法,其特征在于,步骤S03中所述亲水单体为丙烯酰胺、二甲基丙烯酰胺、丙烯酸、甲基丙烯酸羟乙酯中的一种或多种。
6.如权利要求2所述的超拉伸、超强韧、耐疲劳水凝胶的制备方法,其特征在于,步骤S03中所述引发剂为水溶性引发剂。
7.如权利要求6所述的超拉伸、超强韧、耐疲劳水凝胶的制备方法,其特征在于,所述水溶性引发剂具体为过硫酸钾、过硫酸铵中的一种或两种。
CN202010966837.7A 2020-09-15 2020-09-15 一种超拉伸、超强韧、耐疲劳水凝胶及其制备方法 Expired - Fee Related CN112011016B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010966837.7A CN112011016B (zh) 2020-09-15 2020-09-15 一种超拉伸、超强韧、耐疲劳水凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010966837.7A CN112011016B (zh) 2020-09-15 2020-09-15 一种超拉伸、超强韧、耐疲劳水凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN112011016A CN112011016A (zh) 2020-12-01
CN112011016B true CN112011016B (zh) 2022-12-23

Family

ID=73521428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010966837.7A Expired - Fee Related CN112011016B (zh) 2020-09-15 2020-09-15 一种超拉伸、超强韧、耐疲劳水凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN112011016B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104497219A (zh) * 2014-12-15 2015-04-08 华南理工大学 一种高回弹性自修复高分子水凝胶及其制备方法
CN104530311A (zh) * 2014-12-17 2015-04-22 长春工业大学 一种缺口不敏感性强韧水凝胶及其制备方法
CN111484635A (zh) * 2020-06-10 2020-08-04 杭州铭善生物科技有限公司 一种温敏性水凝胶材料的改性方法、改性温敏性水凝胶材料和生物3d打印墨水

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104497219A (zh) * 2014-12-15 2015-04-08 华南理工大学 一种高回弹性自修复高分子水凝胶及其制备方法
CN104530311A (zh) * 2014-12-17 2015-04-22 长春工业大学 一种缺口不敏感性强韧水凝胶及其制备方法
CN111484635A (zh) * 2020-06-10 2020-08-04 杭州铭善生物科技有限公司 一种温敏性水凝胶材料的改性方法、改性温敏性水凝胶材料和生物3d打印墨水

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1,2-Dithiolane-Derived Dynamic, Covalent Materials: Cooperative Self-Assembly and Reversible Cross-Linking;Xiangyi Zhang等;《Journal of the American Chemical Society》;20170228;第3822-3833页 *
Super tough, ultra-stretchable, and fast recoverable double network hydrogels physically crosslinked by triple non-covalent interactions;Linjie Zhou等;《Polymer》;20200402;第122319页 *

Also Published As

Publication number Publication date
CN112011016A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
Liu et al. Highly tough, stretchable and resilient hydrogels strengthened with molecular springs and their application as a wearable, flexible sensor
Li et al. Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly (acrylic acid)
CN106397646B (zh) 高强度超分子水凝胶及其制备方法和应用
Li et al. Hydrophobically associated hydrogels based on acrylamide and anionic surface active monomer with high mechanical strength
Wang et al. Jellyfish gel and its hybrid hydrogels with high mechanical strength
CN110551296B (zh) 一种果胶基双物理交联水凝胶及制备方法和应用
Jiang et al. A self-healable and tough nanocomposite hydrogel crosslinked by novel ultrasmall aluminum hydroxide nanoparticles
CN108409997B (zh) 一种含有纤维素纳米晶须的超高强度各向异性水凝胶的制备方法
CN107417855B (zh) 一种有机无机杂化乳液粒子增韧疏水缔合水凝胶及其制备方法
Zhang et al. Ultra stretchable, tough and self-healable poly (acrylic acid) hydrogels cross-linked by self-enhanced high-density hydrogen bonds
CN109206634A (zh) 明胶基高强度水凝胶及其制备方法
Wang et al. Mechanically strong and tough hydrogels with excellent anti-fatigue, self-healing and reprocessing performance enabled by dynamic metal-coordination chemistry
Zhong et al. Tough superabsorbent poly (acrylic acid) nanocomposite physical hydrogels fabricated by a dually cross-linked single network strategy
CN112898597B (zh) 离子键与配位键协同增强聚两性电解质水凝胶及其制备方法
Li et al. A novel fabrication method of temperature-responsive poly (acrylamide) composite hydrogel with high mechanical strength
Cui et al. Strain hardening and highly resilient hydrogels crosslinked by chain-extended reactive pseudo-polyrotaxane
CN112480312B (zh) 一种高弹性高强度双交联多孔水凝胶的制备方法
Yang et al. Highly stretchable and self-healing hydrogels based on poly (acrylic acid) and functional POSS
Wang et al. Synthesis and characterization of multi-sensitive microgel-based polyampholyte hydrogels with high mechanical strength
Lin et al. Double-crosslinked network design for self-healing, highly stretchable and resilient polymer hydrogels
Ding et al. Synthesis and characterisation of high resilience collagen-polyacrylamide semi-interpenetrating network hydrogel
CN106519152A (zh) 一种聚合物纳米粒子、复合水凝胶及其制备方法
Sun et al. Extremely stretchable and tough hybrid hydrogels based on gelatin, κ-carrageenan and polyacrylamide
CN112011016B (zh) 一种超拉伸、超强韧、耐疲劳水凝胶及其制备方法
CN112876594B (zh) 水凝胶材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221223

CF01 Termination of patent right due to non-payment of annual fee