CN111964706A - 分布式视场互补多伯努利关联算术平均融合跟踪方法 - Google Patents
分布式视场互补多伯努利关联算术平均融合跟踪方法 Download PDFInfo
- Publication number
- CN111964706A CN111964706A CN202010810319.6A CN202010810319A CN111964706A CN 111964706 A CN111964706 A CN 111964706A CN 202010810319 A CN202010810319 A CN 202010810319A CN 111964706 A CN111964706 A CN 111964706A
- Authority
- CN
- China
- Prior art keywords
- bernoulli
- view
- arithmetic mean
- field
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000295 complement effect Effects 0.000 title claims abstract description 43
- 230000004927 fusion Effects 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000005259 measurement Methods 0.000 claims abstract description 33
- 238000004891 communication Methods 0.000 claims abstract description 13
- 238000001914 filtration Methods 0.000 claims abstract description 12
- 238000004422 calculation algorithm Methods 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 abstract description 6
- 238000004088 simulation Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 230000008447 perception Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000000342 Monte Carlo simulation Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D18/00—Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A10/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
- Y02A10/40—Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
目标 | 出生位置 | 出生时间(s) | 死亡时间(s) |
目标1 | [-596.14,-606.75] | 1 | 70 |
目标2 | [307.38,693.2] | 10 | 65 |
目标3 | [692.7,206.8] | 20 | 80 |
目标4 | [700,200] | 30 | 60 |
目标5 | [-603.9,-588.93] | 40 | 100 |
目标6 | [294.12,705.41] | 50 | 100 |
方法 | 时间(s) |
未互补估计(M1) | 2.7923 |
视场互补估计(M2) | 9.8989 |
共享估计(M3) | 32.7096 |
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010810319.6A CN111964706B (zh) | 2020-08-13 | 2020-08-13 | 分布式视场互补多伯努利关联算术平均融合跟踪方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010810319.6A CN111964706B (zh) | 2020-08-13 | 2020-08-13 | 分布式视场互补多伯努利关联算术平均融合跟踪方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111964706A true CN111964706A (zh) | 2020-11-20 |
CN111964706B CN111964706B (zh) | 2022-07-05 |
Family
ID=73365824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010810319.6A Active CN111964706B (zh) | 2020-08-13 | 2020-08-13 | 分布式视场互补多伯努利关联算术平均融合跟踪方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111964706B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119004361A (zh) * | 2024-07-30 | 2024-11-22 | 四川大学 | 基于改进椭圆度量的多传感器多扩展目标跟踪方法及设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106199581A (zh) * | 2016-06-30 | 2016-12-07 | 电子科技大学 | 一种随机集理论下的多机动目标跟踪方法 |
CN106408594A (zh) * | 2016-09-28 | 2017-02-15 | 江南大学 | 基于多伯努利特征协方差的视频多目标跟踪方法 |
IN201641039332A (zh) * | 2016-11-18 | 2018-05-25 | ||
CN108934028A (zh) * | 2018-07-05 | 2018-12-04 | 电子科技大学 | 一种多伯努利滤波器分布式融合方法 |
CN110967690A (zh) * | 2019-11-12 | 2020-04-07 | 江南大学 | 一种基于多伯努利分布式多传感器多目标跟踪方法 |
CN111504327A (zh) * | 2020-04-30 | 2020-08-07 | 江苏理工学院 | 一种基于航迹平滑技术的广义标签多伯努利多目标跟踪方法 |
-
2020
- 2020-08-13 CN CN202010810319.6A patent/CN111964706B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106199581A (zh) * | 2016-06-30 | 2016-12-07 | 电子科技大学 | 一种随机集理论下的多机动目标跟踪方法 |
CN106408594A (zh) * | 2016-09-28 | 2017-02-15 | 江南大学 | 基于多伯努利特征协方差的视频多目标跟踪方法 |
IN201641039332A (zh) * | 2016-11-18 | 2018-05-25 | ||
CN108934028A (zh) * | 2018-07-05 | 2018-12-04 | 电子科技大学 | 一种多伯努利滤波器分布式融合方法 |
CN110967690A (zh) * | 2019-11-12 | 2020-04-07 | 江南大学 | 一种基于多伯努利分布式多传感器多目标跟踪方法 |
CN111504327A (zh) * | 2020-04-30 | 2020-08-07 | 江苏理工学院 | 一种基于航迹平滑技术的广义标签多伯努利多目标跟踪方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119004361A (zh) * | 2024-07-30 | 2024-11-22 | 四川大学 | 基于改进椭圆度量的多传感器多扩展目标跟踪方法及设备 |
Also Published As
Publication number | Publication date |
---|---|
CN111964706B (zh) | 2022-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Phoemphon et al. | A hybrid localization model using node segmentation and improved particle swarm optimization with obstacle-awareness for wireless sensor networks | |
CN106291533B (zh) | 一种基于amd的分布式多传感器融合方法 | |
CN106991691B (zh) | 一种适用于摄像机网络下的分布式目标跟踪方法 | |
CN106851571B (zh) | 一种基于决策树的快速KNN室内WiFi定位方法 | |
WO2012009947A1 (zh) | 特征迹驱动的多目标跟踪装置及方法 | |
CN111352087B (zh) | 基于dbscan的被动mimo雷达多目标定位方法 | |
CN111988845B (zh) | 边缘计算架构下的差分私有多源无线信号指纹融合室内定位方法 | |
CN110889862B (zh) | 一种网络传输攻击环境中多目标跟踪的组合测量方法 | |
CN108650706A (zh) | 基于二阶泰勒近似的传感器节点定位方法 | |
Benala et al. | A particle swarm optimized functional link artificial neural network (PSO-FLANN) in software cost estimation | |
CN112113572A (zh) | 一种解决分布式标签融合的多目标跟踪方法 | |
CN104680002B (zh) | 一种基于随机集理论的分布式融合方法 | |
CN111964706B (zh) | 分布式视场互补多伯努利关联算术平均融合跟踪方法 | |
Liu et al. | Improved Iterated-corrector PHD with Gaussian mixture implementation | |
Sorkhabi et al. | Deep learning of GPS geodetic velocity | |
CN113296089B (zh) | 用于多预警机目标跟踪系统的lmb密度融合方法及装置 | |
CN112748735B (zh) | 一种引入颜色特征的扩展目标跟踪方法 | |
CN111539476B (zh) | 基于朴素贝叶斯的个人信息传播扩散源定位的观测点部署方法 | |
CN111770528B (zh) | 基于信道参数萃取方法的视距与非视距识别方法及装置 | |
Plarre et al. | Tracking objects with networked scattered directional sensors | |
CN110309599A (zh) | 一种方位测量融合与多目标定位方法 | |
CN108882271B (zh) | 一种基于标签多伯努利分布的非共视多传感器融合方法 | |
CN113959428B (zh) | 一种用于跟踪非刚性多扩展目标的phd滤波方法 | |
CN106658643A (zh) | 基于rssi的有效锚节点选取方法 | |
CN113218393A (zh) | 基于磁异常总场匹配定位算法的水下目标分布式组网定位方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Xue Qiutiao Inventor after: Yan Suqing Inventor after: Wang Shouhua Inventor after: Wang Li Inventor after: Wu Sunyong Inventor after: Zou Baohong Inventor after: Sun Xiyan Inventor after: Ji Yuanfa Inventor after: Cai Ruhua Inventor after: Fan Xiangting Inventor after: Fu Qiang Inventor before: Xue Qiutiao Inventor before: Yan Suqing Inventor before: Wang Shouhua Inventor before: Wang Li Inventor before: Wu Sunyong Inventor before: Zou Baohong Inventor before: Sun Xiyan Inventor before: Ji Yuanfa Inventor before: Cai Ruhua Inventor before: Fan Xiangting Inventor before: Fu Qiang |