CN111950213A - 二值局部有源忆阻器的仿真器电路模型 - Google Patents

二值局部有源忆阻器的仿真器电路模型 Download PDF

Info

Publication number
CN111950213A
CN111950213A CN201911171690.6A CN201911171690A CN111950213A CN 111950213 A CN111950213 A CN 111950213A CN 201911171690 A CN201911171690 A CN 201911171690A CN 111950213 A CN111950213 A CN 111950213A
Authority
CN
China
Prior art keywords
pin
operational amplifier
integrated operational
memristor
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911171690.6A
Other languages
English (en)
Other versions
CN111950213B (zh
Inventor
王君兰
王光义
董玉姣
谷文玉
李茹依
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201911171690.6A priority Critical patent/CN111950213B/zh
Publication of CN111950213A publication Critical patent/CN111950213A/zh
Application granted granted Critical
Publication of CN111950213B publication Critical patent/CN111950213B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Amplifiers (AREA)

Abstract

本发明公开了一种二值局部有源忆阻器的仿真器电路模型。本发明中的集成运算放大器U1和乘法器U8分别连接输入端,即局部有源忆阻器的电压和电流的测试端;集成运算放大器U1用于实现反相加法运算和积分运算,将输出信号再返回到集成运算放大器U5,集成运算放大器U2用于实现反相放大运算,将输出信号返回到集成运算放大器U1,最终求得控制忆导值的状态变量。集成运算放大器U3用于实现反相加法运算、反向放大运算,集成运算放大器U4用于实现对数运算、反向放大运算,得到需要的忆导控制函数,乘法器U8实现将忆导控制函数和输入的电压量相乘,得到最终的忆阻器电流量。本发明用以模拟局部有源忆阻器的伏安特性。

Description

二值局部有源忆阻器的仿真器电路模型
技术领域
本发明属于电子电路设计技术领域,涉及一种局部有源忆阻器模型,具体涉及一种二值压控局部有源忆阻器的数学模型和仿真器电路模型的设计与实现。
背景技术
忆阻器是除电阻、电容和电感之外的第四种基本电路元件,它是一种具有记忆性的非线性电阻。
忆阻器分为无源忆阻器和局部有源忆阻器,2005年Chua提出局部有源是复杂性的起源,局部有源忆阻器应用在电路中可以产生复杂现象,在混沌振荡电路、人工神经网络(可模拟神经元中轴突的特性)等领域有着重要的应用。
局部有源忆阻器的潜在应用越来越受到研究者的关注。从信息处理的角度来看,神经元是由局部有源忆阻器构成。局部有源NbO2 Mott忆阻器已被用于Hopfield神经网络中产生振荡,并提出了一种局部有源忆阻器并且利用忆阻器模型构造了混沌吸引子。最近,报告了一个新的双稳态双局部有源忆阻及其相关振荡器电路;局部有源忆阻器具有非易失性,Chua提出了证明忆阻器具有非易失性的工具—POP,即忆阻器的断电图,在忆阻器的断电图中有两个及以上稳定平衡点的忆阻器具有非易失性。
发明内容
本发明针对现有技术的不足,提供了一种二值局部有源忆阻器的仿真器电路模型。
本发明解决技术问题所采取的技术方案如下:
本发明的仿真器电路模型包括控制忆导值的状态变量产生电路和局部有源忆阻器等效电路。控制忆导值的状态变量产生电路由集成运算放大器U1完成,产生的状态变量作为局部有源忆阻器等效电路的忆导控制输入信号。集成运算放大器U1用于实现反相加法运算、积分运算。
局部有源忆阻器等效电路由乘法器U7、集成运算放大器U3、集成运算放大器U4构成,乘法器U7用于实现信号的乘法运算,集成运算放大器U3用于实现反向加法运算、反相放大运算,集成运算放大器U4用于实现对数运算,反向放大运算,得到需要的控制信号。乘法器U8实现将控制信号和输入的电压信号相乘,得到最终的忆阻器电流量。
具体结构包括集成运算放大器U1,集成运算放大器U2,集成运算放大器U3,集成运算放大器U4,集成运算放大器U5,乘法器U6、U7、U8、U9。
所述的集成运算放大器U1、U2、U3、U4、U5采用LF347;乘法器U6、U7、U8、U9采用AD633。
集成运算放大器U1的第1引脚通过电阻R16连接第2引脚,第2引脚通过电阻R1、R2、R3分别连接u、-x|x|、0.6|x|;第3引脚接地;第5引脚接地;第6引脚通过电阻R5连接第1引脚;第7引脚通过电容C1连接第6引脚;第4引脚连接电源VCC;第11引脚连接电源VEE;第7引脚输出为x。
集成运算放大器U5的第8引脚通过电阻R18连接第9引脚,第9引脚通过电阻R17连接集成运算放大器U1的第7引脚,乘法器U5是为了实现绝对值运算;乘法器U5的第1引脚连接集成运算放大器U1的第7引脚;第3引脚连接集成运算放大器U5的第8引脚;第2引脚、第4引脚、第6引脚接地;第8引脚接电源VCC;第5引脚接电源VEE;第7引脚输出为|x|。
集成运算放大器U2的第9引脚通过电阻R7连接x|x|;第8引脚通过电阻R6连接第9引脚;第3引脚接地;第5引脚接地;第4引脚连接电源VCC;第11引脚连接电源VEE;第10引脚接地;第8引脚的输出为-x|x|。
乘法器U7的第1引脚连接x;第3引脚连接x;第2引脚、第4引脚、第6引脚接地;第8引脚接电源VCC;第5引脚接电源VEE;第7引脚输出为x2
集成运算放大器U3的第1引脚通过电阻R10与第2引脚连接;第2引脚通过电阻R8、R9分别连接x2、0.5;第1引脚输出为-(x2+0.5)。第3引脚接地;第14引脚通过电阻R12连接第13引脚;第13引脚通过电阻R11连接第1引脚;第12引脚接地;第4引脚连接电源VCC;第11引脚连接电源VEE,第14引脚输出为x2+0.5。
集成运算放大器U4的第8引脚通过二极管D1连接第9引脚;第9引脚通过电阻R13连接x2+0.5;第10引脚接地;第7引脚通过电阻R15连接第6引脚;第6引脚通过电阻R14连接第8引脚;第5引脚接地;第4引脚接电源VCC;第11引脚连接电源VEE;第7引脚输出为ln(x2+0.5)。
乘法器U8的第1引脚连接u;第3引脚连接集成运算放大器的第7引脚;第2引脚、第4引脚、第6引脚接地;第8引脚接电源VCC;第5引脚接电源VEE;第7引脚输出为i。
本发明设计了一种能够实现二值压控局部有源忆阻器伏安特性的仿真器电路模型,该模拟电路含有5个集成运算放大器芯片和4个乘法器,结构简单,在目前及未来无法获得实际局部有源忆阻器件的情况下,可代替实际器件实现与局部有源忆阻器相关的电路设计、实验及应用,对局部有源忆阻器的特性和应用研究具有重要的实际意义。
本发明设计实现二值压控局部有源忆阻器的仿真器电路模型利用模拟电路实现二值压控局部有源忆阻器的伏安特性,具体实现了二值压控局部有源忆阻器的伏安特性。本发明利用集成运算放大器和模拟乘法器电路实现忆阻器特性中的相应运算,其中,集成运算放大器实现状态变量的反相加法运算、积分运算,模拟乘法器用于实现电压与忆导控制函数的乘积运算。
附图说明
图1是本发明的等效电路框图。
图2是本发明的模拟等效电路原理图。
具体实施方式
下面结合附图对本发明优选实施例作详细说明。
本发明的理论出发点是下面定义的一种新型二值压控局部有源忆阻器数学模型:
Figure BDA0002288885660000041
i(t)和u(t)表示二值压控局部有源忆阻器的电流与电压,变量x表示忆阻器的状态。根据二值压控局部有源忆阻器的数学模型,可设计出其仿真器电路模型,其原理方框图如图1所示。
如图1所示,本实例二值压控局部有源忆阻器仿真器电路模型包括集成运算放大器U1、集成运算放大器U2、集成运算放大器U3、集成运算放大器U4、集成运算放大器U5、乘法器U6、U7、U8、U9和少量电阻、电容。集成运算放大器U1主要实现反相加法运算和积分运算;集成运算放大器U2主要实现反向放大运算;集成运算放大器U3主要实现反相加法运算、反向放大运算;集成运算放大器U4主要实现对数运算、反向放大运算;集成运算放大器U5主要实现绝对值运算电路;乘法器U6、U7、U8、U9实现两个信号的相乘运算。U1、U2、U3、U4、U5采用LF324,U6、U7、U8、U9采用AD633,LF324、AD633均为现有技术。
如图2所示,集成运算放大器U1内集成了2个运算放大器,集成运算放大器U1的第1、2、3引脚对应的运算放大器,与外围电阻R1、R2、R3、R16构成反相加法器,输入为u、-x|x|、0.6|x|,其中,x表示忆阻器的状态,-x|x|为集成运算放大器U2的第6引脚的输出,0.6|x|为乘法器U9的W引脚的输出。由于R1=R2=R3=R16=10K,则U1引脚1的电压为:
Figure BDA0002288885660000042
集成运算放大器U1的第5、6、7引脚对应的运算放大器与电容C1、电阻R5构成积分电路,来获得忆阻器的状态变量x,U1引脚7的电压为:
Figure BDA0002288885660000043
由局部有源忆阻器数学模型可知
Figure BDA0002288885660000044
即:x=∫-x|x|+0.6|x|+udt
集成运算放大器U1的第7引脚的u1-7表示忆阻器的状态变量x。
集成运算放大器U5的第8、9引脚对应的运算电路,与外围电阻R17、R18以及乘法器U5构成了绝对值电路,绝对值函数运算可以表示为一个变量与自身符号函数的乘积,所以绝对值运算由符号函数运算与乘法运算连接实现,如图2。R17=R18=10K,第9引脚的输入为第14引脚的输出电压,乘法器U5的第1引脚的输入为集成运算放大器U3的第14引脚的输出电压,乘法器U5的第3引脚的输入为集成运算放大器U2的第8引脚的输出电压,乘法器U5的输出电压为:
uw(t)=u1-7(t)sgn(u1-7(t)))=|x|
乘法器U6用于实现乘法器U5输出端W引脚的电压与电压2V的乘积运算,即U6输出端W引脚的电压:
u6w(t)=x.|x|=x|x|
集成运算放大器U2的第8、9、10引脚对应的运算放大器,与外围电阻R6、R7构成反相放大器。第9引脚的输入为-x|x|,R6=R7=10K,第9引脚的输出电压为:
Figure BDA0002288885660000051
乘法器U9用以实现集成运算放大器U5输出端W引脚的电压与电压0.6V的乘积运算,即U9输出端W引脚的电压为:
u9w(t)=|x|*0.6=0.6|x|
乘法器U7用以实现乘法器U5输出端W引脚的电压与乘法器U5输出端W引脚的电压的乘积运算,即U7输出端W引脚的电压为:
u7w(t)=x*x=x2
集成运算放大器U3的第1、2、3引脚对应的运算放大器,与外围电阻R8、R9、R10构成反相加法器,输入分别为x2、0.5,R8=R9=R10=10K,即U3引脚1的电压为:
Figure BDA0002288885660000052
集成运算放大器U3的第13、14引脚对应的运算放大器,与外围电阻R11、R12构成反相加法器,第13引脚的输入为第1引脚输出的电压,集成运算放大器U3的第14引脚的输出电压为:
Figure BDA0002288885660000061
集成运算放大器U4的第8、9引脚对应的运算电路与外围电阻R13、二极管D1构成了对数运算电路,第9引脚的输入为集成运算放大器绝对值运算电路的输出,R13=5M,理想二极管D1的Is≈2-7A,集成运算放大器U4的第8引脚的输出电压为:
Figure BDA0002288885660000062
集成运算放大器U4的第6、7引脚对应的运算电路,与外围电阻R14、R15构成反相放大运算,第6引脚的输入为集成运算放大器U4第8引脚的输出,R14=R15=10K,集成运算放大器U4第7引脚的输出电压为:
Figure BDA0002288885660000063
乘法器U8用以实现电压u与集成运算放大器U4的第7引脚的输出电压的乘积运算,乘法器U8的第1引脚输入为u,第3引脚的输入为集成运算放大器U4的第7引脚的输出电压,乘法器U8的输出端引脚W的输出为:
u8w(t)=iw(t)=u4-7(t)u(t)=ln(x2+0.5)u(t)
为局部有源忆阻器等效电路的电压与电流特性,
Figure BDA0002288885660000064
与上式得到的状态变量控制函数联立即可得到二值压控局部有源忆阻器仿真器电路模型。
以下为模拟电路各个芯片引脚关系详述:
集成运算放大器U1的第1引脚通过电阻R16连接第2引脚,第2引脚通过电阻R1、R2、R3分别连接u、-x|x|、0.6|x|;第3引脚接地;第5引脚接地;第6引脚通过电阻R5连接第1引脚;第7引脚通过电容C1连接第6引脚;第4引脚连接电源VCC;第11引脚连接电源VEE;第7引脚输出为x。
集成运算放大器U5的第8引脚通过电阻R18连接第9引脚,第9引脚通过电阻R17连接集成运算放大器的第7引脚,乘法器U5是为了实现绝对值运算;乘法器U5的第1引脚连接集成运算放大器U3的第14引脚;第3引脚连接集成运算放大器U2的第8引脚;第2引脚、第4引脚、第6引脚接地;第8引脚接电源VCC;第5引脚接电源VEE;第7引脚输出为|x|。
乘法器U6的第1引脚连接x;第3引脚连接|x|;第2引脚、第4引脚、第6引脚接地;第8引脚接电源VCC;第5引脚接电源VEE;第7引脚输出为x|x|。
集成运算放大器U2的第9引脚通过电阻R7连接x|x|;第8引脚通过电阻R6连接第9引脚;第3引脚接地;第5引脚接地;第4引脚连接电源VCC;第11引脚连接电源VEE;第10引脚接地;第8引脚的输出为-x|x|。
乘法器U9的第1引脚连接|x|;第3引脚连接0.6V;第2引脚、第4引脚、第6引脚接地;第8引脚接电源VCC;第5引脚接电源VEE;第7引脚输出为0.6|x|。
乘法器U7的第1引脚连接x;第3引脚连接x;第2引脚、第4引脚、第6引脚接地;第8引脚接电源VCC;第5引脚接电源VEE;第7引脚输出为x2
集成运算放大器U3的第1引脚通过电阻R10与第2引脚连接;第2引脚通过电阻R8、R9分别连接x2、0.5;第1引脚输出为-(x2+0.5)。第3引脚接地;第14引脚通过电阻R12连接第13引脚;第13引脚通过电阻R11连接第1引脚;第12引脚接地;第4引脚连接电源VCC;第11引脚连接电源VEE,第14引脚输出为x2+0.5。
集成运算放大器U4的第8引脚通过二极管D1连接第9引脚;第9引脚通过电阻R13连接x2+0.5;第10引脚接地;第7引脚通过电阻R15连接第6引脚;第6引脚通过电阻R14连接第8引脚;第5引脚接地;第4引脚接电源VCC;第11引脚连接电源VEE;第7引脚输出为ln(x2+0.5)。
乘法器U8的第一引脚连接u;第3引脚连接集成运算放大器的第7引脚;第2引脚、第4引脚、第6引脚接地;第8引脚接电源VCC;第5引脚接电源VEE;第7引脚输出为i。
综上,本发明设计的局部有源忆阻器模型有两个稳定平衡点并且两个稳定平衡点之间通过施加一定电压可以相互切换,所以本发明设计的局部有源忆阻器具有非易失性,本发明设计的局部有源忆阻器可作为非易失性二进制存储器和二进制逻辑器件。本发明设计的一种新型二值压控局部有源忆阻器的数学模型及其仿真器电路模型,用其数学模型可研究局部有源忆阻器的基本特性,用其仿真器电路模型可替代忆阻器进行电路实验和应用电路的设计,对局部有源忆阻器的工程应用有着重要的作用。
本领域的普通技术人员应当认识到,以上实施例仅是用来验证本发明,而并非作为对本发明的限定,只要是在本发明的范围内,对以上实施例的变化、变形都将落在本发明的保护范围内。

Claims (1)

1.二值局部有源忆阻器的仿真器电路模型,其特征在于,该电路模型基于以下数理关系设计:
Figure FDA0002288885650000011
其中i(t)和u(t)为忆阻器的电流与电压,变量x为忆阻器的状态;
包括控制忆导值的状态变量产生电路和局部有源忆阻器等效电路;
集成运算放大器U1构成控制忆导值的状态变量产生电路,集成运算放大器U1用于实现积分运算、反相加法运算,将输出信号作为忆阻器等效电路的忆导控制信号;
局部有源忆阻器等效电路由乘法器U7、集成运算放大器U3、集成运算放大器U4构成,乘法器U7主要用于所需信号的乘法运算;集成运算放大器U3主要实现反相加法运算、反向放大运算;集成运算放大器U4主要实现对数运算、反向放大运算,得到需要的控制信号;
乘法器U8用于实现将忆导控制信号和电压量相乘,得到最终的忆阻器电流量;
该电路模型的具体结构为:
集成运算放大器U1的第1引脚通过电阻R16连接第2引脚,第2引脚通过电阻R1、R2、R3分别连接u、-x|x|、0.6|x|;第3引脚接地;第5引脚接地;第6引脚通过电阻R5连接第1引脚;第7引脚通过电容C1连接第6引脚;第4引脚连接电源VCC;第11引脚连接电源VEE;第7引脚输出为x;
集成运算放大器U1内集成了2个运算放大器,集成运算放大器U1的第1、2、3引脚对应的运算放大器,与外围电阻R1、R2、R3、R16构成反相加法器,输入为u、-x|x|、0.6|x|,其中,-x|x|为集成运算放大器U2的第6引脚的输出,0.6|x|为乘法器U9的W引脚的输出;电阻R1、R2、R3和R16的阻值相等,则集成运算放大器U1引脚1的电压为:
Figure FDA0002288885650000021
集成运算放大器U1的第5、6、7引脚对应的运算放大器与电容C1、电阻R5构成积分电路,来获得忆阻器的状态变量x,集成运算放大器U1引脚7的电压为:
Figure FDA0002288885650000022
由局部有源忆阻器数学模型可知
Figure FDA0002288885650000023
即:x=∫-x|x|+0.6|x|+udt
集成运算放大器U3的第1引脚通过电阻R10与第2引脚连接;第2引脚通过电阻R8、R9分别连接x2、0.5;第1引脚输出为-(x2+0.5);第3引脚接地;第14引脚通过电阻R12连接第13引脚;第13引脚通过电阻R11连接第1引脚;第12引脚接地;第4引脚连接电源VCC;第11引脚连接电源VEE,第14引脚输出为x2+0.5;
集成运算放大器U3的第1、2、3引脚对应的运算放大器,与外围电阻R8、R9、R10构成反相加法器,输入分别为x2、0.5;电阻R8、R9和R10阻值相等,则集成运算放大器U3引脚1的电压为:
Figure FDA0002288885650000024
集成运算放大器U3的第13、14引脚对应的运算放大器,与外围电阻R11、R12构成反相加法器,第13引脚的输入为第1引脚输出的电压,集成运算放大器U3的第14引脚的输出电压为:
Figure FDA0002288885650000025
集成运算放大器U4的第8、9引脚对应的运算电路与外围电阻R13、二极管D1构成了对数运算电路,第9引脚的输入为集成运算放大器绝对值运算电路的输出,电阻R13=5M,理想二极管D1的Is≈2-7A,集成运算放大器U4的第8引脚的输出电压为:
Figure FDA0002288885650000031
集成运算放大器U4的第6、7引脚对应的运算电路,与外围电阻R14、R15构成反相放大运算,第6引脚的输入为集成运算放大器U4第8引脚的输出,外围电阻R14和R15阻值相等,则集成运算放大器U4第7引脚的输出电压为:
Figure FDA0002288885650000032
乘法器U8用以实现电压u与集成运算放大器U4的第7引脚的输出电压的乘积运算,乘法器U8的第1引脚输入为u,第3引脚的输入为集成运算放大器U4的第7引脚的输出电压,乘法器U8的输出端引脚W的输出为:
u8w(t)=iw(t)=u4-7(t)u(t)=ln(x2+0.5)u(t)
为电路模型的电压与电流特性;
Figure FDA0002288885650000033
两式联立即可得到电路模型的数理关系;
所述的集成运算放大器U1、集成运算放大器U2、集成运算放大器U3、集成运算放大器U4、集成运算放大器U5采用LF324,乘法器U6、乘法器U7、乘法器U8、乘法器U9采用AD633。
CN201911171690.6A 2019-11-26 2019-11-26 二值局部有源忆阻器的仿真器电路模型 Active CN111950213B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911171690.6A CN111950213B (zh) 2019-11-26 2019-11-26 二值局部有源忆阻器的仿真器电路模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911171690.6A CN111950213B (zh) 2019-11-26 2019-11-26 二值局部有源忆阻器的仿真器电路模型

Publications (2)

Publication Number Publication Date
CN111950213A true CN111950213A (zh) 2020-11-17
CN111950213B CN111950213B (zh) 2024-03-22

Family

ID=73336558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911171690.6A Active CN111950213B (zh) 2019-11-26 2019-11-26 二值局部有源忆阻器的仿真器电路模型

Country Status (1)

Country Link
CN (1) CN111950213B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160088662A (ko) * 2015-01-16 2016-07-26 인제대학교 산학협력단 제어 전압을 통해 특성 제어가 가능한 멤리스터 소자 등가 회로
CN108846165A (zh) * 2018-05-24 2018-11-20 杭州电子科技大学 一种四阶局部有源忆阻器电路模型
CN108959837A (zh) * 2018-09-30 2018-12-07 杭州电子科技大学 一种四值忆阻器仿真器的实现电路
CN110222451A (zh) * 2019-06-14 2019-09-10 杭州电子科技大学 三阶绝对值局部有源忆阻器电路模型
CN110245421A (zh) * 2019-06-14 2019-09-17 杭州电子科技大学 一种新型对数绝对值局部有源忆阻器电路模型

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160088662A (ko) * 2015-01-16 2016-07-26 인제대학교 산학협력단 제어 전압을 통해 특성 제어가 가능한 멤리스터 소자 등가 회로
CN108846165A (zh) * 2018-05-24 2018-11-20 杭州电子科技大学 一种四阶局部有源忆阻器电路模型
CN108959837A (zh) * 2018-09-30 2018-12-07 杭州电子科技大学 一种四值忆阻器仿真器的实现电路
CN110222451A (zh) * 2019-06-14 2019-09-10 杭州电子科技大学 三阶绝对值局部有源忆阻器电路模型
CN110245421A (zh) * 2019-06-14 2019-09-17 杭州电子科技大学 一种新型对数绝对值局部有源忆阻器电路模型

Also Published As

Publication number Publication date
CN111950213B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
CN110245421B (zh) 一种对数绝对值局部有源忆阻器电路模型
Babacan et al. Memristor emulator with tunable characteristic and its experimental results
Liang et al. A practical implementation of a floating memristor-less meminductor emulator
CN108846165B (zh) 一种四阶局部有源忆阻器电路模型
Liang et al. S-type locally active memristor-based periodic and chaotic oscillators
CN108959837B (zh) 一种四值忆阻器仿真器的实现电路
CN110222451B (zh) 三阶绝对值局部有源忆阻器电路模型
CN108491567B (zh) 一种磁通控制型忆阻器的Simulink建模方法
Sah et al. A mutator-based meminductor emulator circuit
Sah et al. Implementation of a memcapacitor emulator with off-the-shelf devices
CN108718190B (zh) 一种指数型局部有源忆阻器仿真器
CN112329365B (zh) 一种耦合双忆阻器高维隐藏信号发生系统
CN110598371A (zh) 一种三值局部有源忆阻器仿真器
CN111079365A (zh) 一种反正切三角函数忆阻器电路模型
Singh et al. New meminductor emulators using single operational amplifier and their application
CN112906879A (zh) 基于局部有源忆阻器的hr神经元电路模型
Bhardwaj et al. Wide-band compact floating memristor emulator configuration with electronic/resistive adjustability
Yadav et al. New high frequency memristorless and resistorless meminductor emulators using OTA and CDBA
Aggarwal et al. New memristor-less, resistor-less, two-OTA based grounded and floating meminductor emulators and their applications in chaotic oscillators
CN210691321U (zh) 一种二值局部有源忆阻器的仿真器电路
CN111950213A (zh) 二值局部有源忆阻器的仿真器电路模型
Hezayyin et al. Inverse memrsitor emulator active Realizations
CN110147597B (zh) 一种多稳态磁控忆阻器等效模拟电路
CN109670221B (zh) 一种由分数阶电容构成的三次非线性磁控忆阻电路
Setoudeh et al. A new design and implementation of the floating-type charge-controlled memcapacitor emulator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant