CN111960863A - 一种超高温耐腐蚀复合材料及其制备方法 - Google Patents

一种超高温耐腐蚀复合材料及其制备方法 Download PDF

Info

Publication number
CN111960863A
CN111960863A CN202010887350.XA CN202010887350A CN111960863A CN 111960863 A CN111960863 A CN 111960863A CN 202010887350 A CN202010887350 A CN 202010887350A CN 111960863 A CN111960863 A CN 111960863A
Authority
CN
China
Prior art keywords
composite material
sic
ultrahigh
temperature corrosion
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010887350.XA
Other languages
English (en)
Other versions
CN111960863B (zh
Inventor
冯晶
杨凯龙
郑奇
汪俊
宋鹏
种晓宇
葛振华
李振军
王峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Tianxuan Coating Technology Co ltd
Kunming University of Science and Technology
Original Assignee
Shaanxi Tianxuan Coating Technology Co ltd
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Tianxuan Coating Technology Co ltd, Kunming University of Science and Technology filed Critical Shaanxi Tianxuan Coating Technology Co ltd
Priority to CN202010887350.XA priority Critical patent/CN111960863B/zh
Publication of CN111960863A publication Critical patent/CN111960863A/zh
Application granted granted Critical
Publication of CN111960863B publication Critical patent/CN111960863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明涉及复合材料技术领域,具体公开了一种超高温耐腐蚀复合材料及其制备方法,包括复合材料基体,所述复合材料基体上依次沉积有粘接层和陶瓷层,所述陶瓷层为稀土钽酸盐(RETaO4)或稀土铌酸盐(RENbO4)的一种或两种按比例混合。本发明制备的复合材料可适应多种恶劣腐蚀环境,能够有效延长C/C、SiC/SiC、C/C‑SiC等复合材料的服役时间,这大大减少了因腐蚀造成的材料与能源的浪费,开源节流。

Description

一种超高温耐腐蚀复合材料及其制备方法
技术领域
本发明涉及复合材料技术领域,特别涉及一种超高温耐腐蚀复合材料及其制备方法。
背景技术
C/C、SiC/SiC、C/C-SiC等复合材料由于具有密度低、比强度高、耐磨性好、抗腐蚀性优良,并兼有优异的力学性能和热物理性能等特点,被广泛应用航空航天、汽车工业、医学等领域。其中,C/C复合材料是目前极少数可在2000℃以上保持较高力学性能的材料之一,它具有热膨胀系数较低、耐热冲击、耐烧蚀、耐含固体微粒燃气的冲刷等优异性能,尤其是这种材料的强度随温度的升高不降反升的独特性能,因此被认为是最有前途的高温材料之一,其作为航空航天等高技术领域热结构件使用具有其它材料难以比拟的优势,被广泛应用于高性能固体火箭发动机(SRM)喷管及其喉衬、航天飞机的端头帽和机翼前缘的热防护系统、飞机刹车盘等。
但C/C复合材料在高温环境下有个极大的弱点,即在温度超过400℃的有氧环境下容易发生氧化反应,这一劣势极大的限制了其发展,若无抗氧化措施,在高温氧化环境中长时间使用C/C复合材料必将引起灾难性后果;另外SiC/SiC复合材料、C/C-SiC复合材料也都存在这因热导率较高且在有氧高温气氛中易被氧化,限制了它的后续发展应用,因此要如何解决C/C、SiC/SiC、C/C-SiC等复合材料在高温有氧环境下的耐腐蚀和低热导率的问题是目前该复合材料领域研究的重点方向。
发明内容
本发明提供了一种超高温耐腐蚀复合材料及其制备方法,以解决现有技术中C/C、SiC/SiC、C/C-SiC等复合材料在高温有氧环境下的容易氧化腐蚀和热导率高的问题。
为了达到上述目的,本发明的技术方案为:
一种超高温耐腐蚀复合材料及,包括复合材料基体,所述复合材料基体上依次沉积有粘接层和陶瓷层,所述陶瓷层为稀土钽酸盐(RETaO4)或稀土铌酸盐(RENbO4)的一种或两种按比例混合。
本技术方案的技术原理和效果在于:
1、本方案中的技术方案通过在复合材料基体表面沉积陶瓷层,大幅度降低了其热导率,使其基体能够在长时间保持在低温状态下,同时由于陶瓷涂层的致密性高,高温环境中的氧气难以穿透,从而使其高温耐腐蚀性能得到提升。
2、本方案中陶瓷层采用稀土钽酸盐或稀土铌酸盐,其具有热导低、热膨胀系数高、耐腐蚀、抗氧化等特点,低热导能够降低热量的传输,使复合材料基底表面温度显著降低,高热膨胀系数的陶瓷层能够与粘结层热膨胀系数相匹配,避免因热应力失配而使涂层产生裂纹甚至脱落,陶瓷层耐腐蚀的特性能够有效解决因高温环境产生的熔融盐、CMAS等腐蚀基体导致基体失效的问题,延长复合材料基体使用寿命,陶瓷层能够隔绝环境中水蒸气、氧气等氧化介质与复合材料基体接触,增强复合材料基体的抗氧化能力。
3、本发明制备的复合材料可适应多种恶劣腐蚀环境,能够有效延长C/C、SiC/SiC、C/C-SiC等复合材料的服役时间,这大大减少了因腐蚀造成的材料与能源的浪费,开源节流。
进一步,所述复合材料基体为C/C、SiC/SiC或C/SiC。
有益效果:本申请中的涂层能够对提高上述三种复合材料的耐高温腐蚀能力。
进一步,所述粘结层的成分为MCrAlY,所述MCrAlY为NiCrAlY、NiCoCrAlY、CoNiCrAlY或CoCrAlY。
有益效果:上述粘接层的成分均为常用的粘接剂。
本申请还公开了一种超高温耐腐蚀复合材料的制备方法,包括以下步骤:
步骤1:采用PS-PVD在复合材料基体上沉积粘结层,厚度为100~150μm;
步骤2:采用APS在粘结层的表面沉积陶瓷层,厚度100~150μm。
有益效果:采用本方法制备得到了耐高温腐蚀的复合材料。
进一步,所述步骤1中,在沉积粘结层之前,去除复合材料基体表面的油污。
有益效果:去除油污能够提高复合材料表面的粘接性能。
进一步,对去除油污的复合材料基体的表面进行喷丸处理,使得复合材料基体的表面粗糙度为60~100μm。
有益效果:喷丸处理能够提高复合材料基体的强度,同时提高其与粘接层之间的连接稳定性。
具体实施方式
下面通过具体实施方式进一步详细说明:
实施例1:
一种超高温耐腐蚀复合材料,包括C/C复合材料基体,在C/C复合材料基体上依次沉积有粘接层和陶瓷层,本实施例1中粘接层的成分为NiCrAlY,陶瓷层的成分为YTaO4
其中稀土钽酸盐(RETaO4)或铌酸盐(RENbO4)的制备方法,包括以下步骤:
步骤1:将RE2O3、Ta2O5或Nb2O5按照摩尔比为1:1加入到球磨机中进行球磨,球磨机的转速为300r/min,球磨后进行干燥过筛得到粉末A。
步骤2:将步骤1干燥过筛后的粉末A采用高温固相反应法制得成分RETaO4/RENbO4的粉末B,反应温度为1700℃,反应时间为10h;并采用300目的筛子对粉末B进行过筛。
步骤3:将步骤2中过筛后的粉末B与去离子水溶剂、有机粘接剂混合得到浆料C,其中浆料C中粉末B的质量百分比为25%,有机粘接剂的质量百分比为2%,其余为溶剂,有机粘接剂采用聚乙烯醇或者阿拉伯树胶;再利用离心雾化法对浆料C进行干燥,干燥时的温度为600℃,离心速度为8500r/min,得到干燥的料粒D;
步骤4:将步骤3得到的料粒D在1200℃的温度下烧结8h,再采用300目的筛子对烧结后的料粒D过筛,得到粒径为10~70nm并且形貌呈球形的RETaO4/RENbO4陶瓷粉体。
上述超高温耐腐蚀复合材料的制备方法,包括以下步骤:
步骤1:将C-C复合材料基体表面进行除油除污,获得干净的基体表面,随后进行喷砂处理,获得60~100μm的粗糙度,提高基体与涂层的结合强度,喷砂操作时采用粒径0.5mm的铁砂;通过PS-PVD在基体上沉积一层成分为NiCrAlY的粘结层,厚度为100μm。
步骤2:利用APS在粘结层的表面沉积一层稀土钽酸盐YTaO4陶瓷层,增强基底耐高温耐腐蚀抗氧化能力,厚度100μm。
实施例2~17:
与实施例1的区别在于,复合材料基体与各涂层的成分或厚度不同,具体见下表1~2所示。
表1为实施例2~9各涂层的成分与厚度表(表中“--”表示不含有)
Figure BDA0002655978180000031
Figure BDA0002655978180000041
表2为实施例10~17各涂层的成分与厚度表(表中“--”表示不含有)
Figure BDA0002655978180000042
Figure BDA0002655978180000051
实施例18:
与实施例1的区别在于,陶瓷层成分包括YTaO4和SmTaO4,且两种粉末的配比为各自的体积分数分别为50%。
实施例19:
与实施例1的区别在于,陶瓷层的成分包括YTaO4、SmTaO4、NdNbO4和DyNbO4,且四种粉末的配比为各自的体积分数为25%。
实施例20:
与实施例19的区别在于,4种稀土钽/铌酸盐在粘接层上形成梯度涂层,涂层梯度n=11,第1层指与粘接层直接接触的涂层,每一层按照表3所示进行成分配比,再依次沉积到粘接层上,沉积的总厚度为100μm,配比的要求为:4种稀土钽/铌酸盐中至少有一种以上的体积分数是连续递增或递减变化的。
表3为实施例19中各梯度层稀土钽/铌酸盐的体积分数表(体积分数%)
Figure BDA0002655978180000052
Figure BDA0002655978180000061
对比例1:
与实施例17的区别在于,本对比例中在粘接层的外部沉积了两层稀土钽酸盐,依次为YTaO4和SmTaO4,两层稀土钽酸盐的总厚度为100μm。
选取实施例1~19、对比例1得到的合金材料试样进行热导率实验检测:
采用激光热导仪进行测试,在700K温度时,以实施例1~3、实施例10~12、实施例18~20与对比例1的测试结果为例,如下表4所示。
表4为实施例1~3、10~12、18~20与对比例1的热导率
Figure BDA0002655978180000062
从上表4可以得出:
1、采用本申请中的技术方案通过在复合材料基体表面沉积陶瓷涂层,大幅度降低了其热导率,使其基体能够在长时间保持在低温状态下,同时由于陶瓷涂层的致密性高,高温环境中的氧气难以穿透,从而使其高温耐腐蚀性能得到提升。
2、实施例18和19通过将陶瓷涂层设计为多种稀土钽或铌酸盐的物理混合,再进行沉积,以这样的方式得到的复合陶瓷涂层发现其热导率出现大幅度的下降,原因在于,物理混合的多种陶瓷粉体在形成涂层时,不同成分之间不会存在明显的界面,使得涂层中界面效应消失,而相比于传统(对比例1)的方式,不同稀土钽或铌酸盐成分之间是存在明显的界面的,因此对比例1的热导率虽然要略低于实施例1,但依旧要远高于实施例17。
3、实施例20通过对多种稀土钽/铌酸盐陶瓷粉体进行设计,得到多元梯度涂层,即涂层中至少一种粉体的体积分数是在连续变化,这样的方式能够使其热导率进一步下降,原因在于采用这样的方式进行沉积得到的陶瓷涂层,各梯度涂层之间成分呈渐变的形式,各梯度涂层之间形成的界面少,使得界面效应弱,同时最重要的一点在于,在各梯度涂层沉积过程中,每一层的成分还会不断的扩散,使得界面效应继续减弱,从而使得热导率下降,因此实施例20相比与实施例19而言,其热导率要低一些,但是实施例20这样沉积的方式在操作上比实施例19难一些,因此需要结合生产实际选择最佳的制备方法。
以上所述的仅是本发明的实施例,方案中公知的具体材料及特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。

Claims (6)

1.一种超高温耐腐蚀复合材料,其特征在于:包括复合材料基体,所述复合材料基体上依次沉积有粘接层和陶瓷层,所述陶瓷层为稀土钽酸盐(RETaO4)或稀土铌酸盐(RENbO4)的一种或两种按比例混合。
2.根据权利要求1所述的一种超高温耐腐蚀复合材料,其特征在于:所述复合材料基体为C/C、SiC/SiC或C/SiC。
3.根据权利要求1所述的一种超高温耐腐蚀复合材料,其特征在于:所述粘结层的成分为MCrAlY,所述MCrAlY为NiCrAlY、NiCoCrAlY、CoNiCrAlY或CoCrAlY。
4.一种制备如权利要求1所述的超高温耐腐蚀复合材料的方法,其特征在于:包括以下步骤:
步骤1:采用PS-PVD在复合材料基体上沉积粘结层,厚度为100~150μm;
步骤2:采用APS在粘结层的表面沉积陶瓷层,厚度100~150μm。
5.根据权利要求4所述的一种超高温耐腐蚀复合材料的制备方法,其特征在于:所述步骤1中,在沉积粘结层之前,去除复合材料基体表面的油污。
6.根据权利要求5所述的一种超高温耐腐蚀复合材料的制备方法,其特征在于:对去除油污的复合材料基体的表面进行喷丸处理,使得复合材料基体的表面粗糙度为60~100μm。
CN202010887350.XA 2020-08-28 2020-08-28 一种超高温耐腐蚀复合材料及其制备方法 Active CN111960863B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010887350.XA CN111960863B (zh) 2020-08-28 2020-08-28 一种超高温耐腐蚀复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010887350.XA CN111960863B (zh) 2020-08-28 2020-08-28 一种超高温耐腐蚀复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111960863A true CN111960863A (zh) 2020-11-20
CN111960863B CN111960863B (zh) 2022-03-29

Family

ID=73400835

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010887350.XA Active CN111960863B (zh) 2020-08-28 2020-08-28 一种超高温耐腐蚀复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111960863B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113981381A (zh) * 2021-10-29 2022-01-28 昆明理工大学 一种火灾低空飞行救援无人机机身轻质材料表面涂层及其制备方法
CN114163260A (zh) * 2021-10-20 2022-03-11 昆明理工大学 一种无人机表面的陶瓷基复合材料体系及其制备方法
CN114672755A (zh) * 2022-05-19 2022-06-28 昆明理工大学 一种适于抗高温铝渗透非浸润性涂层及其制备方法
CN114855121A (zh) * 2022-04-27 2022-08-05 昆明理工大学 一种非浸润性双层陶瓷涂层及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768380A (zh) * 2009-12-30 2010-07-07 中国科学院上海硅酸盐研究所 成分梯度变化的热防护涂层及制备方法
CN105862038A (zh) * 2016-06-21 2016-08-17 天津大学 一种抗cmas腐蚀耐超高温的长寿命热障涂层及其制备方法
CN106191751A (zh) * 2015-04-30 2016-12-07 中国农业机械化科学研究院 碳‐碳复合材料工装表面制抗氧化涂层的方法及所制工装
CN108603275A (zh) * 2016-03-07 2018-09-28 于利奇研究中心有限公司 用于将高温保护层粘合在基底上的增粘剂层及其制造方法
CN109023205A (zh) * 2018-08-30 2018-12-18 昆明理工大学 一种热喷涂热障涂层的制备方法
CN109627000A (zh) * 2018-12-29 2019-04-16 昆明理工大学 稀土钽/铌酸盐(RETa/NbO4)陶瓷粉体及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768380A (zh) * 2009-12-30 2010-07-07 中国科学院上海硅酸盐研究所 成分梯度变化的热防护涂层及制备方法
CN106191751A (zh) * 2015-04-30 2016-12-07 中国农业机械化科学研究院 碳‐碳复合材料工装表面制抗氧化涂层的方法及所制工装
CN108603275A (zh) * 2016-03-07 2018-09-28 于利奇研究中心有限公司 用于将高温保护层粘合在基底上的增粘剂层及其制造方法
CN105862038A (zh) * 2016-06-21 2016-08-17 天津大学 一种抗cmas腐蚀耐超高温的长寿命热障涂层及其制备方法
CN109023205A (zh) * 2018-08-30 2018-12-18 昆明理工大学 一种热喷涂热障涂层的制备方法
CN109627000A (zh) * 2018-12-29 2019-04-16 昆明理工大学 稀土钽/铌酸盐(RETa/NbO4)陶瓷粉体及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114163260A (zh) * 2021-10-20 2022-03-11 昆明理工大学 一种无人机表面的陶瓷基复合材料体系及其制备方法
CN114163260B (zh) * 2021-10-20 2023-01-13 昆明理工大学 一种无人机表面的陶瓷基复合材料体系及其制备方法
CN113981381A (zh) * 2021-10-29 2022-01-28 昆明理工大学 一种火灾低空飞行救援无人机机身轻质材料表面涂层及其制备方法
CN113981381B (zh) * 2021-10-29 2022-12-23 昆明理工大学 一种火灾低空飞行救援无人机机身轻质材料表面涂层及其制备方法
CN114855121A (zh) * 2022-04-27 2022-08-05 昆明理工大学 一种非浸润性双层陶瓷涂层及其制备方法
CN114855121B (zh) * 2022-04-27 2023-11-10 昆明理工大学 一种非浸润性双层陶瓷涂层及其制备方法
CN114672755A (zh) * 2022-05-19 2022-06-28 昆明理工大学 一种适于抗高温铝渗透非浸润性涂层及其制备方法
CN114672755B (zh) * 2022-05-19 2023-11-10 昆明理工大学 一种适于抗高温铝渗透非浸润性涂层及其制备方法

Also Published As

Publication number Publication date
CN111960863B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
CN111960863B (zh) 一种超高温耐腐蚀复合材料及其制备方法
US4321311A (en) Columnar grain ceramic thermal barrier coatings
US4405659A (en) Method for producing columnar grain ceramic thermal barrier coatings
US4401697A (en) Method for producing columnar grain ceramic thermal barrier coatings
US9581041B2 (en) Abradable ceramic coatings and coating systems
US6093454A (en) Method of producing controlled thermal expansion coat for thermal barrier coatings
US4330575A (en) Coating material
Pakseresht et al. Micro-structural study and wear resistance of thermal barrier coating reinforced by alumina whisker
JP7232295B2 (ja) 基材上に高温保護層を接合するための付着促進層、並びにそれの製造方法
CN105624670A (zh) 铝合金构件表面耐磨减摩复合涂层及其制备方法
US20090098394A1 (en) Strain tolerant corrosion protecting coating and tape method of application
US6544351B2 (en) Compositions and methods for producing coatings with improved surface smoothness and articles having such coatings
JPS58194782A (ja) 複合材料被覆物および物品への適用法
CN112250476A (zh) 具有高温陶瓷涂层YSZ-RETaO4的SiC基复合材料及其制备方法
Gao et al. Tritium permeation barrier based on self-healing composite materials
CN114293132B (zh) 一种利用纳米改性硅粘结层提高环境障涂层结合强度的方法
Ramesh et al. Slurry erosive wear behavior of plasma sprayed inconel-718 coatings on Al6061 alloy
Kumar et al. Solid particle erosive wear behavior of sol–gel-derived AA2024 thermal barrier coatings
Chen et al. Erosion behavior of PS-PVD thermal barrier coatings and the effect of composite coating (PS-PVD+ APS) thickness
JPS61159566A (ja) 金属又はセラミツク基材のコ−テイング方法
CN108707897B (zh) 排气管陶瓷涂层及其制备方法
CN105483596B (zh) 一种无机涂层的制备方法
Krishnamurthy et al. Characterization and wear behavior of plasma-sprayed Al 2 O 3 and ZrO 2 5CaO coatings on cast iron substrate
Gok et al. Effect of abrasive particle sizes on abrasive wear of ceramic coatings sprayed by plasma process
CN112323011B (zh) 一种适用于vw75稀土镁合金的等离子喷涂工艺方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant