CN112007658A - 一种硫化镉锌-钛酸纳米管复合光触媒制备方法 - Google Patents

一种硫化镉锌-钛酸纳米管复合光触媒制备方法 Download PDF

Info

Publication number
CN112007658A
CN112007658A CN202010790927.5A CN202010790927A CN112007658A CN 112007658 A CN112007658 A CN 112007658A CN 202010790927 A CN202010790927 A CN 202010790927A CN 112007658 A CN112007658 A CN 112007658A
Authority
CN
China
Prior art keywords
zinc sulfide
composite photocatalyst
cadmium zinc
nanotube composite
oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010790927.5A
Other languages
English (en)
Other versions
CN112007658B (zh
Inventor
卢定泽
吴琼
张勃宇
张育豪
曾宜梅
黄驰
潘玖存
秦成
郝红娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Polytechnic University
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN202010790927.5A priority Critical patent/CN112007658B/zh
Publication of CN112007658A publication Critical patent/CN112007658A/zh
Application granted granted Critical
Publication of CN112007658B publication Critical patent/CN112007658B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明一种硫化镉锌‑钛酸纳米管复合光触媒制备方法,制备的硫化镉锌‑钛酸纳米管复合光触媒对废水具有较高的吸附和光催化性能;本发明的光触媒制备方法还具有制备过程成本低、工艺简单、易操控等特点。

Description

一种硫化镉锌-钛酸纳米管复合光触媒制备方法
技术领域
本发明属于复合材料制备技术领域,具体涉及一种硫化镉锌-钛酸纳米管复合光触媒制备方法。
背景技术
工业废水造成的环境污染问题逐渐暴露出来。水资源的质量持续下降,水环境随之恶化,未来令我们担忧。在日常生活和生产中产生的各种废水中,有许多难以被水体自身净化的有机污染物,通过食物链进入人体内的各种有毒元素在一定程度上会导致中毒,严重的污染甚至可以通过放射性和辐射产生,对人体内脏器官造成损害甚至癌症。污染直接导致土地生态系统退化,影响土壤理化性质,导致作物减产或歉收。不仅如此,污染还会在一定程度上对土壤微生物环境造成污染,降低生物多样性的生命力,有可能会对人体的组织、器官产生潜在的危害。
当前,控制水污染的方法有四种,絮凝沉淀法、交换吸附、吸附法、生物修复。但这些方法多多少少都有成本高、耗能高、可能产生二次污染等缺点而不能广泛使用。光催化在许多领域都有一定的潜力,尤其在环境净化方面。通过一系列光催化反应将液体或气体中的污染物分解成简单无害的无机物质。由于TiO2具有成本低、绿色、无污染和稳定性高等优点,已成为理想的环境清洁材料。TiO2作为半导体催化剂中最典型的代表,其特点众多,但在光催化降解有机物过程存在一些不足。比如,可见光的利用率不足,光生电子-空穴对的分离效率不高。
发明内容
本发明的目的是提供一种硫化镉锌-钛酸纳米管复合光触媒制备方法,能够提高对印染废水处理时的光催化效率。
本发明所采用的技术方案是,一种硫化镉锌-钛酸纳米管复合光触媒制备方法,具体按照以下步骤实施:
步骤1、称取TiO2纳米粉末加入NaOH溶液中,搅拌5~120min后进行水热反应,冷却至室温,得到样品A;
步骤2、将样品A用去离子水反复洗涤至PH=6~7,经离心分离出沉淀物,向沉淀物中加入稀盐酸酸洗0.5~5h,随后再次进行水洗、离心、干燥,得到钛酸纳米管;
步骤3、称取钛酸纳米管加入装有酒精的坩埚内部超声2~30min后,依次加入C4H6CdO4·2H2O、C4H6O4Zn,磁力搅拌直至溶解,得混合液;
步骤4、向混合液中加入C2H5NS,搅拌5~120min,在50~80℃烘箱置放2h,等溶液蒸发完全至凝胶状态后,再将烘箱调至100~150℃,放置0.5~5h,随后取出研磨清洗、烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。
本发明的特点还在于:
步骤1中NaOH溶液浓度为5~15mol/L,TiO2纳米粉末与NaOH溶液的质体比为0.08~8g/5~500mL。
步骤1水热反应条件为140~170℃,时间为12~96h。
步骤2稀盐酸浓度为0.01~2mol/L,体积为20~2000mL。
步骤2干燥温度为50~80℃。
步骤3具体过程为:
称取0.5g的钛酸纳米管加入装有70mL酒精的坩埚内部超声2~30min,依次加入0.01~10gC4H6CdO4·2H2O以及0.01~10gC4H6O4Zn,磁力搅拌直至溶解,得到混合液。
步骤4具体过程为:
向混合液中加入0.01~10gC2H5NS,搅拌5~120min后,得到混合液B;将混合液B放置于烘箱中,调节烘箱50~80℃,置放0.1~10h,溶液蒸发完全至凝胶状态,再将烘箱调至100~150℃,置放0.1~10h,随后取出研磨,利用3次酒精+3次水交替清洗,最后放入50~80℃烘箱内直至烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。
本发明的有益效果是:
本发明一种硫化镉锌-钛酸纳米管复合光触媒制备方法,制备的硫化镉锌-钛酸纳米管复合光触媒对废水具有较高的吸附和光催化性能;本发明的光触媒制备方法还具有制备过程成本低、工艺简单、易操控等特点。
附图说明
图1(a)是本发明实施例3制备的复合光触媒10万倍数的TEM图像;
图1(b)是本发明实施例3制备的复合光触媒20万倍数的TEM图像;
图1(c)是本发明实施例3制备的复合光触媒30万倍数的TEM图像;
图1(d)是本发明实施例3制备的复合光触媒40万倍数的TEM图像;
图2(a)是本发明实施例3制备的复合光触媒在不同催化剂下RhB溶液光催化去除率与时间的关系;
图2(b)是本发明实施例3制备的复合光触媒在不同程度Cd0.5Zn0.5S负载TNTs降解RhB溶液的一阶动力学曲线;
图2(c)是本发明实施例3制备的复合光触媒在不同程度Cd0.5Zn0.5S负载TNTs降解RhB溶液的速率图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种硫化镉锌-钛酸纳米管复合光触媒制备方法,具体按照以下步骤实施:
步骤1、称取TiO2纳米粉末加入NaOH溶液中,搅拌5~120min后进行水热反应,冷却至室温,得到样品A;
NaOH溶液浓度为5~15mol/L,TiO2纳米粉末与NaOH溶液的质体比为0.08~8g/5~500mL;
水热反应条件为140~170℃,时间为12~96h;
步骤2、将样品A用去离子水反复洗涤至PH=6~7,经离心分离出沉淀物,向沉淀物中加入稀盐酸酸洗0.5~5h,随后再次进行水洗、离心、干燥,得到钛酸纳米管;
稀盐酸浓度为0.01~2mol/L,体积为20~2000mL;
干燥温度为50~80℃;
步骤3、称取钛酸纳米管加入装有酒精的坩埚内部超声2~30min后,依次加入C4H6CdO4·2H2O、C4H6O4Zn,磁力搅拌直至溶解,得混合液;具体过程为:
称取0.5g的钛酸纳米管加入装有70mL酒精的坩埚内部超声2~30min,依次加入0.01~10gC4H6CdO4·2H2O以及0.01~10gC4H6O4Zn,磁力搅拌直至溶解,得到混合液。
步骤4、向混合液中加入C2H5NS,搅拌5~120min,在50~80℃烘箱置放2h,等溶液蒸发完全至凝胶状态后,再将烘箱调至100~150℃,放置0.5~5h,随后取出研磨清洗、烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。
步骤4具体过程为:
向混合液中加入0.01~10gC2H5NS,搅拌5~120min后,得到混合液B;将混合液B放置于烘箱中,调节烘箱50~80℃,置放0.1~10h,溶液蒸发完全至凝胶状态,再将烘箱调至100~150℃,置放0.1~10h,随后取出研磨,利用3次酒精+3次水交替清洗,最后放入50~80℃烘箱内直至烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。
实施例1
本发明一种硫化镉锌-钛酸纳米管复合光触媒制备方法,具体按照以下步骤实施:
步骤1、称取TiO2纳米粉末加入NaOH溶液中,搅拌5min后进行水热反应,冷却至室温,得到样品A;
NaOH溶液浓度为5mol/L,TiO2纳米粉末与NaOH溶液的质体比为0.08g/5mL;
水热反应条件为140℃,时间为12h;
步骤2、将样品A用去离子水反复洗涤至PH=6,经离心分离出沉淀物,向沉淀物中加入稀盐酸酸洗0.5h,随后再次进行水洗、离心、干燥,得到钛酸纳米管;
稀盐酸浓度为0.01mol/L,体积为20mL;
干燥温度为50~80℃;
步骤3、称取钛酸纳米管加入装有酒精的坩埚内部超声2min后,依次加入C4H6CdO4·2H2O、C4H6O4Zn,磁力搅拌直至溶解,得混合液;具体过程为:
称取0.5g的钛酸纳米管加入装有70mL酒精的坩埚内部超声2min,依次加入0.01gC4H6CdO4·2H2O以及0.01~10gC4H6O4Zn,磁力搅拌直至溶解,得到混合液。
步骤4、向混合液中加入C2H5NS,搅拌5min,在50℃烘箱置放2h,等溶液蒸发完全至凝胶状态后,再将烘箱调至100℃,放置0.5h,随后取出研磨清洗、烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。
步骤4具体过程为:
向混合液中加入0.01gC2H5NS,搅拌5min后,得到混合液B;将混合液B放置于烘箱中,调节烘箱50℃,置放0.1h,溶液蒸发完全至凝胶状态,再将烘箱调至100℃,置放0.1h,随后取出研磨,利用3次酒精+3次水交替清洗,最后放入50℃烘箱内直至烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。
实施例2
本发明一种硫化镉锌-钛酸纳米管复合光触媒制备方法,具体按照以下步骤实施:
步骤1、称取TiO2纳米粉末加入NaOH溶液中,搅拌25min后进行水热反应,冷却至室温,得到样品A;
NaOH溶液浓度为8mol/L,TiO2纳米粉末与NaOH溶液的质体比为1g/25mL;
水热反应条件为1480℃,时间为20h;
步骤2、将样品A用去离子水反复洗涤至PH=6.2,经离心分离出沉淀物,向沉淀物中加入稀盐酸酸洗1h,随后再次进行水洗、离心、干燥,得到钛酸纳米管;
稀盐酸浓度为0.5mol/L,体积为100mL;
干燥温度为56℃;
步骤3、称取钛酸纳米管加入装有酒精的坩埚内部超声10min后,依次加入C4H6CdO4·2H2O、C4H6O4Zn,磁力搅拌直至溶解,得混合液;具体过程为:
称取0.5g的钛酸纳米管加入装有70mL酒精的坩埚内部超声10min,依次加入2gC4H6CdO4·2H2O以及2gC4H6O4Zn,磁力搅拌直至溶解,得到混合液。
步骤4、向混合液中加入C2H5NS,搅拌30min,在57℃烘箱置放2h,等溶液蒸发完全至凝胶状态后,再将烘箱调至110℃,放置2h,随后取出研磨清洗、烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。
步骤4具体过程为:
向混合液中加入0.3gC2H5NS,搅拌40min后,得到混合液B;将混合液B放置于烘箱中,调节烘箱60℃,置放3h,溶液蒸发完全至凝胶状态,再将烘箱调至120℃,置放4h,随后取出研磨,利用3次酒精+3次水交替清洗,最后放入60℃烘箱内直至烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。
实施例3
本发明一种硫化镉锌-钛酸纳米管复合光触媒制备方法,具体按照以下步骤实施:
步骤1、称取TiO2纳米粉末加入NaOH溶液中,搅拌58min后进行水热反应,冷却至室温,得到样品A;
NaOH溶液浓度为10mol/L,TiO2纳米粉末与NaOH溶液的质体比为1g/100mL;
水热反应条件为150℃,时间为48h;
步骤2、将样品A用去离子水反复洗涤至PH=6.5,经离心分离出沉淀物,向沉淀物中加入稀盐酸酸洗3h,随后再次进行水洗、离心、干燥,得到钛酸纳米管;
稀盐酸浓度为1mol/L,体积为1000mL;
干燥温度为60℃;
步骤3、称取钛酸纳米管加入装有酒精的坩埚内部超声16min后,依次加入C4H6CdO4·2H2O、C4H6O4Zn,磁力搅拌直至溶解,得混合液;具体过程为:
称取0.5g的钛酸纳米管加入装有70mL酒精的坩埚内部超声16min,依次加入5gC4H6CdO4·2H2O以及5gC4H6O4Zn,磁力搅拌直至溶解,得到混合液。
步骤4、向混合液中加入C2H5NS,搅拌60min,在60℃烘箱置放2h,等溶液蒸发完全至凝胶状态后,再将烘箱调至120℃,放置2.5h,随后取出研磨清洗、烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。
步骤4具体过程为:
向混合液中加入5gC2H5NS,搅拌60min后,得到混合液B;将混合液B放置于烘箱中,调节烘箱60℃,置放7h,溶液蒸发完全至凝胶状态,再将烘箱调至120℃,置放5h,随后取出研磨,利用3次酒精+3次水交替清洗,最后放入60℃烘箱内直至烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。
实施例4
本发明一种硫化镉锌-钛酸纳米管复合光触媒制备方法,具体按照以下步骤实施:
步骤1、称取TiO2纳米粉末加入NaOH溶液中,搅拌70min后进行水热反应,冷却至室温,得到样品A;
NaOH溶液浓度为12mol/L,TiO2纳米粉末与NaOH溶液的质体比为1g/220mL;
水热反应条件为160℃,时间为70h;
步骤2、将样品A用去离子水反复洗涤至PH=6.7,经离心分离出沉淀物,向沉淀物中加入稀盐酸酸洗4h,随后再次进行水洗、离心、干燥,得到钛酸纳米管;
稀盐酸浓度为1.5mol/L,体积为1500mL;
干燥温度为70℃;
步骤3、称取钛酸纳米管加入装有酒精的坩埚内部超声25min后,依次加入C4H6CdO4·2H2O、C4H6O4Zn,磁力搅拌直至溶解,得混合液;具体过程为:
称取0.5g的钛酸纳米管加入装有70mL酒精的坩埚内部超声25min,依次加入8gC4H6CdO4·2H2O以及8gC4H6O4Zn,磁力搅拌直至溶解,得到混合液。
步骤4、向混合液中加入C2H5NS,搅拌100min,在70℃烘箱置放2h,等溶液蒸发完全至凝胶状态后,再将烘箱调至120℃,放置4h,随后取出研磨清洗、烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。
步骤4具体过程为:
向混合液中加入8gC2H5NS,搅拌110min后,得到混合液B;将混合液B放置于烘箱中,调节烘箱70℃,置放8h,溶液蒸发完全至凝胶状态,再将烘箱调至140℃,置放8h,随后取出研磨,利用3次酒精+3次水交替清洗,最后放入70℃烘箱内直至烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。
实施例5
本发明一种硫化镉锌-钛酸纳米管复合光触媒制备方法,具体按照以下步骤实施:
步骤1、称取TiO2纳米粉末加入NaOH溶液中,搅拌120min后进行水热反应,冷却至室温,得到样品A;
NaOH溶液浓度为15mol/L,TiO2纳米粉末与NaOH溶液的质体比为1g/150mL;
水热反应条件为170℃,时间为96h;
步骤2、将样品A用去离子水反复洗涤至PH=7,经离心分离出沉淀物,向沉淀物中加入稀盐酸酸洗5h,随后再次进行水洗、离心、干燥,得到钛酸纳米管;稀盐酸浓度为2mol/L,体积为2000mL;干燥温度为80℃;
步骤3、称取钛酸纳米管加入装有酒精的坩埚内部超声30min后,依次加入C4H6CdO4·2H2O、C4H6O4Zn,磁力搅拌直至溶解,得混合液;具体过程为:
称取0.5g的钛酸纳米管加入装有70mL酒精的坩埚内部超声30min,依次加入10gC4H6CdO4·2H2O以及10gC4H6O4Zn,磁力搅拌直至溶解,得到混合液。
步骤4、向混合液中加入C2H5NS,搅拌120min,在80℃烘箱置放2h,等溶液蒸发完全至凝胶状态后,再将烘箱调至150℃,放置5h,随后取出研磨清洗、烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。具体过程为:
向混合液中加入10gC2H5NS,搅拌120min后,得到混合液B;将混合液B放置于烘箱中,调节烘箱80℃,置放10h,溶液蒸发完全至凝胶状态,再将烘箱调至150℃,置放10h,随后取出研磨,利用3次酒精+3次水交替清洗,最后放入80℃烘箱内直至烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。
对实施例3制备的复合光触媒材料进行显微镜扫描,结果如图1(a)-图1(d)所示,从图1(a)和图1(b)可知,在经过48h水热反应后,已经从三维颗粒结构形成了一个比较明显的一维管状结构。图1(c)可以看出TNTs的直径约5nm,图中的小黑点就是附着的Cd0.5Zn0.5S,大小约为10nm,并且比较均匀的分布在TNTs上。进一步放大,图1(d)显示样品的晶面面间距约为0.32nm的晶格条纹,它对应的是Cd0.5Zn0.5S的(002)晶面,说明10%Cd0.5Zn0.5S/TNTs已经形成了异质结。图1(d)左半部分为TNTs,结晶度较差、未见明显的晶格条纹。
对实施例3中制备的复合光触媒材料光催化性能测试:
首先,利用15mL浓度为20mg/L的RhB溶液与285mL的水配备300mL浓度为400mg/L的RhB溶液,加入磁子搅拌5min后,取初始溶液0.8mL,作对比。称取自己制备好的样品,每个样品称取0.05g,每个试管内放入磁子,并且利用量筒量取50mL初始溶液倒入,最后放入光化学防护箱中。在黑暗环境下,搅拌30min;取一次样品1.6mL。然后开启循环水、灯光,在光照环境下,每15min取样一次,每次取1.6mL,实验持续2h,然后放入离心机中进行离心,离心后取上层清液0.8mL再加2.4mL水。最后通过光纤光谱仪进行测试并记录数据。
从图2(a)中可以看出商用P25和纯的Cd0.5Zn0.5S催化效率最低。TNTs的催化效率也不是最高,而TNTs和Cd0.5Zn0.5S两者的复合物随着TNTs负载Cd0.5Zn0.5S用量的增加光催化效果逐渐增加随之又减少,其中10%Cd0.5Zn0.5S/TNTs的催化效率最为明显,达到了85%以上。
由图2(b)可知,曲线满足动力学方程:
-ln(C/C0)=Kappt (1)
其中Kapp是动力学常数,t是辐照时间,C和C0分别为t时刻的实时浓度和溶液的初始浓度。斜率Kapp与催化效率成正比。其中纯的Cd0.5Zn0.5S和商用P25的斜率Kapp最低,催化效率也最低。未复合的TNTs的斜率Kapp略大,但比复合Cd0.5Zn0.5S的TNTs斜率都低。由图也可以看出TNTs经不同浓度Cd0.5Zn0.5S的改性后对RhB溶液的降解效率发生规律性变化,即随着复合浓度的升高斜率Kapp呈现出先升高再降低的现象。复合浓度低于10%时,TNTs的光催化活性随着复合浓度升高而增大,在复合浓度超过10%时,斜率Kapp又随着复合浓度的升高而减小,当复合浓度等于10%时Cd0.5Zn0.5S复合使TNTs的光催化活性达到最大,10%时Cd0.5Zn0.5S复合的最佳浓度。图2(c)是不同程度Cd0.5Zn0.5S负载TNTs降解RhB溶液的速率图,可以更清晰的展示出催化效率最高的样品以及催化效率的变化。
通过上述方式,本发明一种硫化镉锌-钛酸纳米管复合光触媒制备方法,制备的硫化镉锌-钛酸纳米管复合光触媒对废水具有较高的吸附和光催化性能;本发明的光触媒制备方法还具有制备过程成本低、工艺简单、易操控等特点。

Claims (7)

1.一种硫化镉锌-钛酸纳米管复合光触媒制备方法,其特征在于,具体按照以下步骤实施:
步骤1、称取TiO2纳米粉末加入NaOH溶液中,搅拌5~120min后进行水热反应,冷却至室温,得到样品A;
步骤2、将样品A用去离子水反复洗涤至PH=6~7,经离心分离出沉淀物,向沉淀物中加入稀盐酸酸洗0.5~5h,随后再次进行水洗、离心、干燥,得到钛酸纳米管;
步骤3、称取钛酸纳米管加入装有酒精的坩埚内部超声2~30min后,依次加入C4H6CdO4·2H2O、C4H6O4Zn,磁力搅拌直至溶解,得混合液;
步骤4、向混合液中加入C2H5NS,搅拌5~120min,在50~80℃烘箱置放2h,等溶液蒸发完全至凝胶状态后,再将烘箱调至100~150℃,放置0.5~5h,随后取出研磨清洗、烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。
2.根据权利要求1所述一种硫化镉锌-钛酸纳米管复合光触媒制备方法,其特征在于,步骤1中所述NaOH溶液浓度为5~15mol/L,所述TiO2纳米粉末与NaOH溶液的质体比为0.08~8g/5~500mL。
3.根据权利要求1所述一种硫化镉锌-钛酸纳米管复合光触媒制备方法,其特征在于,步骤1所述水热反应条件为140~170℃,时间为12~96h。
4.根据权利要求1所述一种硫化镉锌-钛酸纳米管复合光触媒制备方法,其特征在于,步骤2所述稀盐酸浓度为0.01~2mol/L,体积为20~2000mL。
5.根据权利要求1所述一种硫化镉锌-钛酸纳米管复合光触媒制备方法,其特征在于,步骤2所述干燥温度为50~80℃。
6.根据权利要求1所述一种硫化镉锌-钛酸纳米管复合光触媒制备方法,其特征在于,步骤3具体过程为:
称取0.5g的钛酸纳米管加入装有70mL酒精的坩埚内部超声2~30min,依次加入0.01~10gC4H6CdO4·2H2O以及0.01~10gC4H6O4Zn,磁力搅拌直至溶解,得到混合液。
7.根据权利要求1所述一种硫化镉锌-钛酸纳米管复合光触媒制备方法,其特征在于,步骤4具体过程为:
向混合液中加入0.01~10gC2H5NS,搅拌5~120min后,得到混合液B;将混合液B放置于烘箱中,调节烘箱50~80℃,置放0.1~10h,溶液蒸发完全至凝胶状态,再将烘箱调至100~150℃,置放0.1~10h,随后取出研磨,利用3次酒精+3次水交替清洗,最后放入50~80℃烘箱内直至烘干取出,得到硫化镉锌-钛酸纳米管复合光触媒。
CN202010790927.5A 2020-08-07 2020-08-07 一种硫化镉锌-钛酸纳米管复合光触媒制备方法 Active CN112007658B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010790927.5A CN112007658B (zh) 2020-08-07 2020-08-07 一种硫化镉锌-钛酸纳米管复合光触媒制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010790927.5A CN112007658B (zh) 2020-08-07 2020-08-07 一种硫化镉锌-钛酸纳米管复合光触媒制备方法

Publications (2)

Publication Number Publication Date
CN112007658A true CN112007658A (zh) 2020-12-01
CN112007658B CN112007658B (zh) 2023-02-03

Family

ID=73499485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010790927.5A Active CN112007658B (zh) 2020-08-07 2020-08-07 一种硫化镉锌-钛酸纳米管复合光触媒制备方法

Country Status (1)

Country Link
CN (1) CN112007658B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347877A (ja) * 2006-07-24 2006-12-28 National Institute For Materials Science 硫化亜鉛カドミウムナノケーブルとその製造方法
RU2012147787A (ru) * 2012-11-09 2014-05-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Фотокатализатор, способ его приготовления и способ получения водорода
CN107876094A (zh) * 2017-11-07 2018-04-06 常州大学 一种三碟烯聚合物NTP/硫化锌镉Cd0.5Zn0.5S复合光催化剂的制备方法
CN108906125A (zh) * 2018-06-12 2018-11-30 常州大学 一种三碟烯聚合物DTP/硫化锌镉Cd0.5Zn0.5S复合光催化剂的制备方法
CN110075868A (zh) * 2019-04-02 2019-08-02 西安工程大学 一种玻璃纤维TiO2/CdZnS复合材料及制备方法
CN110227500A (zh) * 2019-06-14 2019-09-13 青岛科技大学 一种Cd1-xZnxS-Ni/MoS2复合光催化剂及其制备方法、应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347877A (ja) * 2006-07-24 2006-12-28 National Institute For Materials Science 硫化亜鉛カドミウムナノケーブルとその製造方法
RU2012147787A (ru) * 2012-11-09 2014-05-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Фотокатализатор, способ его приготовления и способ получения водорода
CN107876094A (zh) * 2017-11-07 2018-04-06 常州大学 一种三碟烯聚合物NTP/硫化锌镉Cd0.5Zn0.5S复合光催化剂的制备方法
CN108906125A (zh) * 2018-06-12 2018-11-30 常州大学 一种三碟烯聚合物DTP/硫化锌镉Cd0.5Zn0.5S复合光催化剂的制备方法
CN110075868A (zh) * 2019-04-02 2019-08-02 西安工程大学 一种玻璃纤维TiO2/CdZnS复合材料及制备方法
CN110227500A (zh) * 2019-06-14 2019-09-13 青岛科技大学 一种Cd1-xZnxS-Ni/MoS2复合光催化剂及其制备方法、应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHAO ZENG ET AL.: "A core–satellite structured Z-scheme catalyst Cd0.5Zn0.5S/BiVO4 for highly efficient and stable photocatalytic water splitting", 《JOURNAL OF MATERIALS CHEMISTRY》 *
JUAN LI ET AL.: "Preparation of titania nanotube-Cd0.65Zn0.35S nanocomposite by a hydrothermal sulfuration method for efficient visible-light-driven photocatalytic hydrogen production", 《APPLIED SURFACE SCIENCE》 *
YUBIN CHEN ET AL.: "Highly efficient visible-light-driven photocatalytic hydrogen production from water using Cd0.5Zn0.5S/TNTs (titanate nanotubes) nanocomposites without noble metals", 《JOURNAL OF MATERIALS CHEMISTRY》 *
杨松等: "Cd_(1-x)Zn_xS纳米棒阵列的制备及其光学性能研究", 《光电技术应用》 *

Also Published As

Publication number Publication date
CN112007658B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
Das et al. Synthesis and application of CdS nanorods for LED-based photocatalytic degradation of tetracycline antibiotic
Kumar et al. Acceleration of photo-reduction and oxidation capabilities of Bi4O5I2/SPION@ calcium alginate by metallic Ag: Wide spectral removal of nitrate and azithromycin
CN110655243A (zh) 一种采用TiO2吸附-光催化还原处理含铀废水的方法
CN109806900B (zh) 一种分子印迹型Ag/Ag3VO4/CN纳米片复合光催化剂的制备方法及应用
CN110064408B (zh) 一种负载了硫化铁的α晶型羟基氧化铁催化剂的制备方法
CN104959141A (zh) 一种负载Cu/Cu2O光催化剂的还原氧化石墨烯/无定形碳复合材料及其制备方法和应用
CN110624566B (zh) CuInS2量子点/NiAl-LDH复合光催化剂的制备方法及其应用
CN112058263B (zh) 一种水热碳/铜光催化剂的制备方法及其在降解布洛芬药物中的应用
CN110756163A (zh) 一种纳米CoFe2O4/碳纤维毡复合材料及其制备方法和应用
Saleh Metal oxide nanomaterials as photo-catalyst for dye degradation
CN110841669B (zh) 利用零维黑磷量子点/一维管状氮化碳复合光催化剂处理重金属和有机污染物的方法
Zhang et al. Novel Z-scheme MgFe2O4/Bi2WO6 heterojunction for efficient photocatalytic degradation of tetracycline hydrochloride: Mechanistic insight, degradation pathways and density functional theory calculations
Hu et al. In situ topotactic fabrication of ZnS nanosheet by using ZnAl-layered double hydroxide template for enhanced tetracycline pollutant degradation activity
CN111686770A (zh) 一种金属离子共掺杂BiOBr微球、制备方法及其应用
Prasanna et al. Dual Z-scheme Pr2Sn2O7/P@ g-C3N4/SnS2 heterojunctions for the removal of tetracycline antibiotic by persulfate activation: Kinetics, thermodynamic parameters, density functional theory, and toxicity studies
CN112007658B (zh) 一种硫化镉锌-钛酸纳米管复合光触媒制备方法
CN110540243B (zh) 无定型羟基氧化铁的制备方法及吸附有机物后的回收方法
CN110395700B (zh) 一种光化学制备纳米硒的方法
CN112093816A (zh) 一种纳米氧化铜的制备方法及其在光催化降解有机物的应用
Sun et al. Electron beam irradiation treatment of Ag/Bi 2 WO 6/CdWO 4 heterogeneous material with enhanced photocatalytic activity
CN103193311B (zh) ZnO纳米棒阵列降解有机染料废水的应用
CN113713798A (zh) 一种石墨烯量子点修饰氧化锌的制备方法及降解染料应用
CN105833865A (zh) 一种石墨烯负载的具有凹面立方体形貌的Ag光催化剂的制备方法
Wang et al. Facile synthesis of amino-functionalized indium-based metal–organic frameworks and their superior light photocatalytic activity for degradation of tetracycline in water
Zhu et al. A facile way for one-pot synthesis of porous rose-like β-Bi2O3/Bi2O2CO3 with enhanced photocatalytic activity for BPA photodegradation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant