CN111996492A - 一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法 - Google Patents

一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法 Download PDF

Info

Publication number
CN111996492A
CN111996492A CN202010889328.9A CN202010889328A CN111996492A CN 111996492 A CN111996492 A CN 111996492A CN 202010889328 A CN202010889328 A CN 202010889328A CN 111996492 A CN111996492 A CN 111996492A
Authority
CN
China
Prior art keywords
ceramic coating
amorphous
zirconium oxide
oxide doped
doped gadolinium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010889328.9A
Other languages
English (en)
Inventor
冯晶
王一涛
杨凯龙
郑奇
汪俊
陈琳
李振军
王峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Tianxuan Coating Technology Co ltd
Kunming University of Science and Technology
Original Assignee
Shaanxi Tianxuan Coating Technology Co ltd
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Tianxuan Coating Technology Co ltd, Kunming University of Science and Technology filed Critical Shaanxi Tianxuan Coating Technology Co ltd
Priority to CN202010889328.9A priority Critical patent/CN111996492A/zh
Publication of CN111996492A publication Critical patent/CN111996492A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明涉及热障涂层技术领域,具体公开了一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法,将ZrO2、Gd2O3和Nb2O5混合后的粉末进行高温烧结得到烧结体,氧化锆掺杂铌酸的化学计量比为x mol%ZrO2+Gd3NbO7;将烧结体粉碎成2~3mm的块体;采用EB‑PVD法将块体沉积到合金基体上,得到厚度为200~300μm的非晶陶瓷涂层,工艺参数为:舱室气压不高于3×10‑6Torr;沉积速率不低于10nm/min;样品台旋转速率不低于45r/min。本专利中沉积在合金基体上的非晶陶瓷涂层有着极低的热导率,这样能够对合金基体在高温环境下起到很好的隔热的效果,提高合金基体使用的环境温度。

Description

一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法
技术领域
本发明涉及热障涂层技术领域,特别涉及一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法。
背景技术
热障涂层在航空发动机上的广泛应用,其在现有的技术基础上很大程度上降低了高温燃气对发动机合金叶片的冲击和腐蚀,并降低了发动机叶片的表面温度,增加了发动机的服役年限。从以往研究的高温陶瓷材料来看,比较适用于高温热障涂层的陶瓷材料主要有氧化钇/氧化铈稳定的氧化锆、氧化锆/氧化铝、锆酸镧、锆酸锶、磷酸锆、硅酸锆、钛酸锆、莫来石、稀土氧化物陶瓷等,其中氧化钇稳定的氧化锆(YSZ)整体性能为最好,是目前广泛应用的陶瓷热障涂层。
但由于热障涂层陶瓷材料(YSZ)仅能稳定工作于其熔点温度以下的环境中,当工作温度超过其熔点温度时,YSZ陶瓷材料将会发生相变,热膨胀系数与基体材料变得不相匹配,由于热失配导致了高温陶瓷材料裂纹的形成,最终将导致热障涂层陶瓷材料脱落失效,已经难以满足热能发动机前燃气进口温度不断提高的要求。
稀土铌/钽酸盐陶瓷(RENb/TaO4)凭借着高的熔点,低热导率(1.38~1.94W·m-1·K-1),高热膨胀系数(11×10-6K-1,1200℃)和铁弹韧性等优异的热物理性能和力学性能,被认为是最具潜力的新一代热障涂层材料。铁弹增韧机制赋予稀土铌/钽酸盐陶瓷优异的高温断裂韧性,这是其他潜在热障涂层材料所不具备的独特优势,而目前研究了掺杂元素锆对稀土钽/铌酸盐的影响,发现其热导率有下降的趋势;因此要如何最大化的体现出锆掺杂稀土钽/铌酸盐陶瓷涂层对合金基体的保护作用依旧是当前研究的重点。
发明内容
本发明提供了一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法,以得到热导率更低,符合高温环境使用需求的陶瓷涂层材料。
为了达到上述目的,本发明的技术方案为:
一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法,包括以下步骤:
步骤1:将ZrO2、Gd2O3和Nb2O5混合后的粉末进行高温烧结得到氧化锆掺杂铌酸钆烧结体,氧化锆掺杂铌酸的化学计量比为x mol%ZrO2+Gd3NbO7
步骤2:将步骤1得到的烧结体粉碎成2~3mm的块体;
步骤3:采用EB-PVD法将步骤2得到的块体沉积到合金基体上,得到非晶陶瓷涂层,非晶陶瓷涂层的厚度为200~300μm;其中EB-PVD法的工艺参数为:舱室气压不高于3×10- 6Torr;沉积速率不低于10nm/min;样品台旋转速率不低于45r/min。
本技术方案的技术原理和效果在于:
1、本方案中沉积在合金基体上的非晶陶瓷涂层有着极低的热导率(<1.2W·m-1·K-1),这样能够对合金基体在高温环境下起到很好的隔热的效果,提高合金基体使用的环境温度。
2、本方案中氧化锆掺杂铌酸盐作为非晶陶瓷涂层,能够很好的阻碍热量由涂层表面向合金基体扩散,降低合金基体表面温度,提高合金基体的使用温度,原因在于,非晶陶瓷涂层其内部原子为无序排列,对声子形成了漫反射效应,使得非晶陶瓷涂层表面的热量被反射至四面八方,同时相比于传统有序排列的晶体态陶瓷涂层而言,尤其是氧化锆掺杂铌酸盐,非晶陶瓷涂层内部是不存在晶界或相界面的,也就说这样的结构能避免点缺陷、面缺陷等的引入,使得涂层的性能有很大的提升。
进一步,所述步骤1中高温烧结的温度为1400~1600℃,烧结的时间为5~8h。
有益效果:该烧结温度下能够得到氧化锆掺杂铌酸钆烧结体。
进一步,所述步骤1中ZrO2、Gd2O3和Nb2O5粉末采用球磨的方式混合,球磨机的转速为500r/min~800r/min,球磨时间为90~280min。
有益效果:通过球磨的方式能够使得ZrO2、Gd2O3和Nb2O5粉末之间混合得更加均匀,便于后续的烧结。
进一步,球磨混合后进行过筛处理,筛目不低于325目。
有益效果:过筛处理能够减少大颗粒陶瓷粉末在烧结过程中导致成分不均匀的问题。
进一步,所述步骤2中,对步骤1得到的烧结体冷却至室温后,再次进行粉碎、球磨和过筛处理,对过筛后的粉末进行二次烧结。
有益效果:二次烧结能够使烧结体的致密度提高,使其成分更均匀,从而保证EB-PVD的蒸镀速率稳定,涂层成分更均匀。
进一步,所述二次烧结的温度为1200~1400℃,烧结的时间为4~6h。
有益效果:该温度范围下能够得到成分均匀的烧结体。
进一步,所述步骤3中合金基体在沉积非晶陶瓷涂层之前进行表面去油污和杂质处理。
有益效果:减少合金基体表面的杂质,能够提高其与陶瓷涂层之间的附着性。
进一步,所述步骤3中合金基体在沉积非晶陶瓷涂层之前进行喷砂处理,喷砂后合金基体的表面粗糙度为30~40μm。
有益效果:喷砂能够提高合金基体表面的强度,而粗糙度设置为30~40μm便于涂层与合金基体之间的粘接。
进一步,对所述步骤3得到的非晶陶瓷涂层进行抛光处理,使其表面粗糙度为4~5μm。
附图说明
图1为本发明实施例1与对比例1的热导率随温度的变化曲线图。
具体实施方式
下面通过具体实施方式进一步详细说明:
实施例1:
一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法,包括以下步骤:
步骤1:按照3mol%ZrO2+Gd3NbO7的化学计量比分别称取ZrO2、Gd2O3和Nb2O5粉末,采用球磨机混合均匀,其中球磨机的转速为500r/min,球磨时间为120min,将球磨后的粉末干燥处理后过325目筛,得到粒径均匀的粉末,后在1400℃下烧结8h,氧化锆掺杂铌酸钆烧结体。
步骤2:将步骤1得到的烧结体粉碎成2~3mm的块体。
步骤3:将步骤2得到的块体采用EB-PVD法沉积到合金基体上,得到氧化锆掺杂铌酸钆非晶陶瓷涂层,非晶陶瓷涂层的厚度为200μm;其中EB-PVD法的工艺参数为:舱室气压不高于3×10-6Torr;沉积速率不低于10nm/min;样品台旋转速率不低于45r/min。
其中合金基体采用镍基合金材料,其在沉积涂层之前利用浸泡法除去镍基合金基体表面的油污和杂质,再利用超声振荡进行处理,后用去离子水冲洗干净后烘干;再对镍基合金基体进行喷砂处理,喷砂后表面粗糙度为20~40μm。
完成后对步骤3得到的非晶陶瓷涂层进行抛光处理,使其表面粗糙度为4~5μm。
实施例2和实施例3:
实施例2与实施例1的区别仅在于,x=6,即实施例2中氧化锆掺杂铌酸的化学计量比为6mol%ZrO2+Gd3NbO7
实施例3与实施例1的区别在于,x=9,即实施例3中氧化锆掺杂铌酸的化学计量比为9mol%ZrO2+Gd3NbO7
实施例4:
与实施例1的区别在于,步骤1中烧结温度为1600℃,烧结的时间为4h。
实施例5:
与实施例1的区别在于,步骤1得到的烧结体冷却至室温后,再次进行粉碎、球磨和过筛处理,并对过筛后的粉末进行二次烧结,其中二次烧结的温度为1200℃,烧结的时间为6h。
实施例6:
与实施例5的区别在于,二次烧结的温度为1400℃,烧结的时间为4h。
实施例7:
与实施例1的区别在于,步骤3中沉积的非晶陶瓷涂层的厚度为300μm。
对比例1:
与实施例1的区别在于,步骤3中采用APS法将粒径为20~30μm的球状YSZ粉末沉积在合金基体上,形成了原子序列有序排列的晶体态陶瓷涂层,陶瓷涂层的厚度为200mm。
对比例2:
与实施例1的区别在于,步骤3中采用APS法将粒径为20~30μm的球状的氧化锆掺杂铌酸钆(化学计量比为3mol%ZrO2+Gd3NbO7)粉末沉积在合金基体上,形成了原子序列有序排列的晶体态陶瓷涂层,陶瓷涂层的厚度为200mm。
选取实施例1~7和对比例1~2得到的试样进行热导率检测:
采用激光热导仪进行测试,在800K温度时,实施例1~7和对比例1~2的测试结果如下表2所示。
表2为实施例1~7和对比例1~2的热导率(W·m-1·K-1)
Figure BDA0002656455600000051
以实施例1和对比例1的检测结果为例,如图1所示,图1中为实施例1和对比例1得到的非晶陶瓷涂层的热导率随温度的变化示意图,可见实施例1得到的非晶陶瓷涂层其热导率要远低于通常使用的YSZ。
另外从上表2可以得出:沉积有非晶陶瓷涂层的合金有着极低的热导率(<1.2W·m-1·K-1),这样能够对合金基体在高温环境下起到很好的隔热的效果,提高合金基体使用的环境温度。
以上所述的仅是本发明的实施例,方案中公知的具体材料及特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。

Claims (9)

1.一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法,包括以下步骤:
步骤1:将ZrO2、Gd2O3和Nb2O5混合后的粉末进行高温烧结得到氧化锆掺杂铌酸钆烧结体,氧化锆掺杂铌酸的化学计量比为x mol%ZrO2+Gd3NbO7
步骤2:将步骤1得到的烧结体粉碎成2~3mm的块体;
步骤3:采用EB-PVD法将步骤2得到的块体沉积到合金基体上,得到非晶陶瓷涂层,非晶陶瓷涂层的厚度为200~300μm;其中EB-PVD法的工艺参数为:舱室气压不高于3×10-6Torr;沉积速率不低于10nm/min;样品台旋转速率不低于45r/min。
2.根据权利要求1所述的一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法,其特征在于:所述步骤1中高温烧结的温度为1400~1600℃,烧结的时间为5~8h。
3.根据权利要求1所述的一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法,其特征在于:所述步骤1中ZrO2、Gd2O3和Nb2O5粉末采用球磨的方式混合,球磨机的转速为500r/min~800r/min,球磨时间为90~280min。
4.根据权利要求3所述的一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法,其特征在于:球磨混合后进行过筛处理,筛目不低于325目。
5.根据权利要求4所述的一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法,其特征在于:所述步骤2中,对步骤1得到的烧结体冷却至室温后,再次进行粉碎、球磨和过筛处理,对过筛后的粉末进行二次烧结。
6.根据权利要求5所述的一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法,其特征在于:所述二次烧结的温度为1200~1400℃,烧结的时间为4~6h。
7.根据权利要求1所述的一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法,其特征在于:所述步骤3中合金基体在沉积非晶陶瓷涂层之前进行表面去油污和杂质处理。
8.根据权利要求1所述的一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法,其特征在于:所述步骤3中合金基体在沉积非晶陶瓷涂层之前进行喷砂处理,喷砂后合金基体的表面粗糙度为30~40μm。
9.根据权利要求1所述的一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法,其特征在于:对所述步骤3得到的非晶陶瓷涂层进行抛光处理,使其表面粗糙度为4~5μm。
CN202010889328.9A 2020-08-28 2020-08-28 一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法 Pending CN111996492A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010889328.9A CN111996492A (zh) 2020-08-28 2020-08-28 一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010889328.9A CN111996492A (zh) 2020-08-28 2020-08-28 一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法

Publications (1)

Publication Number Publication Date
CN111996492A true CN111996492A (zh) 2020-11-27

Family

ID=73464661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010889328.9A Pending CN111996492A (zh) 2020-08-28 2020-08-28 一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法

Country Status (1)

Country Link
CN (1) CN111996492A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011905A (zh) * 2022-07-12 2022-09-06 广东省科学院新材料研究所 一种热障涂层及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090075024A1 (en) * 2006-03-09 2009-03-19 Mtu Aero Engines Gmbh Method for producing a thermal barrier coating and thermal barrier coating for a component part
CN103936415A (zh) * 2014-03-17 2014-07-23 内蒙古科技大学 一种电子束物理气相沉积用稳定氧化锆陶瓷靶材及制备方法
CN106884132A (zh) * 2017-01-13 2017-06-23 清华大学 一种高温热障涂层材料
CN109437928A (zh) * 2018-12-29 2019-03-08 昆明理工大学 氧化锆/氧化钛/氧化铈掺杂稀土钽/铌酸盐RE3Ta/NbO7陶瓷粉体及其制备方法
CN109534814A (zh) * 2018-12-29 2019-03-29 昆明理工大学 氧化锆/氧化钛/氧化铈掺杂稀土钽/铌酸盐RETa/NbO4陶瓷粉体及其制备方法
CN109721356A (zh) * 2017-10-27 2019-05-07 辽宁法库陶瓷工程技术研究中心 热障涂层用大尺寸氧化锆陶瓷靶材的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090075024A1 (en) * 2006-03-09 2009-03-19 Mtu Aero Engines Gmbh Method for producing a thermal barrier coating and thermal barrier coating for a component part
CN103936415A (zh) * 2014-03-17 2014-07-23 内蒙古科技大学 一种电子束物理气相沉积用稳定氧化锆陶瓷靶材及制备方法
CN106884132A (zh) * 2017-01-13 2017-06-23 清华大学 一种高温热障涂层材料
CN109721356A (zh) * 2017-10-27 2019-05-07 辽宁法库陶瓷工程技术研究中心 热障涂层用大尺寸氧化锆陶瓷靶材的制备方法
CN109437928A (zh) * 2018-12-29 2019-03-08 昆明理工大学 氧化锆/氧化钛/氧化铈掺杂稀土钽/铌酸盐RE3Ta/NbO7陶瓷粉体及其制备方法
CN109534814A (zh) * 2018-12-29 2019-03-29 昆明理工大学 氧化锆/氧化钛/氧化铈掺杂稀土钽/铌酸盐RETa/NbO4陶瓷粉体及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YITAO WANG ET AL.: "Impact of ZrO2 alloying on thermo-mechanical properties of Gd3NbO7", 《CERAMICS INTERNATIONAL》 *
王春杰等: "《纳米热障涂层材料》", 30 June 2017, 冶金工业出版社 *
理查德·布洛克利等: "《材料技术》", 30 June 2016, 北京理工大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011905A (zh) * 2022-07-12 2022-09-06 广东省科学院新材料研究所 一种热障涂层及其制备方法和应用

Similar Documents

Publication Publication Date Title
Liu et al. Advances on strategies for searching for next generation thermal barrier coating materials
US7723249B2 (en) Ceramic material for high temperature service
CN113772723A (zh) 一种抗cmas腐蚀的多组分的高熵烧绿石结构热障涂层材料及其制备方法和应用
CN111925211B (zh) 一种a2b2o7型稀土钽酸盐陶瓷及其制备方法
WO2007116547A1 (ja) 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
CN106884132A (zh) 一种高温热障涂层材料
CN114478005B (zh) 一种四方相热障涂层材料及其制备方法
Zhao et al. Characterization and thermal cycling behavior of La2 (Zr0. 7Ce0. 3) 2O7/8YSZ functionally graded thermal barrier coating prepared by atmospheric plasma spraying
US9988309B2 (en) Thermal barrier coating material with enhanced toughness
JP4612955B2 (ja) 断熱被覆
WO2024093144A1 (zh) 一种高断裂韧性、抗cmas腐蚀及超高温烧结热障涂层材料及其制备和应用、热障涂层
CN113956037A (zh) 一种抗cmas腐蚀的双相组织钪钇稀土掺杂氧化锆粉末的制备方法
CN111996492A (zh) 一种氧化锆掺杂铌酸钆非晶高温陶瓷涂层的制备方法
Song et al. Hot corrosion behavior in thermal barrier coatings with heterogeneous splat boundary
Wu et al. Research progress on hafnium-based thermal barrier coatings materials
Luo et al. Highly anti-sintering and toughened pyrochlore (Dy0. 2Nd0. 2Sm0. 2Eu0. 2Yb0. 2) 2Zr2O7 high-entropy ceramic for advanced thermal barrier coatings
Liu et al. The microstructure and property evolution of LaYbZr2O7 thermal barrier coatings
Di Girolamo et al. Microstructure and thermal properties of plasma-sprayed ceramic thermal barrier coatings
Zhang et al. Investigation on bi-layer coating with La2 (Ti0. 2Zr0. 2Sn0. 2Ce0. 2Hf0. 2) 2O7/YSZ prepared by laser cladding
Liu et al. NdAlO3-Nd2Zr2O7 composite with eutectic composition for advanced nanostructured thermal insulation coatings
CN114368969A (zh) TiSi2掺杂Gd2Zr2O7陶瓷材料、制备方法及热障涂层
CN114671683A (zh) 一种高温相稳定高熵氧化锆热障涂层材料及其制备方法
CN111996482A (zh) 表面沉积有非晶热障涂层的钛合金及其制备方法
KR100915920B1 (ko) 파이로클로어 결정 구조의 저열전도성 세라믹 소재 및 그제조방법
CN114892163B (zh) 一种高温抗氧化防护涂层材料、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201127

RJ01 Rejection of invention patent application after publication