CN111992732B - 一种钯铜双金属纳米花类过氧化物的制备方法及其在葡萄糖检测中的应用 - Google Patents

一种钯铜双金属纳米花类过氧化物的制备方法及其在葡萄糖检测中的应用 Download PDF

Info

Publication number
CN111992732B
CN111992732B CN202010781500.9A CN202010781500A CN111992732B CN 111992732 B CN111992732 B CN 111992732B CN 202010781500 A CN202010781500 A CN 202010781500A CN 111992732 B CN111992732 B CN 111992732B
Authority
CN
China
Prior art keywords
glucose
peroxide
hydrogen peroxide
palladium
bimetallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010781500.9A
Other languages
English (en)
Other versions
CN111992732A (zh
Inventor
逯一中
刘文栋
陈传霞
倪朋娟
姜媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202010781500.9A priority Critical patent/CN111992732B/zh
Publication of CN111992732A publication Critical patent/CN111992732A/zh
Application granted granted Critical
Publication of CN111992732B publication Critical patent/CN111992732B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/10Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using catalysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明提供一种一种钯铜双金属纳米花类过氧化物的制备方法,将四氯钯酸钠、六羰基钨、二水氯化铜、二甲基甲酰胺和冰醋酸加入到圆底烧瓶中;将上述溶液超声混合均匀,然后将混合均匀的溶液油浴加热搅拌;最终将所得到产物用水和乙醇多次离心洗涤,得到双金属合金纳米材料PdCu纳米花。该材料制备过程简单,产量丰富,制备的独特的二维结构促进反应速率,节约检测时间。本发明公开了钯铜双金属纳米花类过氧化物在葡萄糖检测中的应用。该检测方法可实现对葡萄糖的灵敏性和选择性检测。

Description

一种钯铜双金属纳米花类过氧化物的制备方法及其在葡萄糖 检测中的应用
技术领域
本发明属于光学传感技术领域,具体涉及一种钯铜双金属纳米花类过氧化物的制备方法及其在葡萄糖检测中的应用。
背景技术
天然酶是在生物体内存在的、有效的生物催化剂。由于其具有很高的的催化活性和专一性,广泛被应用于生物、医药、化工和环境等领域。辣根过氧化酶是一种最常见的天然过氧化物酶,可以催化过氧化氢产生化学反应常被用于过氧化氢和葡萄糖的检测中。然而其催化活性易受pH、温度等反应体系环境影响。另外天然酶的制备和纯化成本高。因此,研究较高催化活性和稳定性、低成本的过氧化物酶仿生物具有重要意义。纳米酶是一类既有纳米材料的独特性能,又有催化功能的模拟酶。自Fe3O4纳米粒子成功作为过氧化物模拟酶应用以来,人们陆续发现了许多金属纳米颗粒及其氧化物纳米酶和非金属纳米酶。近几年来贵金属基纳米酶因其独特的光学、电子和催化特性引起了人们的广泛兴趣。这些性质与它们的尺寸大小、形状、结构和组成密切相关。其中,钯基贵金属纳米酶的研究取得了重要进展。Pd-Ir双金属纳米立方体纳米酶利用种子生长法成功被制备(Acs Nano, 2015, 9,9994.)。其制备过程分为两步,略显繁琐。通过一锅法成功制备NiPd纳米颗粒过氧化物纳米酶,但动力学参数不是特别突出(Chem. Commun., 2016, 52, 5410.)。
发明内容
针对目前钯基贵金属纳米酶制备步骤繁琐,催化活性不高等问题,我们成功利用一锅法制备了PdCu双合金二维纳米片组装而成的三维纳米花结构,制备工艺简单。其二维结构提供了较大的比表面积有利于活性位点的暴露,使反应更加迅速,增加了与反应物的接触面积,动力学参数可与辣根过氧化物酶相比较。此外,我们还系统地研究了不同PdCu比对催化活性的协同影响,最优Pd1Cu1.7纳米酶被成功应用于葡萄糖的检测。检测机理如下:具有类过氧化物酶活性的Pd1Cu1.7可以催化过氧化氢发生还原,同时过氧化氢可以将原本无色的3,3',5,5'-四甲基联苯胺(TMB)氧化成显蓝色的3,3',5,5'-氧化态四甲基联苯胺(ox-TMB),在652 nm处产生紫外吸收峰。同时,过氧化氢是葡萄糖氧化酶(GOx)氧化葡萄糖生成的主要产物,基于上述原理,可以建立了一种利用Pd1Cu1.7检测葡萄糖的方法,可以实现对葡萄糖更快的检测速率。
本发明是通过以下技术方案实现的:
一种钯铜双金属纳米花类过氧化物的制备方法,将四氯钯酸钠、六羰基钨、二水氯化铜、二甲基甲酰胺和冰醋酸加入到圆底烧瓶中;将上述溶液超声混合均匀,然后将混合均匀的溶液油浴加热搅拌;最终将所得到产物用水和乙醇多次离心洗涤,得到双金属合金纳米材料PdCu纳米花。
优选地,所述的四氯钯酸钠、六羰基钨、二水氯化铜得质量比为:10:50 : 2.9-29,四氯钯酸钠与二甲基甲酰胺、冰醋酸的质量体积比为:5mg:4 mL:1 mL。
优选地,所述的四氯钯酸钠、六羰基钨、二水氯化铜得质量比为:10:50 :5.8。
优选地,所述的超声的时间为10 min,所述的油浴的温度为120℃,时间为2h。
上述所述的制备方法制备的钯铜双金属纳米花类过氧化物Pd1CuX,X=0.5-5,更优选地,X=1.7。
上述所述的钯铜双金属纳米花类过氧化物在葡萄糖检测中的应用。检测方法为:葡萄糖氧化酶氧化葡萄糖生成过氧化氢,以Pd1Cu1.7为催化剂催化过氧化氢发生还原,同时将无色的3,3',5,5'-四甲基联苯胺氧化成显蓝色的3,3',5,5'-氧化态四甲基联苯胺,在652 nm处产生紫外吸收峰,测试紫外光谱。葡萄糖浓度越高,产生的过氧化氢浓度越高,溶液颜色越深,吸光度值越大,从而确定葡萄糖的含量。
上述所述的检测方法的具体包括以下步骤:
(1)向1.5 mL离心管中加入50 μL GOx(5 mg mL-1),200 μL不同浓度的葡萄糖醋酸盐缓冲液(10 mM,pH = 7.4),37 ℃孵育30 min。随后,再依次添加690 μL醋酸盐缓冲液(10mM,pH = 4.0),10 μL Pd1Cu1.7溶液和50 μL TMB(5 mM),混合均匀后,将离心管置于室温孵育30 min后,测试紫外光谱,利用吸光度值与过氧化氢的浓度进行线性拟合,测定过氧化氢的含量,得到葡萄糖的线性范围;
(2)测定待测样品的吸光度值,确定葡萄糖的含量。
有益效果
本发明公开了一种钯铜双金属纳米花类过氧化物的制备方法及其在葡萄糖检测中的应用,具有以下优点:(1)纳米酶制备过程简单,产量丰富;(2)独特的二维结构促进反应速率,节约检测时间;(3)该检测方法可实现对葡萄糖的灵敏性和选择性检测。
附图说明
图1 (A)Pd1Cu1.7的扫描电子显微镜图;(B)Pd1Cu1.7的透射电子显微镜图;(C)Pd1Cu1.7的高角度环形暗场像图(D-F)各元素分布图像;
图2 Pd1Cu1.7的XPS表征图;
图3 (A)Pd、(B)Pd1Cu0.5、(C)Pd1Cu3、(D)Pd1Cu5的透射电子显微镜图像;
图4 (A)、(B)分别为Pd1Cu1.7对TMB和H2O2的稳态动力学曲线。(C)、(D)分别为TMB和H2O2的双倒数曲线;
图5利用Pd1Cu1.7检测葡萄糖的原理示意图;
图6(A)吸光度值与过氧化氢的浓度关系;插图为吸光度与过氧化氢浓度的线性关系;(B)吸光度与葡萄糖的浓度关系;插图为吸光度与葡萄糖浓度的线性关系;(C)不同浓度H2O2的紫外-可见吸收光谱图;从下到上过氧化氢的浓度依次为0、0.05、 0.1、0.2、 0.3、0.4、 0.5、0.75、1、1.5、2、4、6、8、10、15mM;插图为加入不同浓度过氧化氢时溶液颜色的数码照片;(D)不同浓度葡萄糖的紫外-可见吸收光谱图;从下到上葡萄糖的浓度依次为0、0.01、 0.05、0.1、 0.2、 0.5、 0.8、1、2mM;插图为加入不同浓度葡萄糖时溶液颜色的数码照片;
图7 方法的选择性测试。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
(1)钯铜纳米花的制备及表征:将10 mg四氯钯酸钠、50 mg六羰基钨、x mg(x=0、2.9、5.8、10、29)二水氯化铜、8 mL二甲基甲酰胺和2 mL冰醋酸加入到25 mL圆底烧瓶中;将上述溶液超声10 min混合均匀,然后将混合均匀的溶液120 ℃油浴加热搅拌2 h;最终将所得到产物用水和乙醇多次离心洗涤,最后分散在水中。根据钯铜前驱体化学计量比不同,将五种产物依次记作Pd、Pd1Cu0.5、Pd1Cu1.7、Pd1Cu3和 Pd1Cu5。利用透射电子显微镜、扫描电子显微镜、X射线光电子能谱表征所制备的PdCu纳米花。从图1和图3透射电镜和扫描电镜图片可以看出Pd1Cu1.7纳米花是有许多二维纳米片组装而成的三维花状结构。高角度环形暗场像-元素分布图像也表明钯铜两元素分布均匀,形成了合金结构。另外,利用X射线光电子能谱技术对Pd1Cu1.7组成进行表征。从其图2XPS全谱图中可看出Pd1Cu1.7包含Pd和Cu两种元素,再次说明形成了PdCu合金结构。其Pd3d分峰拟合,得到四个峰位于334.86 eV,336.24 eV,340.06 eV和341.56 eV分别对应Pd03d5/2,Pd2+3d5/2,Pd03d3/2,和Pd2+3d3/2;其Cu2p分峰拟合,得到四个峰位于931.04 eV,933.41 eV,950.94 eV和953.47 eV分别对应Cu02p3/2,Cu2+2p3/2,Cu02p1/2和Cu2+2p1/2;上述结果表明成功制备了PdCu双金属合金纳米材料。
(2)动力学分析:首先向1.5 mL离心管中依次添加840 μL醋酸盐缓冲液(10 mM,pH= 4.0),10 μL Pd1Cu1.7溶液,50 μL H2O2(10 mM)和100 μL 不同浓度TMB,混合均匀后,室温孵育2 min,在波长652 nm处测试紫外光谱。然后向1.5 mL离心管中依次添加840 μL醋酸盐缓冲液(10 mM,pH = 4.0),10 μL Pd1Cu1.7溶液,50 μL 不同浓度H2O2和100 μL TMB(5 mM),混合均匀后,室温孵育2 min,在波长652 nm处测试紫外光谱。
根据 Lineweaver-Burk 方程计算动力学参Km和Vmax。 Km是Michaelis常数;Vmax是最大反应速率。
(3)过氧化氢测定:向1.5 mL离心管中依次添加840 μL醋酸盐缓冲液(10 mM,pH =4.0),10 μL Pd1Cu1.7溶液,50 μL不同浓度的 H2O2和100 μL TMB(5 mM),混合均匀后,将离心管置于室温孵育10 min后,测试紫外光谱。利用吸光度值与过氧化氢的浓度进行线性拟合,得到过氧化氢的线性范围为:0.05-0.75 mM,检出限为0.4 μM。
图4 (A)、(B)分别为Pd1Cu1.7对TMB和H2O2的稳态动力学曲线。(C)、(D)分别为TMB和H2O2的双倒数曲线。
图6(A)吸光度值与过氧化氢的浓度关系;插图为吸光度与过氧化氢浓度的线性关系;(C)不同浓度H2O2的紫外-可见吸收光谱图;从下到上过氧化氢的浓度依次为0、0.05、0.1、0.2、 0.3、 0.4、 0.5、0.75、1、1.5、2、4、6、8、10、15mM;插图为加入不同浓度过氧化氢时溶液颜色的数码照片。
(4)葡萄糖测定:图5利用Pd1Cu1.7检测葡萄糖的原理示意图。
向1.5 mL离心管中加入50 μL GOx(5 mg mL-1),200 μL不同浓度的葡萄糖醋酸盐缓冲液(10 mM,pH = 7.4),37 ℃孵育30 min。随后,再依次添加690 μL醋酸盐缓冲液(10mM,pH = 4.0),10 μL Pd1Cu1.7溶液和50 μL TMB(5 mM),混合均匀后,将离心管置于室温孵育30 min后,测试紫外光谱。利用吸光度值与葡萄糖的浓度进行线性拟合,得到葡萄糖的线性范围为:0.01-0.5 mM,检出限为 2.93 μM。我们测定了常见的碳水化合物对检测体系的影响,图7方法的选择性测试,结果证明该方法选择性较好。
图6(B)吸光度与葡萄糖的浓度关系;插图为吸光度与葡萄糖浓度的线性关系;(D)不同浓度葡萄糖的紫外-可见吸收光谱图;从下到上葡萄糖的浓度依次为0、0.01、 0.05、0.1、 0.2、 0.5、 0.8、1、2mM;插图为加入不同浓度葡萄糖时溶液颜色的数码照片。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (3)

1.钯铜双金属纳米花类过氧化物Pd1Cu1.7在葡萄糖检测中的应用,其特征在于,葡萄糖氧化酶氧化葡萄糖生成过氧化氢,以Pd1Cu1.7为催化剂催化过氧化氢发生还原,同时过氧化氢将无色的3,3',5,5'-四甲基联苯胺氧化成显蓝色的3,3',5,5'-氧化态四甲基联苯胺,在652 nm处产生紫外吸收峰,测试紫外光谱;葡萄糖浓度越高,产生的过氧化氢浓度越高,溶液颜色越深,吸光度值越大,从而确定葡萄糖的含量;
钯铜双金属纳米花类过氧化物Pd1Cu1.7的制备方法为:将10 mg四氯钯酸钠、50 mg六羰基钨、5.8mg二水氯化铜、8 mL二甲基甲酰胺和2 mL冰醋酸加入到圆底烧瓶中;将上述溶液超声混合10 min混合均匀,然后将混合均匀的溶液120 ℃油浴加热搅拌2 h;最终将所得到产物用水和乙醇多次离心洗涤,得到双金属合金纳米材料PdCu纳米花。
2.根据权利要求1所述的应用,其特征在于,包括以下步骤:
(1)向1.5 mL离心管中加入50 μL5 mg mL-1 GOx以及200 μL、10 mM、pH = 7.4的葡萄糖醋酸盐缓冲液,37 ℃孵育30 min,再依次添加690 μL、10 mM、pH = 4.0的醋酸盐缓冲液,10μL Pd1Cu1.7溶液和50 μL、 5 mM TMB,混合均匀后,将离心管置于室温孵育30 min后,测试紫外光谱,利用吸光度值与过氧化氢的浓度进行线性拟合,测定过氧化氢的含量,得到葡萄糖的线性范围;
(2)测定待测样品的吸光度值,确定葡萄糖的含量。
3.根据权利要求2所述的应用,其特征在于,检测的葡萄糖含量的线性范围是 0.01-0.5 mM。
CN202010781500.9A 2020-08-06 2020-08-06 一种钯铜双金属纳米花类过氧化物的制备方法及其在葡萄糖检测中的应用 Active CN111992732B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010781500.9A CN111992732B (zh) 2020-08-06 2020-08-06 一种钯铜双金属纳米花类过氧化物的制备方法及其在葡萄糖检测中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010781500.9A CN111992732B (zh) 2020-08-06 2020-08-06 一种钯铜双金属纳米花类过氧化物的制备方法及其在葡萄糖检测中的应用

Publications (2)

Publication Number Publication Date
CN111992732A CN111992732A (zh) 2020-11-27
CN111992732B true CN111992732B (zh) 2022-09-30

Family

ID=73463475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010781500.9A Active CN111992732B (zh) 2020-08-06 2020-08-06 一种钯铜双金属纳米花类过氧化物的制备方法及其在葡萄糖检测中的应用

Country Status (1)

Country Link
CN (1) CN111992732B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112748105B (zh) * 2020-12-30 2022-08-12 临沂大学 一种用于血糖/尿糖快速检测的单原子催化剂基比色试纸的制备方法
CN113295685B (zh) * 2021-01-23 2023-09-05 济南大学 一种比色检测葡萄糖的纳米酶的制备方法及应用
CN112850669B (zh) * 2021-01-29 2022-03-22 杭州电子科技大学 一种钯铜磷化物异质二聚体材料的制备方法
CN113481533A (zh) * 2021-06-11 2021-10-08 浙江工业大学 一种催化氧还原反应的花状氢化钯催化剂及其制备方法
CN113714507B (zh) * 2021-08-02 2024-03-05 南京师范大学 一种氰基修饰的三维钯铜纳米珊瑚及其制备方法与应用
CN118518870B (zh) * 2024-05-14 2024-10-18 西北大学 Pt/Cu双金属核酸框架纳米材料的制备方法及其在葡萄糖检测中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155248A (zh) * 2013-05-14 2014-11-19 中国科学院理化技术研究所 用于检测葡萄糖的纳米材料的制备方法
CN105396600A (zh) * 2015-11-10 2016-03-16 中国科学院福建物质结构研究所 Pd5.12Cu多枝状纳米晶催化剂及其制备和用途
CN107224982A (zh) * 2016-12-19 2017-10-03 浙江大学 用于还原脱氯材料的Cu/Pd合金修饰TiO2催化剂的制备方法
CN109225253A (zh) * 2018-08-09 2019-01-18 厦门大学 一种原子级分散钯铜催化剂及其制备方法与催化应用
CN109411773A (zh) * 2018-10-22 2019-03-01 浙江工业大学 一种钯铜金纳米刺状电催化剂及其制备方法
CN110609032A (zh) * 2019-09-03 2019-12-24 东华理工大学 基于氧化钼量子点作为过氧化物模拟酶应用的葡萄糖检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155248A (zh) * 2013-05-14 2014-11-19 中国科学院理化技术研究所 用于检测葡萄糖的纳米材料的制备方法
CN105396600A (zh) * 2015-11-10 2016-03-16 中国科学院福建物质结构研究所 Pd5.12Cu多枝状纳米晶催化剂及其制备和用途
CN107224982A (zh) * 2016-12-19 2017-10-03 浙江大学 用于还原脱氯材料的Cu/Pd合金修饰TiO2催化剂的制备方法
CN109225253A (zh) * 2018-08-09 2019-01-18 厦门大学 一种原子级分散钯铜催化剂及其制备方法与催化应用
CN109411773A (zh) * 2018-10-22 2019-03-01 浙江工业大学 一种钯铜金纳米刺状电催化剂及其制备方法
CN110609032A (zh) * 2019-09-03 2019-12-24 东华理工大学 基于氧化钼量子点作为过氧化物模拟酶应用的葡萄糖检测方法

Also Published As

Publication number Publication date
CN111992732A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
CN111992732B (zh) 一种钯铜双金属纳米花类过氧化物的制备方法及其在葡萄糖检测中的应用
Liu et al. A novel non-enzymatic electrochemical biosensor based on the nanohybrid of bimetallic PdCu nanoparticles/carbon black for highly sensitive detection of H2O2 released from living cells
Stoica et al. Third-generation biosensor for lactose based on newly discovered cellobiose dehydrogenase
CN107890873B (zh) 一种空心状铂铜钴三元合金纳米颗粒模拟酶及其制备和应用
Gao et al. Recent advances of noble metal aerogels in biosensing
CN107037102B (zh) 一种纳米复合材料及其制备方法、应用
CN108982631A (zh) 一种石墨烯单原子金复合材料及其制备方法和应用
CN106984354A (zh) 一种钯掺杂石墨相氮化碳纳米材料的制备方法及其应用
CN108455652A (zh) 一种类过氧化物酶的氢氧化铜纳米棒的制备方法及应用
Cheng et al. “Off-On” switching electrochemiluminescence biosensor for mercury (II) detection based on molecular recognition technology
Smutok et al. New micro/nanocomposite with peroxidase-like activity in construction of oxidases-based amperometric biosensors for ethanol and glucose analysis
CN115672374B (zh) 具有级联催化活性的金属单原子/金属纳米颗粒的纳米复合物及其制备与应用
CN109692972A (zh) PtPd纳米花制备方法及利用PtPd纳米花催化反应的过氧化氢浓度检测方法
Mostafavi et al. Selenium-based nanomaterials for biosensing applications
Huang et al. One-step cascade detection of glucose at neutral pH based on oxidase-integrated copper (ii) metal–organic framework composites
Zhang et al. Highly photosensitive colorimetric immunoassay for tumor marker detection based on Cu2+ doped Ag-AgI nanocomposite
Yang et al. A novel strategy for the detection of pyruvate in fermentation processes based on well-distributed enzyme-inorganic hybrid nanoflowers on thiol graphene modified gold electrodes
Ghosh et al. Superior Peroxidase‐Like Activity of Gold Nanorattles in Ultrasensitive H2O2 Sensing and Antioxidant Screening
Guzsvány et al. Amperometric determination of glucose in white grape and in tablets as ingredient by screen-printed electrode modified with glucose oxidase and composite of platinum and multiwalled carbon nanotubes
Hua-Xiang et al. Facile synthesis of Cu@ Cu2O aerogel for an effective electrochemical hydrogen peroxide sensor
CN108982837B (zh) 一种纳米生物双重模拟酶传感器的制备及其应用
Jabiyeva et al. The peroxidase-like activity of Au NPs deposited inverse opal CeO2 nanozyme for rapid and sensitive H2O2 sensing
CN110296982A (zh) 基于G4-Cu2+仿酶体系的硫化氢比色传感器
CN111208109B (zh) 一种基于AuPB@Au NPs荧光检测酪氨酸酶的方法
CN116003818B (zh) 一种制备功能化多金属有机骨架纳米酶的方法及其过氧化物酶活性的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant