CN111944874A - 一种筛选鉴定胁迫应答基因表达调控因子的方法 - Google Patents

一种筛选鉴定胁迫应答基因表达调控因子的方法 Download PDF

Info

Publication number
CN111944874A
CN111944874A CN202010699515.0A CN202010699515A CN111944874A CN 111944874 A CN111944874 A CN 111944874A CN 202010699515 A CN202010699515 A CN 202010699515A CN 111944874 A CN111944874 A CN 111944874A
Authority
CN
China
Prior art keywords
protein
screening
dna fragments
clones
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010699515.0A
Other languages
English (en)
Other versions
CN111944874B (zh
Inventor
李先强
姜昕
方云
许玫英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Detection Center of Microbiology of Guangdong Institute of Microbiology
Original Assignee
Guangdong Detection Center of Microbiology of Guangdong Institute of Microbiology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Detection Center of Microbiology of Guangdong Institute of Microbiology filed Critical Guangdong Detection Center of Microbiology of Guangdong Institute of Microbiology
Priority to CN202010699515.0A priority Critical patent/CN111944874B/zh
Publication of CN111944874A publication Critical patent/CN111944874A/zh
Application granted granted Critical
Publication of CN111944874B publication Critical patent/CN111944874B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/66Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

本发明公开了一种筛选鉴定胁迫应答基因表达调控因子的方法。本发明开发了一种富集蛋白结合基因组DNA片段以构建用于识别能够应答环境胁迫的克隆的荧光素酶报告文库的方法。通过利用E.coil作为制备细胞裂解液和基因组DNA片段这二者的模型系统;将细胞裂解液与基因组DNA片段混合,富集了蛋白结合DNA片段并用膜旋转柱将其与未接合的DNA片段分离,该蛋白结合DNA片段用于制作荧光素酶报告文库,转化DH5α后,在Amp抗生素板上筛选抗性克隆;用丝裂霉素C或亚坤酸盐处理,都鉴定到了显示>2倍荧光素酶诱导的克隆,进一步分析也证实了其相关性;说明本筛选鉴定方法高效、准确。

Description

一种筛选鉴定胁迫应答基因表达调控因子的方法
技术领域
本发明属于生物技术领域,具体涉及一种筛选鉴定胁迫应答基因表达调控因子的方法。
背景技术
微生物对重金属、农药和多氯联苯(PCBs)等环境毒性胁迫具有较强的适应性,这与它们对环境营养变化的快速应答相似。通过诱导或抑制基因表达来控制对其环境变化的适应。转录因子(TF)与其DNA结合位点的结合或分离是启动其靶基因转录的关键步骤。从整个基因组中鉴定和表征与环境胁迫应答相关的基因是至关重要的。这将有利于理解基因调控机制,也有利于识别出宿主环境适应过程中关键调控因子。然而,由于缺乏更加简单且高效的方法,许多有毒物质及其应答基因并未得到很好地表征。
目前有很多不同的鉴定和表征DNA-蛋白质相互作用的方法,如启动子文库筛选、DNA微阵列、染色质免疫沉淀测序(ChIP-seq)以及指数富集配体系统进化技术(SELEX)。由于E.coil基因组的序列已知性,已对全基因组100-200个碱基对(bp)启动子区进行物理扩增和克隆来构建启动子-绿色荧光蛋白(GFP)报告基因质粒。通过差异荧光诱导或抑制,可选择含转录活性调控区的细菌,并使用流式细胞术鉴定胁迫应答基因。然而,在筛选之前需要了解靶微生物序列和创建全基因组启动子-GFP文库。DNA微阵列是一种在全球范围内研究转录诱导或抑制的流行方法。通常,通过比较有毒胁迫与对照之间的基因表达可检测出基因组内的应答靶标。微阵列分析的复杂性包括其重复性和大规模的基因表达数据;因而,有必要尝试对DNA阵列中的初步鉴定的靶标进行验证。
ChIP-seq是另一种全球通用的方法,该方法已被应用于通过搜索全染色体DNA结合序列来识别特异性FTs的DNA结合位点。与需要从已知序列中提取探针的DNA阵列不同,ChIP-seq不需要明确在先的序列。SELEX已用于从具有所有可能序列的合成寡核苷酸文库中选择和测定DNA结合序列。以基因组DNA片段代替合成寡聚体文库作为诱饵的基因组SELEX筛选已经发展起来。可以在基因组DNA中找到并定位靶标,但是ChIP-seq和基因组SELEX在分析之前都需要了解与胁迫对应的TF。
除了证明存在蛋白质-DNA相互作用的实验证据以外,计算工具可基于结合TF的共有序列预测相互作用。由于高通量基因组测序技术的发展,许多微生物基因组已被完全测序。这导致形成了可在这些微生物基因组中识别转录因子结合位点(TFBS)的高效可靠的计算方法。由于基因组序列中的启动子区域通常不遵循特定的序列模式或基序,因此识别启动子区域的位置和功能是一个挑战。可通过已被开发用以发现保守区域的TFBS发现算法来搜索和识别靶基因中TF的结合位点。尽管这些预测区域的工具已基本上得到了改善,但是它们还并不完美。由于使用标准实验室培养技术仍然无法培养环境中的大部分细菌,因此研究其环境胁迫介导的基因表达和调控是具有挑战性的。
除了实验过程耗时以外,以上所有的传统实验方法都是基于已知的基因组序列或TF序列。除了微生物群落外,在不了解其基因组和TF的情况下,还没有开发出一种通用性的方法来鉴定和确定与环境胁迫相对应的基因表达调控中所需的TF或TFBS。
发明内容
本发明的目的是针对现有技术的上述不足,提供一种筛选鉴定胁迫应答基因表达调控因子的方法。
本发明中提出了一种高通量方法,这种高通量方法是基于用于构建荧光素酶文库的蛋白结合基因组DNA片段的特异性选择。由于文库的规模较小,筛选鉴定胁迫诱导的克隆差异表达很容易完成。
本发明利用荧光素酶筛选,从80个随机选取的克隆中,鉴定出两个对丝裂霉素C(MMC)介导的诱导有应答的克隆。测序显示两者均含有LexA结合序列。
使用相同的方法,从90个随机选取的克隆中鉴定出两个对亚砷酸盐有应答的克隆。测序显示,一个克隆在ArsR基因内含典型的ArsR结合序列,另一个克隆在可渗透诱导的脂质蛋白E1基因(OsmE1)内含ArsR结合基序。OsmE1可通过As介导诱导的剂量-反应和时间进程的实时PCR得到进一步阐释。
因此,本发明的第一个目的是提供一种筛选鉴定胁迫应答基因表达调控因子的方法。
优选,本发明的筛选鉴定胁迫应答基因表达调控因子的方法,包括以下步骤:
a.将待筛选鉴定细胞悬浮于裂解缓冲液中,加入溶菌酶溶液混合均匀,放置10-20分钟,离心分离上清,得到细胞裂解液;
b.提取待筛选鉴定细胞基因组DNA,然后用限制性内切酶Mnli消化处理,得到消化的基因组DNA;
c.将步骤a制备的细胞裂解液、步骤b制备的消化的基因组DNA和结合缓冲液混合,待蛋白与DNA充分结合后,上样到预先清洗的过滤分析柱上,离心弃去流出液,用过滤清洗缓冲液清洗多次,用洗脱缓冲液洗脱获得蛋白结合DNA片段;
d.将洗脱的蛋白结合DNA片段与适配子连接,用带有XbaI序列的正向引物和带有HindIII序列的反向引物,通过对各个5′适配子和3′适配子的组合进行PCR扩增,扩增产物用XbaI和HindIII消化并克隆至pACYC-Luc载体中产生对应的文库,转化DH5α后,在Amp抗生素板上筛选抗性克隆;
e.选取抗性克隆进行胁迫诱导处理,收集细胞制备细胞裂解液并进行荧光素酶活性测定,选择大于2倍诱导的克隆,利用测序和常规生物信息分析方法进一步鉴定克隆中的胁迫应答基因表达调控因子。
优选,所述的细胞为原核微生物。
优选,所述的细胞为大肠杆菌DH5α。
优选,所述的步骤a的裂解缓冲液含有10mM Tris-HCl、0.1 M NaCl、1mM乙二胺四乙酸和质量分数0.1%w/v)聚乙二醇辛基苯基醚,pH 8.0。
优选,所述的步骤a中加入溶菌酶溶液混合后溶菌酶在混合体系中的终浓度为0.25mg/mL。
优选,所述的步骤c中将步骤a制备的细胞裂解液、步骤b制备的消化的基因组DNA和结合缓冲液混合,混合体系为:5μL细胞裂解液、15μL 2×结合缓冲液、5μL消化的基因组DNA和5μL ddH2O;所述的结合缓冲液含有40mM 4-(2羟乙基)-1-哌嗪乙磺酸、pH7.6、20mM硫酸铵、2mM二硫苏糖醇、20mM KCl和质量分数0.4%Tween-20。
优选,所述的步骤c的过滤清洗缓冲液含有100mM Tris-HCl、2.5mM EDTA和质量分数0.1%Tween-20,pH 7.6。
优选,所述的步骤c的洗脱缓冲液为质量分数0.5%SDS水溶液。
优选,所述的步骤d的适配子为如下所示8种:
Figure BDA0002592512040000031
5′适配子AA5、AG5、AC5和AT5用于连接DNA片段的5'端,3′适配子AA3、AG3、AC3和AT3用于连接DNA片段的3'端;所述的PCR扩增是扩增10个PCR循环。
全细胞生物传感器作为一种新型的检测器在特定刺激下激活启动子报告基因后产生可检测的信号,该信号用于监测重金属或农药等环境污染物。这种类型的生物传感器既能监测现场污染物,又能显示其生物利用度,这代表着穿过膜的部分触发信号转导反应。这一信息不能通过使用物理仪器或化学分析手段的传统方法找到。全细胞生物传感器的关键组成部分是报告子,其由启动子/操作子和报告基因组成,因此,从含有目标污染物的环境中存活的微生物中以高通量的方式找到一个应答性启动子/操作子至关重要。
本发明提出了一种新的方法来富集与蛋白结合的基因组DNA片段,利用它们来构建荧光素酶文库,并直接进行功能筛选以识别胁迫应答元件。这大大减少了筛选对环境胁迫变化的应答元件消耗的时间和劳动。通过对有限数量的菌落进行直接功能筛选,我们能够获得MMC应答的LexA克隆和As应答的ArsR克隆和OsmE1克隆。
与其他高通量筛选方法(如预先制备的启动子库筛选和ChiP-seq或基因组SELEX-seq)不同,这种筛选方法在功能筛选和分析之前不需要事先了解目标微生物基因组或转录因子。此外,这种方法将有助于研究不依赖于培养的微生物,因为很大程度上我们仍然缺乏有关其生理和基因调控的信息。
哺乳动物的转录调控比微生物复杂得多。6%的哺乳动物基因编码TFs,有超过2000个TFs。大多数这些TFs都能与DNA结合。本发明提出的方法也可以扩展到筛选应答哺乳动物细胞的环境胁迫变化的DNA片段。由于哺乳动物细胞中蛋白结合DNA序列的数目大于微生物的数目,因此基于荧光素酶的筛选将会耗费大量时间来检测单个克隆。我们可以用GFP来代替荧光素酶报告基因,从而通过荧光活化细胞分选(FACS)技术很容易识别出不同表达的报告基因。
附图说明
图1是分离用于文库构建的蛋白结合基因组DNA片段的示意图以及设计的适配子;其中:图A.分离用于文库构建的蛋白结合基因组DNA片段的示意图;用蛋白激酶K消化,然后进行苯酚和氯仿提取,进而从DH5α中预制备基因组DNA,然后用Mnli消化法剪切;还从DH5α细胞中提取蛋白质,并与基因组DNA片段一起孵育,形成蛋白质/DNA复合物,该复合物能够保留在过滤柱上,并通过后面的洗涤步骤与未结合的DNA分离;然后将蛋白结合DNA片段洗脱并用于构建文库(注解:Mnli Digestion即Mnli消化,Isoenzyme Digestion即同工酶消化,One type of Digested DNA Fragments incubates with protein lysates即一种类型的消化DNA片段用蛋白裂解液孵育,Column isolation Protein-bound DNAs and washaway unbound protein即柱分离蛋白结合DNA并清洗掉未接合的蛋白质,AdaptorAddition即适配子添加,Libraries Generation即文库生成);图B:制作了8种不同的适配子AA5、AG5、AC5和AT5用于连接Mnli片段的5'端,AA3、AG3、AC3和AT3用于连接Mnli片段的3'端。
图2是对丝裂霉素C应答处理的LexA克隆分析,通过测序和TFBS模序检索,从蛋白结合基因组DNA片段库中识别出5个含有LexA结合序列的克隆;选择这些克隆,分别用0、0.2和0.5μM丝裂霉素C处理2h、4h和16小时,收集细胞进行荧光素酶分析。
图3是对丝裂霉素C应答克隆的直接功能筛选,图A:从T-C文库随机选取80个克隆,用0.5μM丝裂霉素C处理4h,进行荧光素酶分析;图B:在或不在丝裂霉素C处理的条件下选择6个荧光素酶活性>550RLU的克隆进行诱导试验。
图4是As应答性克隆的直接功能筛选,图A:从T-C文库随机选取90个克隆,在和不在5μM亚砷酸盐处理的条件下培养2小时,进行荧光素酶分析;图B:选择9个荧光素酶活性大于600RLU的克隆进行亚砷酸盐诱导试验。
图5是RT-PCR定量分析OsmE1基因表达,图A:DH5α用0、0.04、0.08、0.16、0.31、0.63、1.25、2.5和5μM亚砷酸盐处理2小时;图B:或用0.25μM亚砷酸盐处理0、15、30、60和120min;从DH5α中分离RNA,并用AMV反转录为cDNA,用ABI-PRISM 7000序列检测系统进行带有SYBR green的实时PCR,使用内参基因16sRNA、gryA和mGOD对OsmE1 RNA的定量进行标准化。
图6是OsmE1基因蛋白-DNA相互作用分析,图A:ArsR蛋白-DNA相互作用的特征序列;图B:OsmE1启动子区域上的ArsR潜在位点。
具体实施方式
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
实施例1
一、材料与方法
1、细胞裂解液的制备
1mL DH5α培养物于10000g离心1分钟,并将沉淀重悬浮于300μL的裂解缓冲液(10mM Tris-HCl,pH 8.0,0.1M NaCl,1mM乙二胺四乙酸(EDTA)和0.1%(w/v)聚乙二醇辛基苯基醚(Triton X-100))中。添加7.5μL新鲜配置的溶菌酶溶液(10mM Tris-HCl中10mg/mL,pH8.0,终浓度=0.25mg/mL)并通过轻敲试管使之混合,并且室温培养裂解混合物10-20分钟。离心分离后,上清用于进行亲和力筛选。
2、亲和力筛选
通过离心分离收集DH5α细胞,在200μL裂解缓冲液(10mM Tris-HCl,pH 8.0,1mMEDTA,0.5%SDS)中重悬浮,并在55℃用20μg/mL蛋白酶K处理2h。用苯酚和氯仿提取基因组DNA。用Mnli,5′…CCTC(N)7…3′消化基因组DNA,这可以识别出4个碱基对并在3’末端产生一个核苷酸突起端。在PCR管中将5μL细胞裂解液(2-10μg)与15μL 2×结合缓冲液(40mM 4-(2羟乙基)-1-哌嗪乙磺酸(HEPES)、pH7.6、20mM硫酸铵、2mM二硫苏糖醇(DTT)、20mM KCl和0.4%Tween-20)、经Mnli消化的5μL基因组DNA和5μL ddH2O进行混合。室温培养30分钟后,我们将30μL结合混合物上样到预先清洗的过滤分析柱上并在冰上培养20分钟。以600g离心分离2分钟后弃去流出液。我们用过滤清洗缓冲液(100mM Tris-HCl、pH 7.6、2.5mM EDTA和0.1%Tween-20)清洗板四次。我们在结合的DNA片段上使用洗脱缓冲液(0.5%SDS)。然后使用洗脱后的DNA片段以生成文库。
3、基因组文库的构建
将洗脱的蛋白结合DNA片段与适配子连接。Mnli消化的片段在3’端有可能具有多个核苷酸。我们设计了涵盖所有可能性的适配子并引入标签序列(F1T 5′TCACCGACCTATCCAT-T 3′、F2T 5′GCCTCAAGGTGCGTC-T 3′、F1A 5′TCACCGACCTATCCAT-A 3′、F2A 5′GCCTCAAGGTGCGTC-A 3′、F1C 5′TCACCGACCTATCCAT-C 3′、F2C 5′GCCTCAAGGTGCGTC-C 3′、F1G 5′TCACCGACCTATCCAT-G 3′和F2G 5′GCCTCAAGGTGCGTC-G 3′)。分别用R1S 5′ATGGATAGGTCGGTGA3′或R2S 5′GACGCACCTTGAGGC3’对F1和F2进行退火,形成8个适配子AA5、AG5、AC5、AT5、AA3、AG3、AT3和AT3(图1)。将适配子与DNA片段连接后,用带有XbaI序列的正向引物和带有HindIII序列的反向引物,通过10个PCR循环,对16个组合进行扩增。用XbaI和HindIII消化扩增产物并克隆至pACYC-Luc载体中,从而产生16个文库(A-A、A-T A-C、A-G;T-A、T-T、T-C、T-G;C-A、C-T、C-C、C-G;G-A、G-T、G-C、G-G)。转化后,在amp抗生素板上筛选克隆并对其进行质粒DNA测序或直接进行诱导荧光素酶检测筛选。
4、荧光素酶检测
将质粒转化E.coil DH5α感受态细胞。挑选单个菌落,并在剧烈振荡条件下于37℃在添加有25μg/mL氯霉素的2mL LB培养基中接种12-16h。过夜培养物在1.5mL微量离心管中用预先加热和新鲜制备的添加有氯霉素的2mL的LB培养基稀释50倍。稀释的细胞于37℃再额外培养3h,直到O.D.达到0.5。在37℃下,用或不用丝裂霉素C(MMC)或亚砷酸钠(AsIII)来处理细胞。将20mL诱导的培养物与50μL荧光素酶底物混合,用荧光读板仪(Veritas)检测荧光素酶活性。
5、实时RT-PCR
在用MMC处理之前先将单个DH5α菌落过夜培养并稀释。用Monarch总RNA小剂量制备试剂盒(NEB#T2010)制备总RNA,再用DNA酶处理,去除残留的DNA。用电泳法来评估RNA的完整性。根据制造商的说明书,在Qubit 2.0荧光仪中用QubitTM RNA BR测定试剂盒确定RNA浓度。用AMV(Life Science Advance Technology公司,MV007-S)将RNA(400ng)反转录为cDNA。使用TargetNT软件和Primer-BLAST(http://www.ncbi.nlm.nih.gov/tools/primer- blast/)设计目的基因OsmE1的引物和三个参考基因的引物,并由IDT(Integrated DNATechnologies公司)对设计的引物序列进行合成。通过用2%琼脂糖凝胶电泳对扩增产物进行分离,我们证实了引物的特异性。
利用ABI PRISM7000序列检测系统进行基于SYBR green的实时PCR。基于带有1xSYBR green、1xROX(Roche)、1μM正、反向引物的Q5 DNA聚合酶系统来制备20μLPCR反应体系。每个qPCR反应体系中cDNA的用量为:1μL目的基因OsmE1,1μL参考基因gryA和mGOD,以及0.6μL 1:100稀释的16S rRNA的cDNA。通过对cDNA样品进行连续稀释来进行预确定以获得与目标基因相似的三个参考基因的阈值周期(Ct)值。我们在50℃下运行PCR反应2分钟,在98℃下运行5分钟,然后在98℃下运行40个循环15秒,在55℃下运行30秒,在72℃下运行30秒。溶解阶段按以下步骤进行:95℃ 15秒,60℃ 20秒,95℃ 15秒。所有样本重复运行两次,计算每次试验的平均Ct值。
二、结果
这种富集蛋白结合基因组DNA片段的筛选方法是基于改进的电泳迁移转移率改变分析(EMSA)和DNA亲和力分析(图1A)。
为了进行筛选,我们首先用一种可识别非回文核苷酸序列5′…CCTC(N)…3′的限制性内切酶Mnli消化制得了E.coil基因组DNA文库,以产生片段,每个片段在3′端有一个突出的核苷酸。如果存在含有启动子或TFBS的DNA片段以及其相应的Sigma70或TFs等DNA结合蛋白,则在基因组DNA片段与E.coil DH5α裂解液混合时可形成蛋白质/DNA复合物。从游离DNA片段中柱分离后,我们用一对适配子将结合的DNA片段连接在一起。由于每个经Mnli消化的片段的3′末端的突出核苷酸是未知的,所以我们制作了4个5′适配子和4个3′适配子来涵盖所有可能的情况。制作了5′适配子和4个3′适配子的16个组合以用于连接(图1B)。经XbaI和HindIII消化后,将片段克隆至含有源于pACYC184(New England公司)的荧光素酶报告基因的pACYC-Luc载体中。
通过对这些文库进行转化,共获得大约560个克隆。在这些克隆中,我们选择了280个克隆进行测序,并生成178个序列,大小约为70-300bp。首先,我们通过对启动子进行计算分析来分析这些序列。在E.coli中用含有四个催化亚基和一个sigma调节亚基的RNA聚合酶进行原核转录。七个完全不同的sigma因子结合一组启动子序列,并且不同的sigma因子结合位点是已知的。不存在通用的原核生物转录起始,但在启动子区的转录起始位点上游的-10碱基对和-35碱基对处发现了两个保守序列。利用PRODORIC2程序进行启动子预测,我们发现所获得的124个序列具有保守序列。
其次,我们对TFs与其DNA结合位点的结合进行了分析。在E.coli K-12基因组的4500个基因中,已知有285个基因编码TFs。大多数TFs识别并结合特定的DNA序列。通常,TFBS在其目标基因的启动子内的长度为5-15bp,TF蛋白通常能够识别模序,即具有不同程度结合亲和力的类似DNA序列。根据DNA结合模序,285个TFs被分类为54个家族。使用相同的计算机程序PRODORIC2进行TFBS预测,我们发现178个所获得的序列中有77个序列至少具有一个TFBS。其中71个序列与-10和-35碱基对保守序列相关。共有131个插入片段含有启动子序列或TFBS,或两者兼有,它们大约占与蛋白质结合的总序列的74%(表1)。
表1含有-35和-10保守序列或TF结合序列的克隆的列表
Figure BDA0002592512040000081
Figure BDA0002592512040000091
Figure BDA0002592512040000101
Figure BDA0002592512040000111
Figure BDA0002592512040000121
Figure BDA0002592512040000131
Figure BDA0002592512040000141
一些序列显示出多个TFBS,如含有rpoD18、LexA、GLP、arcA和argR的类异戊二烯生物合成乙二醛酶ElbB,一些序列只显示出一个TFBS,如含有LexA的二肽渗透酶DtpD或含有crp的NADH-醌氧化还原酶亚基C/D。所有TF结合序列对应于总共35个不同的TFs(表2)。
表2所有TF结合序列对应总共35个不同的TFs
Figure BDA0002592512040000142
Figure BDA0002592512040000151
一些TFs出现的频率高于其他TFs。LexA出现在3-脱氧甘露辛酮酸胞苷酰转移酶KDO、菌毛生物合成转录调节因子FimZ、二肽渗透酶DtpD和类异戊二烯生物合成乙二醛酶ElbB等若干序列中。由于已知LexA是由环境胁迫引起的,所以我们选择它进行进一步的功能测试。
某些类型的环境基因组有毒胁迫例如化学试剂和紫外线照射等会引起DNA损伤。SOS基因等E.coli基因会转录地增加以响应DNA改变。这些基因的区别特征是存在于转录抑制因子LexA的结合序列的启动子区域内。在没有DNA损伤的情况下,LexA抑制因子形成一个二聚体,该二聚体与其结合位点结合,从而抑制转录表达。当细胞感觉到DNA损伤程度增加时,LexA抑制因子发生自裂解反应,并与其结合序列分离,这激活了SOS基因以响应DNA损伤和修复。
由于基因组DNA片段的克隆载体含有具有-35和-10保守序列的启动子和报告荧光素酶基因,选择5个含LexA结合序列的克隆进行MMC介导的LexA活化的功能检测。分别用0、0.2和0.5μm MMC处理E.coli细胞2h、4h和16h,制备细胞裂解液进行荧光素酶分析。在3种条件下所有细胞裂解液均表现出不同模式的诱导:克隆137(二肽渗透酶DtpD)和克隆165(菌毛生物合成转录调节因子FimZ),2倍诱导量0.2μg/mL,处理16h,克隆138(类异戊二烯生物合成乙二醛酶ElbB)、克隆152(非编码假基因)和克隆170(3-脱氧甘露辛酮酸胞苷酰转移酶)在2倍诱导量0.5μg/mL,处理4小时(图2)。
LexA介导的荧光素酶诱导还表明了在没有序列信息的情况下直接筛选LexA激活的可能性。这将对筛选基因和/或TF响应环境胁迫或污染非常有用。为了进行该分析,我们从T-C文库中随机选取80个克隆率最高的克隆,用0.5μM MMC处理对其培养4h,制备细胞裂解液并进行荧光素酶分析。如图3A所示,在无MMC处理和MMC处理的条件下选择具有较高荧光素酶活性(>550RLU)的克隆进行诱导测定试验。我们能够通过2倍LexA诱导识别出两个克隆,克隆56和克隆71(图3B)。blast-search测序分析表明,克隆56是未知靶标,克隆71是类异戊二烯生物合成乙二醛酶(ElbB)。利用启动子预测程序对两个克隆都进行了进一步分析(http://www.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb),显示出了LexA结合位点。克隆71中含有类异戊二烯生物合成乙二醛酶基因的LexA结合序列与上述识别出的克隆138不同。
砷(As),一种自然存在的元素,广泛分布于整个环境中。ArsR是一种调节蛋白,它通过与砷反应操纵子的相互作用来控制砷抗性相关基因的表达。ArsR结合可阻止RNA聚合酶在缺少砷的情况下与其靶基因的O/P序列相互作用。与砷结合后,蛋白质与启动子分离,随后激活基因表达。ArsR蛋白在质粒R773和E.coli染色体上能得到很好的表征。亚砷酸盐解毒途径由ars操纵子编码,该操纵子包括胞质砷酸还原酶(ArsC)、亚砷酸盐外排泵(ArsB)、ATP酶(ArsA)和亚砷酸盐结合蛋白(ArsD)。由E.coli K-12菌株的染色体DNA克隆的ars操纵子由arsRBC组成,其缺乏arsD和arsA基因。
为了直接完成As应答元件的功能筛选,我们从T-C文库中随机选取90个克隆,并在37℃对其培养过夜。将培养物用新鲜LB/Chlr肉汤稀释20倍并在或不在5μM亚砷酸盐处理的条件下孵育2小时后,收集它们进行荧光素酶测定(图4A)。选择显示较高荧光素酶活性(>600rlu)的克隆,重复进行亚砷酸盐诱导测定试验。如图4B所示,结果显示只有克隆12和克隆68仍显示出>2倍诱导。由克隆12和克隆68制备质粒并对其测序。通过NCBI blast检索,克隆12显示出有渗透诱导脂蛋白(OsmE1)和克隆6AsIII感应金属调节转录抑制因子(ArsR)。两个克隆都不能用启动子预测程序进行分析(http://www.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb),因为该程序不包含ArsR结合序列,尽管As介导的ArsR诱导是有充分记录的。
为了研究As介导的OsmE1基因表达的诱导,我们采用RT-PCR定量测定。将单个DH5α菌落培养过夜,在处理前进行稀释。制备总RNA并反转录为cDNA。带有SYBR-Green的PCR反应重复进行两次,计算每次试验的平均Ct值。每个板上的每一组引物都包括与对照模板的反应。首先,我们检测内源性OsmE1基因是否由As诱导。我们用0、0.04、0.08、0.16、0.31、0.63、1.25、2.5和5μM亚砷酸盐处理DH5α细胞2h。为了使OsmE1的基因表达标准化,我们使用稳定表达的内参基因16S RNA、gryA和mGOD来计算每个数据集的平均Ct。然后计算ΔCt作为OsmE1与三个内参基因的几何平均值之间的差值。通过将处理的ΔCt值标准化来为未处理的对照ΔCt值获得ΔΔCt。最后,利用Excel软件,用2-ΔΔCt数据计算相对OsmE1表达值。因此,我们测定了OsmE1基因表达对亚砷酸盐的剂量应答。如图5a所示,我们发现用2.5μM亚砷酸盐进行的处理显示出最高的OsmE1基因表达诱导。接下来,我们检测了0、15、30、60和120个周期内OsmE1基因表达对2.5μM亚砷酸盐的时间进程反应。在指定的时间点采集样本,并利用内参来规范化OsmE1基因表达的量化。结果显示,120分钟的处理会产生最高的诱导,是OsmE1基因表达的9倍(图6)。
研究表明,As可以介导ArsR诱导在文献中有很好的记载。ArsR,属于Smt/ArsR家族,是一种通过与砷响应操纵子的相互作用来控制砷抗性相关基因表达的调节蛋白。由于在微生物染色体中大量存在ArsR结合序列,通过比较和分析,对这些结合序列的比对可以识别出结合共有序列。SmtB/ArsR结合序列具有保守的12-2-12回文结构(图6a)。我们最近的研究表明,在反向重复序列中,TC和GA对ArsR结合至关重要(图6)。有趣的是,我们发现OsmE1也是一个能够通过As进行调控的靶标,尽管在这之前的一项研究中已经得到了证明。用电感耦合等离子体原子发射光谱仪(ICP-AES)对砷结合蛋白部分进行识别,发现了两种低分子量蛋白质,其中一种是渗透诱导脂蛋白E前体(OsmE1)。在金属胁迫条件下的细胞可以表达与金属离子结合的OsmE1。

Claims (9)

1.一种筛选鉴定胁迫应答基因表达调控因子的方法,其特征在于,包括以下步骤:
a.将待筛选鉴定细胞悬浮于裂解缓冲液中,加入溶菌酶溶液混合均匀,放置10-20分钟,离心分离上清,得到细胞裂解液;
b.提取待筛选鉴定细胞基因组DNA,然后用限制性内切酶Mnli消化处理,得到消化的基因组DNA;
c.将步骤a制备的细胞裂解液、步骤b制备的消化的基因组DNA和结合缓冲液混合,待蛋白与DNA充分结合后,上样到预先清洗的过滤分析柱上,离心弃去流出液,用过滤清洗缓冲液清洗多次,用洗脱缓冲液洗脱获得蛋白结合DNA片段;
d.将洗脱的蛋白结合DNA片段与适配子连接,用带有XbaI序列的正向引物和带有HindIII序列的反向引物,通过对各个5′适配子和3′适配子的组合进行PCR扩增,扩增产物用XbaI和HindIII消化并克隆至pACYC-Luc载体中产生对应的文库,转化DH5α后,在Amp抗生素板上筛选抗性克隆;
e.选取抗性克隆进行胁迫诱导处理,收集细胞制备细胞裂解液并进行荧光素酶活性测定,选择大于2倍诱导的克隆,利用测序和常规生物信息分析方法进一步鉴定克隆中的胁迫应答基因表达调控因子。
2.根据权利要求1所述的方法,其特征在于,所述的细胞为原核微生物。
3.根据权利要求1所述的方法,其特征在于,所述的细胞为大肠杆菌DH5α。
4.根据权利要求1所述的方法,其特征在于,所述的步骤a的裂解缓冲液含有10mMTris-HCl、0.1M NaCl、1mM乙二胺四乙酸和质量分数0.1%聚乙二醇辛基苯基醚,pH 8.0。
5.根据权利要求1所述的方法,其特征在于,所述的步骤a中加入溶菌酶溶液混合后溶菌酶在混合体系中的终浓度为0.25mg/mL。
6.根据权利要求1所述的方法,其特征在于,所述的步骤c中将步骤a制备的细胞裂解液、步骤b制备的消化的基因组DNA和结合缓冲液混合,混合体系为:5μL细胞裂解液、15μL 2×结合缓冲液、5μL消化的基因组DNA和5μL ddH2O;所述的结合缓冲液含有40mM 4-(2羟乙基)-1-哌嗪乙磺酸、pH7.6、20mM硫酸铵、2mM二硫苏糖醇、20mM KCl和质量分数0.4%Tween-20。
7.根据权利要求1所述的方法,其特征在于,所述的步骤c的过滤清洗缓冲液含有100mMTris-HCl、2.5mM EDTA和质量分数0.1%Tween-20,pH 7.6。
8.根据权利要求1所述的方法,其特征在于,所述的步骤c的洗脱缓冲液为质量分数0.5%SDS水溶液。
9.根据权利要求1所述的方法,其特征在于,所述的步骤d的适配子为如下所示8种:
Figure FDA0002592512030000021
5′适配子AA5、AG5、AC5和AT5用于连接DNA片段的5'端,3′适配子AA3、AG3、AC3和AT3用于连接DNA片段的3'端;所述的PCR扩增是扩增10个PCR循环。
CN202010699515.0A 2020-07-20 2020-07-20 一种筛选鉴定胁迫应答基因表达调控因子的方法 Active CN111944874B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010699515.0A CN111944874B (zh) 2020-07-20 2020-07-20 一种筛选鉴定胁迫应答基因表达调控因子的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010699515.0A CN111944874B (zh) 2020-07-20 2020-07-20 一种筛选鉴定胁迫应答基因表达调控因子的方法

Publications (2)

Publication Number Publication Date
CN111944874A true CN111944874A (zh) 2020-11-17
CN111944874B CN111944874B (zh) 2023-06-30

Family

ID=73341736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010699515.0A Active CN111944874B (zh) 2020-07-20 2020-07-20 一种筛选鉴定胁迫应答基因表达调控因子的方法

Country Status (1)

Country Link
CN (1) CN111944874B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020182595A1 (en) * 2001-04-27 2002-12-05 Weitzman Matthew D. Method of identifying cellular regulators of adeno-associated virus (AAV)
JP2010035459A (ja) * 2008-08-01 2010-02-18 National Institute Of Advanced Industrial & Technology 酵素遺伝子スクリーニング法
CN101812123A (zh) * 2009-11-12 2010-08-25 东北农业大学 拟南芥抗逆转录调控因子AtbZIP1和其碱基序列
CN102292453A (zh) * 2008-10-03 2011-12-21 普罗卡塔生物系统有限公司 转录因子诱饵
US20150353614A1 (en) * 2012-12-10 2015-12-10 The Regents Of The University Of California Synthetic Transcription Factor and Uses Thereof
US20160004814A1 (en) * 2012-09-05 2016-01-07 University Of Washington Through Its Center For Commercialization Methods and compositions related to regulation of nucleic acids
CN106399461A (zh) * 2016-09-14 2017-02-15 妙顺(上海)生物科技有限公司 一种荧光素酶报告基因系统检测转录因子表达活性的方法
US20190187156A1 (en) * 2016-03-22 2019-06-20 California Institute Of Technology Methods for identifying macromolecule interactions
WO2019139951A1 (en) * 2018-01-09 2019-07-18 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Detecting protein interaction sites in nucleic acids
CN110144362A (zh) * 2019-04-28 2019-08-20 广东省微生物研究所(广东省微生物分析检测中心) 一种砷响应荧光素酶报告载体及其构建方法和应用
CN110172498A (zh) * 2019-04-28 2019-08-27 广东省微生物研究所(广东省微生物分析检测中心) 一种快速高效分析转录因子及其靶dna结合序列相互作用的方法
CN110885845A (zh) * 2019-06-19 2020-03-17 中国农业科学院农业基因组研究所 一种基于随机序列利用载体筛选活性增强子的方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020182595A1 (en) * 2001-04-27 2002-12-05 Weitzman Matthew D. Method of identifying cellular regulators of adeno-associated virus (AAV)
JP2010035459A (ja) * 2008-08-01 2010-02-18 National Institute Of Advanced Industrial & Technology 酵素遺伝子スクリーニング法
CN102292453A (zh) * 2008-10-03 2011-12-21 普罗卡塔生物系统有限公司 转录因子诱饵
CN101812123A (zh) * 2009-11-12 2010-08-25 东北农业大学 拟南芥抗逆转录调控因子AtbZIP1和其碱基序列
US20160004814A1 (en) * 2012-09-05 2016-01-07 University Of Washington Through Its Center For Commercialization Methods and compositions related to regulation of nucleic acids
US20150353614A1 (en) * 2012-12-10 2015-12-10 The Regents Of The University Of California Synthetic Transcription Factor and Uses Thereof
US20190187156A1 (en) * 2016-03-22 2019-06-20 California Institute Of Technology Methods for identifying macromolecule interactions
CN106399461A (zh) * 2016-09-14 2017-02-15 妙顺(上海)生物科技有限公司 一种荧光素酶报告基因系统检测转录因子表达活性的方法
WO2019139951A1 (en) * 2018-01-09 2019-07-18 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Detecting protein interaction sites in nucleic acids
CN110144362A (zh) * 2019-04-28 2019-08-20 广东省微生物研究所(广东省微生物分析检测中心) 一种砷响应荧光素酶报告载体及其构建方法和应用
CN110172498A (zh) * 2019-04-28 2019-08-27 广东省微生物研究所(广东省微生物分析检测中心) 一种快速高效分析转录因子及其靶dna结合序列相互作用的方法
CN110885845A (zh) * 2019-06-19 2020-03-17 中国农业科学院农业基因组研究所 一种基于随机序列利用载体筛选活性增强子的方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
PAULINE GOSSELIN等: "Unbiased identification of signal-activated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STAR-PROM)", 《GENES DEV.》 *
PAULINE GOSSELIN等: "Unbiased identification of signal-activated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STAR-PROM)", 《GENES DEV.》, vol. 30, no. 16, 15 August 2016 (2016-08-15), pages 1895 *
YONGLI WANG等: "Identification of transcriptional regulatory nodes in soybean defense networks using transient co-transactivation assays", 《FRONT. PLANT SCI.》 *
YONGLI WANG等: "Identification of transcriptional regulatory nodes in soybean defense networks using transient co-transactivation assays", 《FRONT. PLANT SCI.》, 27 October 2015 (2015-10-27), pages 1 - 16 *
刘玉等: "转录因子与DNA相互作用的研究方法", 《医学分子生物学杂志》 *
刘玉等: "转录因子与DNA相互作用的研究方法", 《医学分子生物学杂志》, no. 01, 30 January 2006 (2006-01-30), pages 81 - 83 *
张伸: "DNA调节片段及其结合蛋白的筛选与鉴定", 《中国优秀博硕士学位论文全文数据库(博士)基础科学辑》 *
张伸: "DNA调节片段及其结合蛋白的筛选与鉴定", 《中国优秀博硕士学位论文全文数据库(博士)基础科学辑》, 15 November 2006 (2006-11-15), pages 21 - 35 *

Also Published As

Publication number Publication date
CN111944874B (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
Staller et al. A high-throughput mutational scan of an intrinsically disordered acidic transcriptional activation domain
Spealman et al. Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data
Sharma et al. Experimental approaches for the discovery and characterization of regulatory small RNA
Ireland et al. Deciphering the regulatory genome of Escherichia coli, one hundred promoters at a time
Nicholson et al. Quantifying RNA binding sites transcriptome-wide using DO-RIP-seq
WO2019178428A1 (en) Novel crispr dna and rna targeting enzymes and systems
Meng et al. Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system
EP2479278A1 (en) Method for the construction of specific promoters
Faner et al. Identifying and characterizing Hfq–RNA interactions
CN109652580B (zh) 柞树早烘病病原菌Septoria sp的核糖体RNA序列及其应用
US20140038831A1 (en) High throughput yeast two-hybrid screening method and reagent kit
Davis et al. Dissection of c-AMP response element architecture by using genomic and episomal massively parallel reporter assays
Babski et al. Bioinformatic prediction and experimental verification of sRNAs in the haloarchaeon Haloferax volcanii
Frank et al. Pseudomonas putida KT2440 genome update by cDNA sequencing and microarray transcriptomics
Li et al. Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants
Tran et al. De novo computational prediction of non-coding RNA genes in prokaryotic genomes
US20220372456A1 (en) Novel crispr dna targeting enzymes and systems
Meydan et al. Identification of translation start sites in bacterial genomes
Gómez-Lozano et al. Identification of bacterial small RNAs by RNA sequencing
US20230016656A1 (en) Novel crispr dna targeting enzymes and systems
Potrykus et al. Imprecise transcription termination within Escherichia coli greA leader gives rise to an array of short transcripts, GraL
CN111944874B (zh) 一种筛选鉴定胁迫应答基因表达调控因子的方法
Elias et al. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation
Li et al. Identification of stress-responsive transcription factors with protein-bound Escherichia coli genomic DNA libraries
US11104898B2 (en) Compositions and methods that are useful for identifying allele variants that modulate gene expression

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant