CN111960823A - 一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层及其制备方法 - Google Patents

一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层及其制备方法 Download PDF

Info

Publication number
CN111960823A
CN111960823A CN202010889462.9A CN202010889462A CN111960823A CN 111960823 A CN111960823 A CN 111960823A CN 202010889462 A CN202010889462 A CN 202010889462A CN 111960823 A CN111960823 A CN 111960823A
Authority
CN
China
Prior art keywords
niobate
thermal barrier
rare earth
coating
barrier coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010889462.9A
Other languages
English (en)
Other versions
CN111960823B (zh
Inventor
冯晶
郑奇
王一涛
杨凯龙
汪俊
陈琳
李振军
王峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Tianxuan Coating Technology Co ltd
Kunming University of Science and Technology
Original Assignee
Shaanxi Tianxuan Coating Technology Co ltd
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Tianxuan Coating Technology Co ltd, Kunming University of Science and Technology filed Critical Shaanxi Tianxuan Coating Technology Co ltd
Priority to CN202010889462.9A priority Critical patent/CN111960823B/zh
Publication of CN111960823A publication Critical patent/CN111960823A/zh
Application granted granted Critical
Publication of CN111960823B publication Critical patent/CN111960823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及热障涂层技术领域,具体公开了一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层及其制备方法,该涂层为多元梯度涂层,包括两种以上不同陶瓷组份,且至少有一种以上的陶瓷组份的体积分数沿涂层梯度连续递增或递减的变化,该涂层中陶瓷组份的化学通式为RE1‑xM1 xM2O4‑x/2(0<x<1),M1为Mg、Ca、Sr或Ba元素中的一种;M2为Ta或Nb元素。本专利中方案既能够保证热障涂层具备原本碱土金属掺杂的稀土钽/铌酸盐的高膨胀系数,同时其热导率也大幅度的下降,通过实验检测得到热导率未超过1.10W·m‑1·K‑1,满足热障涂层对低热导率的需求。

Description

一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层及其制 备方法
技术领域
本发明涉及热障涂层技术领域,特别涉及一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层及其制备方法。
背景技术
热障涂层是利用陶瓷的隔热和抗腐蚀性特点来保护基体材料,在航空、航天、舰船、武器等方面有着重要的应用价值。目前,广泛使用的热障涂层材料主要为6%-8%的氧化钇稳定氧化锆(6-8YSZ)和锆酸镧(La2Zr2O7),这两种陶瓷均有一定程度的不足:6-8YSZ的使用温度较低(≤1200℃),热导率也较高(约2.5W·m-1k-1,900℃),La2Zr2O7则有着热膨胀系数较低的问题,随着发动机和燃气轮机高推重比,高出口温度的未来发展需要,寻找新型热障涂层材料迫在眉睫。
稀土铌/钽酸盐陶瓷(RENb/TaO4)凭借着高的熔点,低热导率(1.38~1.94W·m-1·K-1),高热膨胀系数(11×10-6K-1,1200℃)和铁弹韧性等优异的热物理性能和力学性能,被认为是最具潜力的新一代热障涂层材料。铁弹增韧机制赋予稀土铌/钽酸盐陶瓷优异的高温断裂韧性,这是其他潜在热障涂层材料所不具备的独特优势,另外有研究发现通过掺杂离子的引入能够在稀土钽/铌酸盐内产生氧空位和点缺陷,对降低热障涂层的热导率有一定效果;因此要如何最大化的体现出离子掺杂稀土铌/钽酸盐陶瓷(RENb/TaO4)陶瓷涂层对基体合金的保护作用依旧是当前研究的重点。
发明内容
本发明提供了一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层及其制备方法,以得到热导率更低,符合热障涂层高温环境使用需求的离子掺杂稀土铌/钽酸盐陶瓷(RENb/TaO4)陶瓷涂层。
为了达到上述目的,本发明的技术方案为:
一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层,该涂层为多元梯度涂层,包括两种以上不同陶瓷组份,且至少有一种以上的陶瓷组份的体积分数沿涂层梯度连续递增或递减的变化,该涂层中陶瓷组份的化学通式为RE1-xM1 xM2O4-x/2(0<x<1),M1为Mg、Ca、Sr或Ba元素中的一种;M2为Ta或Nb元素。
本技术方案的技术原理和效果在于:
1、本方案中通过引入碱土金属离子掺杂稀土钽/铌酸盐,使其内部产生氧空位和点缺陷改善陶瓷涂层的热导率,另外通过对热障涂层各个梯度涂层的成分进行设计得到多元梯度涂层,即涂层中至少一种陶瓷组份的体积分数是在连续变化,这样的方式能够保证热障涂层具备原本碱土金属掺杂的稀土钽/铌酸盐的高膨胀系数,同时其热导率也大幅度的下降,通过实验检测得到热导率未超过1.10W·m-1·K-1,满足热障涂层对低热导率的需求。
2、本方案中能够得到低热导率的多元梯度陶瓷涂层,其原因在于,各梯度涂层之间成分呈渐变的形式,这样各梯度涂层之间形成的界面少,使得界面效应弱,同时最重要的一点在于,在各梯度涂层沉积过程中,每一层的成分还会不断的扩散,使得界面效应继续减弱,从而使得热导率下降。
进一步,所述多元梯度涂层的厚度为200~400μm。
有益效果:通过实验证明,多元梯度涂层的厚度设定为200~400μm,得到的热障涂层热导率较低。
进一步,所述多元梯度涂层的梯度层数n为6~21层。
有益效果:通过实验证明,多元梯度涂层的梯度层数设置为6~21层,既满足了各梯度层之间成分的扩散效果,又符合实际的沉积工艺难度。
进一步,所述稀土钽酸盐或铌酸盐粉末的制备方法,包括以下步骤:
步骤1:按照结构式为RE1-xM1 xM2O4-x/2取RE2O3和M1CO3粉末溶入浓硝酸中,使PH值低于1.5,将M2OCl3溶液逐滴加入,并不断搅拌,同时加入氨水使体系PH稳定在9~10,在水浴环境内继续搅拌,用无水乙醇或去离子水先后洗涤沉淀,直至PH=7,将得到的滤饼置于烘箱内烘干,然后过筛并在中温环境下进行烧结,将烧结后的粉末再次过筛备用;
步骤2:将步骤1所制备的粉末与其质量不低于30wt.%的水混合获得浆料A,将浆料A与粘结剂以及聚乙二醇、正辛醇、增粘剂和增孔剂混合获得浆料B,再将浆料B送入离心喷雾干燥机对其进行离心喷雾造粒,得到粉体颗粒尺寸为20-70μm的球形碱土金属离子掺杂稀土钽酸盐或铌酸盐陶瓷粉末。
有益效果:采用本方法制备陶瓷粉体,不仅耗时少,且纯度高,且制备的碱土金属掺杂稀土钽/铌酸盐(RE1-xM1 xM2O4-x/2)粉末成相完全,成分均匀,粉末损耗量小。
进一步,所述步骤1中M2OCl3溶液的滴加速度为200~400mL/min,水浴温度为50~100℃,搅拌时间为30~120min,烘干温度为80~120℃,时间为5~10h;中温烧结温度为900-1100℃,时间为3-5h,所用筛子为300~500目。
有益效果:上述参数设定能够满足共沉淀法制备陶瓷粉体的要求。
进一步,步骤2中,粘结剂含量为0.5~3wt.%,添加剂含量为0.1~1wt.%,浆料B的进料速度控制在300~500mL/h,喷雾离心速度为8000~10000r/min。
有益效果:这样的参数下保证得到的粉末成分均匀。
本申请还公开了一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层的制备方法,包括以下步骤:
步骤1:取两种以上不同RE1-xM1 xM2O4-x/2陶瓷粉末混合成n份混合陶瓷粉体,n份混合陶瓷粉体中至少一种以上的钽酸盐陶瓷组份的体积分数为连续递增或递减的变化;
步骤2:将步骤1得到的n份混合陶瓷粉体依次沉积到基体材料上得到多元梯度的碱土金属掺杂稀土钽酸盐或铌酸盐热障涂层。
有益效果:采用上述工艺得到的热障涂层具备多元梯度特征。
进一步,所述步骤2中在基体材料表面预先沉积厚度为100~200μm的金属粘结层,金属粘结层的成分为MCrAlY,其中M为Ni或Co。
有益效果:金属粘接层的设置能够提高稀土钽酸盐与基体材料之间的粘接性。
进一步,所述步骤2中采用APS、HVOF、EB-PVD或者超音速电弧喷涂法进行涂层沉积处理。
有益效果:上述几种涂层的制备工艺均为现有比较成熟的工艺,可根据具体的生产环境进行选择。
具体实施方式
下面通过具体实施方式进一步详细说明:
实施例1:
一种碱土金属离子掺杂稀土钽酸盐热障涂层,该涂层为多元梯度涂层,包括两种不同的陶瓷组份,且至少有一种以上的陶瓷组份的体积分数沿涂层梯度连续递增或递减的变化,本实施例1中两种陶瓷组份的化学通式为Dy0.8Ca0.2TaO3.9和Gd0.8Sr0.2TaO3.9,两种陶瓷组份在每一个梯度涂层中的体积分数配比如表1所示。
另外上述碱土金属离子掺杂稀土钽酸盐或铌酸盐的制备方法,以制备Dy0.8Ca0.2TaO3.9为例,包括以下步骤:
步骤1:按照Dy0.8Ca0.2TaO3.9的结构式将Dy2O3和CaCO3粉末溶入浓硝酸中进行反应,并将PH调至1左右,然后将制备好的TaOCl3溶液逐滴加入(滴加的速度为200mL/min),不停的搅拌,同时加入氨水使体系PH稳定在9~10,搅拌1小时后,在60℃水浴环境内继续搅拌120min,然后用去离子水不断洗涤沉淀,直至PH=7,将滤饼置于120℃烘箱内公干5h,然后过500目筛并在900℃进行5h烧结,将烧结后的粉末再次过500目筛备用。
步骤2:将步骤1所制备的粉末与其质量30wt.%的水混合获得浆料A,将浆料A与粉末质量分数为0.5%的粘结剂以及0.2%的聚乙二醇、0.1%正辛醇和0.1%增孔剂均匀混合获得浆料B,然后将浆料B送入离心喷雾干燥机对其进行离心喷雾造粒,干燥气体为N2,喷雾干燥机进料速度控制在350mL/h,离心速度为9000r/min,进口和出口温度分别为350℃和170℃,获得粉体颗粒尺寸介于20~70μm的Ca掺杂稀土钽酸镝(Dy0.8Ca0.2TaO3.9)球形粉末。
上述碱土金属离子掺杂稀土钽酸盐热障涂层的制备方法,包括以下步骤:
步骤1:取上述方法制备的Dy0.8Ca0.2TaO3.9和Gd0.8Sr0.2TaO3.9粉末按照表1所示混合成6份混合陶瓷粉体。
步骤2:将基体材料(本实施例中镍基高温合金)进行表面粗糙化处理,再在其表面预先沉积厚度为100μm的金属粘结层,金属粘结层的成分为NiCrAlY,采用APS方法将步骤1得到的6份混合陶瓷粉体依次沉积到金属粘接层上得到多元梯度的碱土金属离子掺杂稀土钽酸盐热障陶瓷涂层,该涂层的厚度为200μm。
表1为实施例1中Dy0.8Ca0.2TaO3.9和Gd0.8Sr0.2TaO3.9粉末的体积分数(%)
Figure BDA0002656489360000041
Figure BDA0002656489360000051
实施例2:
与实施例1的区别在于,参照表2所示,梯度层数n=11,碱土金属离子掺杂稀土钽酸盐涂层的厚度为300μm,各梯度层中Dy0.8Ca0.2TaO3.9和Gd0.8Sr0.2TaO3.9粉末的体积分数见下表2所示。
表2为实施例2各梯度层中Dy0.8Ca0.2TaO3.9和Gd0.8Sr0.2TaO3.9粉末的体积分数(%)
梯度层数n Dy<sub>0.8</sub>Ca<sub>0.2</sub>TaO<sub>3.9</sub>粉末 Gd<sub>0.8</sub>Sr<sub>0.2</sub>TaO<sub>3.9</sub>粉末
1 100 0
2 90 10
3 80 20
4 70 30
5 60 40
6 50 50
7 40 60
8 30 70
9 20 80
10 10 90
11 0 100
实施例3:
与实施例1的区别在于,参照表3所示,陶瓷涂层的梯度层数n=21,碱土金属掺杂稀土钽酸盐涂层的厚度为400μm,各梯度层中Dy0.8Ca0.2TaO3.9和Gd0.8Sr0.2TaO3.9粉末的体积分数见下表3所示。
表3为实施例3各梯度层中Dy0.8Ca0.2TaO3.9和Gd0.8Sr0.2TaO3.9粉末的体积分数(%)
Figure BDA0002656489360000052
Figure BDA0002656489360000061
实施例4:
与实施例2的区别在于,本实施例中还包括采用实施例1的方法制备的La0.9Ba0.1TaO3.95粉体,梯度层数n=11,陶瓷涂层的厚度为300μm,各梯度层中Dy0.8Ca0.2TaO3.9、Gd0.8Sr0.2TaO3.9和La0.9Ba0.1TaO3.95粉末的体积分数见下表4所示。
表4为实施例4各梯度层中各陶瓷组份的体积分数(%)
Figure BDA0002656489360000062
Figure BDA0002656489360000071
实施例5:
与实施例2的区别在于,本实施例中的陶瓷组份包括采用实施例1的方法制备的Y0.6Ca0.4NbO3.8和Y0.8Mg0.2NbO3.8粉体,梯度涂层n=11,碱土金属离子掺杂稀土钽酸盐涂层的厚度为300μm,各梯度层中Y0.6Ca0.4NbO3.8和Y0.8Mg0.2NbO3.8粉体的体积分数见下表5所示。
表5为实施例5各梯度层中陶瓷组份的体积分数(%)
Figure BDA0002656489360000072
Figure BDA0002656489360000081
对比例1:
与实施例1的区别在于,对比例1中两种陶瓷粉末采用球磨后高温烧结而成。
对比例2:
与实施例1的区别在于,步骤2中先将Dy0.8Ca0.2TaO3.9粉末采用APS方法沉积到金属粘接层上得到涂层A,再将Gd0.8Sr0.2TaO3.9粉末采用APS方法沉积到涂层A上得到涂层B,涂层A与涂层B的总厚度为200μm。
选取实施例1~5、对比例1~2得到的材料试件进行热导率实验检测:
采用激光热导仪进行测试,在800K温度时,测试结果如下表6所示:
表6为实施例1~5与对比例1~2的热导率(W·m-1·K-1)
实施例1 实施例2 实施例3 实施例4 实施例5 对比例1 对比例2
热导率 1.07 1.05 1.02 1.04 1.05 1.21 1.69
从上表6可以得出:
1、采用本申请中的技术方案得到的陶瓷热障涂层,其热导率未超过1.10W·m-1·K-1,满足热障涂层对低热导率的需求,而通过对比例2可以看出,未进行成分设计的陶瓷涂层,其热导率明显偏高,而采用高温烧结得到的碱金属掺杂稀土钽/铌酸盐粉体虽热导率满足热障涂层的需求,但仍然要高于本申请中采用共沉淀法制备的陶瓷粉末。
2、通过对热障涂层各个梯度涂层的成分进行设计得到多元梯度涂层,即涂层中至少一种陶瓷组份的体积分数是在连续变化,这样的方式能够保证热障涂层具备原本碱土金属掺杂的稀土钽/铌酸盐的高膨胀系数,同时其热导率也大幅度的下降,原因在于采用这样的方式进行沉积得到的热障涂层,各梯度涂层之间成分呈渐变的形式,各梯度涂层之间形成的界面少,使得界面效应弱,同时最重要的一点在于,在各梯度涂层沉积过程中,每一层的成分还会不断的扩散,使得界面效应继续减弱,从而使得热导率下降,而本申请中实施例3的热导率最低,说明梯度层数越高,对热导率的改善越显著。
以上所述的仅是本发明的实施例,方案中公知的具体材料及特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。

Claims (9)

1.一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层,其特征在于:该涂层为多元梯度涂层,包括两种以上不同陶瓷组份,且至少有一种以上的陶瓷组份的体积分数沿涂层梯度连续递增或递减的变化,该涂层中陶瓷组份的化学通式为RE1-xM1 xM2O4-x/2(0<x<1),M1为Mg、Ca、Sr或Ba元素中的一种;M2为Ta或Nb元素。
2.根据权利要求1所述的一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层,其特征在于:所述多元梯度涂层的厚度为200~400μm。
3.根据权利要求2所述的一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层,其特征在于:所述多元梯度涂层的梯度层数n为6~21层。
4.根据权利要求3所述的一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层,其特征在于:所述稀土钽酸盐或铌酸盐粉末的制备方法,包括以下步骤:
步骤1:按照结构式为RE1-xM1 xM2O4-x/2取RE2O3和M1CO3粉末溶入浓硝酸中,使PH值低于1.5,将M2OCl3溶液逐滴加入,并不断搅拌,同时加入氨水使体系PH稳定在9~10,在水浴环境内继续搅拌,用无水乙醇或去离子水先后洗涤沉淀,直至PH=7,将得到的滤饼置于烘箱内烘干,然后过筛并在中温环境下进行烧结,将烧结后的粉末再次过筛备用;
步骤2:将步骤1所制备的粉末与其质量不低于30wt.%的水混合获得浆料A,将浆料A与粘结剂以及聚乙二醇、正辛醇、增粘剂和增孔剂混合获得浆料B,再将浆料B送入离心喷雾干燥机对其进行离心喷雾造粒,得到粉体颗粒尺寸为20-70μm的球形碱土金属离子掺杂稀土钽酸盐或铌酸盐陶瓷粉末。
5.根据权利要求4所述的一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层,其特征在于:所述步骤1中M2OCl3溶液的滴加速度为200~400mL/min,水浴温度为50~100℃,搅拌时间为30~120min,烘干温度为80~120℃,时间为5~10h;中温烧结温度为900-1100℃,时间为3-5h,所用筛子为300~500目。
6.根据权利要求4所述的一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层,其特征在于:步骤2中,粘结剂含量为0.5~3wt.%,添加剂含量为0.1~1wt.%,浆料B的进料速度控制在300~500mL/h,喷雾离心速度为8000~10000r/min。
7.一种制备如权利要求6所述的碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层的方法,其特征在于:包括以下步骤:
步骤1:取两种以上不同RE1-xM1 xM2O4-x/2陶瓷粉末混合成n份混合陶瓷粉体,n份混合陶瓷粉体中至少一种以上的钽酸盐陶瓷组份的体积分数为连续递增或递减的变化;
步骤2:将步骤1得到的n份混合陶瓷粉体依次沉积到基体材料上得到多元梯度的碱土金属掺杂稀土钽酸盐或铌酸盐热障涂层。
8.根据权利要求7所述的一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层,其特征在于:所述步骤2中在基体材料表面预先沉积厚度为100~200μm的金属粘结层,金属粘结层的成分为MCrAlY,其中M为Ni或Co。
9.根据权利要求7所述的一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层,其特征在于:所述步骤2中采用APS、HVOF、EB-PVD或者超音速电弧喷涂法进行涂层沉积处理。
CN202010889462.9A 2020-08-28 2020-08-28 一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层及其制备方法 Active CN111960823B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010889462.9A CN111960823B (zh) 2020-08-28 2020-08-28 一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010889462.9A CN111960823B (zh) 2020-08-28 2020-08-28 一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN111960823A true CN111960823A (zh) 2020-11-20
CN111960823B CN111960823B (zh) 2021-11-02

Family

ID=73400916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010889462.9A Active CN111960823B (zh) 2020-08-28 2020-08-28 一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN111960823B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164386A (zh) * 2021-10-20 2022-03-11 昆明理工大学 一种低空飞行器表面的复合梯度涂层及其制备方法
CN115594500A (zh) * 2022-10-08 2023-01-13 中国航发南方工业有限公司(Cn) 一种双稀土铌酸盐陶瓷粉体及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189480A (zh) * 1997-01-23 1998-08-05 阿莫同有限公司 介电陶瓷组合物
CN1888139A (zh) * 2006-07-17 2007-01-03 济南大学 钢基陶瓷梯度材料涂层及其制备方法
CN101948308A (zh) * 2010-09-27 2011-01-19 内蒙古工业大学 一种陶瓷高温隔热材料
CN105777118A (zh) * 2016-02-19 2016-07-20 昆明理工大学 镧系稀土钽酸盐高温陶瓷及其制备方法
CN105951028A (zh) * 2016-05-09 2016-09-21 西安交通大学 一种同步送粉制备连续渐变结构陶瓷基热障涂层的方法
CN105967759A (zh) * 2016-05-04 2016-09-28 西北工业大学 一种稀土氧化物改性Si-Mo-O梯度抗氧化涂层及制备方法
CN107285768A (zh) * 2017-07-04 2017-10-24 昆明理工大学 一种稀土钽酸盐高温陶瓷的制备方法
CN107698255A (zh) * 2017-08-30 2018-02-16 昆明工匠涂层科技有限公司 Eu‑Gd‑Dy三稀土离子钽酸盐及其制备方法与应用
CN108441807A (zh) * 2018-04-19 2018-08-24 福州大学 一种具有梯度结构的ysz-稀土锆酸盐热障涂层及制备方法
CN109627000A (zh) * 2018-12-29 2019-04-16 昆明理工大学 稀土钽/铌酸盐(RETa/NbO4)陶瓷粉体及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189480A (zh) * 1997-01-23 1998-08-05 阿莫同有限公司 介电陶瓷组合物
CN1888139A (zh) * 2006-07-17 2007-01-03 济南大学 钢基陶瓷梯度材料涂层及其制备方法
CN101948308A (zh) * 2010-09-27 2011-01-19 内蒙古工业大学 一种陶瓷高温隔热材料
CN105777118A (zh) * 2016-02-19 2016-07-20 昆明理工大学 镧系稀土钽酸盐高温陶瓷及其制备方法
CN105967759A (zh) * 2016-05-04 2016-09-28 西北工业大学 一种稀土氧化物改性Si-Mo-O梯度抗氧化涂层及制备方法
CN105951028A (zh) * 2016-05-09 2016-09-21 西安交通大学 一种同步送粉制备连续渐变结构陶瓷基热障涂层的方法
CN107285768A (zh) * 2017-07-04 2017-10-24 昆明理工大学 一种稀土钽酸盐高温陶瓷的制备方法
CN107698255A (zh) * 2017-08-30 2018-02-16 昆明工匠涂层科技有限公司 Eu‑Gd‑Dy三稀土离子钽酸盐及其制备方法与应用
CN108441807A (zh) * 2018-04-19 2018-08-24 福州大学 一种具有梯度结构的ysz-稀土锆酸盐热障涂层及制备方法
CN109627000A (zh) * 2018-12-29 2019-04-16 昆明理工大学 稀土钽/铌酸盐(RETa/NbO4)陶瓷粉体及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FUSHUO WU ET AL.: "The thermo-mechanical properties and ferroelastic phase transition of RENbO4(RE=Y,La,Nd,Sm,Gd,Dy,Yb)ceramics", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
LIN CHEN ET AL.: "Thermal and mechanical properties optimization of ABO4 type EuNbO4 by the B-site substitution of Ta", 《ENGINEERING》 *
LIN CHEN ET AL.: "Thermo-mechanical properties of fluorite Yb3TaO7 and Yb3NbO7 ceramics with glass-like thermal conductivity", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
ZHOU YUNXUAN ET AL.: "Thermal properties of Y(1-x)Mg(x)TaO(4-x/2) ceramics via anion sublattice adjustment", 《RARE METALS》 *
王建坤 等: "稀土钽酸盐热障涂层材料热物理性能优化", 《湘潭大学学报(自然科学版)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164386A (zh) * 2021-10-20 2022-03-11 昆明理工大学 一种低空飞行器表面的复合梯度涂层及其制备方法
CN115594500A (zh) * 2022-10-08 2023-01-13 中国航发南方工业有限公司(Cn) 一种双稀土铌酸盐陶瓷粉体及其制备方法和应用
CN115594500B (zh) * 2022-10-08 2023-10-03 中国航发南方工业有限公司 一种双稀土铌酸盐陶瓷粉体及其制备方法和应用

Also Published As

Publication number Publication date
CN111960823B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN111960837B (zh) 一种稀土钽酸盐或铌酸盐热障涂层的制备方法
CN111908921B (zh) 一种稀土钽酸盐RE3TaO7热障涂层及其制备方法
Goral et al. PS-PVD deposition of thermal barrier coatings
CN111960823B (zh) 一种碱土金属离子掺杂稀土钽酸盐或铌酸盐热障涂层及其制备方法
US7597971B2 (en) Thermal barrier coating material
EP2799588B1 (en) Method of making high temperature TBCs with ultra low thermal conductivity and abradability
CN111925211B (zh) 一种a2b2o7型稀土钽酸盐陶瓷及其制备方法
CN106884132A (zh) 一种高温热障涂层材料
CN104328301B (zh) 一种颗粒增强钼基复合材料的制备方法
CN106588004B (zh) 一种纯相稀土锆酸盐纳米材料及其制备方法
CN102060551A (zh) 一种原位反应制备的纳米复相热障涂层材料La2Zr2O7-YSZ及其制备方法
CN111153434A (zh) 一种用于热喷涂的锆酸镧球形粉体制备方法
CN103143725A (zh) 稀土改性钨基合金粉末的制备方法
CN104846322A (zh) SrZrO3纳米陶瓷热障涂层及其制备方法
CN107585786B (zh) Sm-Gd-Dy三稀土离子钽酸盐及其制备方法与应用
CN101948308B (zh) 一种陶瓷高温隔热材料
US20160068941A1 (en) Method for preparing coatings or powders by mixed-mode plasma spraying
CN114920559A (zh) 一种热障涂层用高熵氧化物粉末材料及其制备方法和应用
CN113562765B (zh) 一种熔盐法制备高熵稀土钽酸盐RETaO4球形粉体的方法
CN102153892B (zh) (La,Gd)2Zr2O7-(Zr,Gd)O2-δ复相热障涂层材料及其制备方法
Chatterjee et al. Thermal barrier coatings from sol-gel-derived spray-grade Y 2 O 3-ZrO 2 microspheres
CN107662947B (zh) Sm-Eu-Gd三稀土离子钽酸盐及其制备方法与应用
CN112723412A (zh) 一种多相稀土锆酸盐材料及其制备方法和应用
Ravi et al. Liquid precursor plasma spraying of functional materials: A case study for yttrium aluminum garnet (YAG)
CN107698255B (zh) Eu-Gd-Dy三稀土离子钽酸盐及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant