CN111934637B - 一种水母形低损耗负群时延电路及实现方法 - Google Patents

一种水母形低损耗负群时延电路及实现方法 Download PDF

Info

Publication number
CN111934637B
CN111934637B CN202010123122.5A CN202010123122A CN111934637B CN 111934637 B CN111934637 B CN 111934637B CN 202010123122 A CN202010123122 A CN 202010123122A CN 111934637 B CN111934637 B CN 111934637B
Authority
CN
China
Prior art keywords
microstrip
line
circuit
port
group delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010123122.5A
Other languages
English (en)
Other versions
CN111934637A (zh
Inventor
万发雨
刘斌
李宁东
布莱斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN202010123122.5A priority Critical patent/CN111934637B/zh
Publication of CN111934637A publication Critical patent/CN111934637A/zh
Application granted granted Critical
Publication of CN111934637B publication Critical patent/CN111934637B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/30Time-delay networks
    • H03H7/32Time-delay networks with lumped inductance and capacitance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Waveguides (AREA)

Abstract

本发明公开了一种水母形低损耗负群时延电路及实现方法,由在FR4基板上镀铜的耦合微带线CL和镀铜的微带线TL组成;所述耦合微带线CL由微带连接线IL1、微带连接线IL2、微带连接线IL3组成的;所述微带线TL为半圆形;所述耦合微带线CL与微带线TL组成的结构为水母形状,且结构对称;所述电路的实现方法包括步骤:(1)推导出微带线的S(jω)参数矩阵,整个NGD电路的S参数矩阵;(2)由公式
Figure DDA0002393417600000011
求出电路相位函数;(3)求出群时延函数τ(ω);(4)采用ADS仿真软件对参数优化,确定电路各个参数的尺寸。本发明降低了负群时延电路的损耗和反射;提高群时延带宽和时延;提供设计灵活的负群时延电路的实现方法。

Description

一种水母形低损耗负群时延电路及实现方法
技术领域
本发明涉及负群时延电路及实现方法,尤其涉及一种水母形低损耗负群时延电路及实现方法。
背景技术
为了满足公众和工业的需求,现代印刷电路板(PCB)的集成度和电气连接的复杂性不断增加。现代PCB分析需要对信号完整性(SI)和电磁兼容性(EMC)现象有深入的研究。由于电磁干扰和耦合的不良影响,SI和EMC预测是分析PCB连接问题的关键点。现有采用的计算求解器的方法过程耗时,不能对现代PCB连接问题进行完全分析。例如,由于全波网格计算,连接传播时延的主要原因未明确说明。因此,仍然需要运用基于传输线(TL)理论的分析方法。现阶段,最流行的连接时延估计是基于Elmore和Wyatt模型,该TL模型基于一阶集总RC网络,使用RC模型快速估计连接线的传播时延、优化连接线的大小和连接线的主要时延。由于TL集总的RC模型呈现出高达30%的传播时延相对误差,研究人员分析提出包括电感效应在内的更精确的TL集总RLC模型。利用RLC方法来统一PCB 连接时延模型,建立了计算连接时延的更精确的代数方程。尽管开发了集总的RC和RLC 模型,但在更高的频率下仍需要对PCB连接进行更明确的分析研究。
发明内容
发明目的:本发明的目的是提供一种降低负群时延电路的损耗和反射、提高群时延的水母形低损耗负群时延电路。
技术方案:本发明所述的水母形低损耗负群时延电路,由在FR4基板上镀铜的耦合微带线CL和镀铜的微带线TL组成;所述耦合微带线CL由微带连接线IL1、微带连接线IL2、微带连接线IL3组成的;所述微带线TL为半圆形;所述耦合微带线CL与微带线TL组成的结构为水母形状,且结构对称。
所述的微带连接线IL1、微带连接线IL2、微带连接线IL3为并联结构,且微带线的长度为IL1=IL2=IL3
耦合微带线CL和微带线TL的镀铜宽度相同,所述宽度值可调。
所述耦合微带线等效电路的端口4和端口6之间连接着一条微带传输线TL,端口1和端口2均是开路,端口3和4分别作为信号的输入和输出端口。
本发明所述的水母形低损耗负群时延电路的实现方法,包括步骤如下:(1)推导出微带线的S(jω)参数矩阵,整个NGD电路的S参数矩阵;(2)由公式
Figure RE-GDA0002445093870000011
求出电路相位函数;(3)求出群时延函数τ(ω);(4)采用ADS仿真软件对参数优化,确定电路各个参数的尺寸。
所述步骤(1)根据电路等效模型,得到耦合线的S参数矩阵、NGD电路插入损耗S21和反射系数S11;所述步骤(3)中由群时延定义
Figure RE-GDA0002445093870000021
来求出群时延函数τ(ω)。
有益效果:本发明与现有技术相比,其显著效果如下:1、降低了负群时延电路的损耗和反射,提高群时延带宽和时延;2、根据实现方法,提供设计灵活的负群时延电路。
附图说明
图1为本发明的结构示意图;
图2中(a)为本发明的NGD电路原理图、(b)为本发明的NGD等效电路图;
图3为本发明的NGD电路结构模型图;
图4为本发明的NGD电路的群时延仿真结果示意图;
图5为本发明的NGD电路的S11仿真结果示意图;
图6为本发明的NGD电路的S21仿真结果示意图。
具体实施方式
下面结合说明书附图和具体实施方式对本发明做进一步详细描述。
图2(a)为本发明的NGD电路原理图,图2(b)为本发明图2(a)电路的等效原理图。由图可知,该电路是由耦合微带线CL和微带传输线TL组成的。且该耦合线是由三条并联的微带线连接线IL1、IL2、IL3、组成的,且IL1=IL2=IL3,其中Zc和d1分别为连接线的特征阻抗和长度。耦合线的端口4和端口6之间连接着一条特征阻抗为Zc且长度为d2的微带传输线TL,耦合线的端口1和端口2分别是开路的,此外端口3和4分别作为信号的输入和输出端口。实现步骤如下:
步骤一,由微带线的理论可知,微带传输线TL的S参数矩阵如下所示,且τ、a分别为信号在TL中的传输时延和传输损耗,w为角频率,j为复数单位,且j2=-1。
Figure RE-GDA0002445093870000022
通过传输线TL的输入输出功率波可用下式来表示:
Figure RE-GDA0002445093870000023
另,耦合微带线的S参数矩阵可以通过下式来表示:
Figure RE-GDA0002445093870000031
Figure RE-GDA0002445093870000032
根据耦合线理论,我们可以定义端口1-3、1-5、2-4、2-6之间的耦合系数为ξ,端口1-2、3-4、5-6之间的传输系数为:
Figure RE-GDA0002445093870000033
由微波电路理论可知,由于该电路是一个对称的二端口网络,所以整个电路的S参数可作如下表示:
Figure RE-GDA0002445093870000034
Figure RE-GDA0002445093870000035
通过等式(1)-(7),可知
Figure RE-GDA0002445093870000036
Figure RE-GDA0002445093870000037
步骤二,传输相位的频率相关表达式:
Figure RE-GDA0002445093870000038
根据式(9)传输相位可以改写为:
Figure RE-GDA0002445093870000041
Figure RE-GDA0002445093870000042
Figure RE-GDA0002445093870000043
步骤三,根据电路系统理论,设jω为电路的角频率,群时延公式为:
Figure RE-GDA0002445093870000044
根据公式(11)、(12)、(13)、(14)可得电路的群时延τ(ω):
Figure RE-GDA0002445093870000045
步骤四,图1为本发明的结构示意图,并且该电路结构是对称结构。图3为本发明的NGD 电路ADS模型,采用了FR4板材,该板材的厚度是1.6mm,尺寸是31mm*48mm,介电常数是4.4,正切损耗角为0.02,且铜厚为0.035mm。利用仿真软件ADS对提出的电路进行仿真设计优化,可得到如表1所示的NGD电路基本参数尺寸:
表1 NGD电路基本参数尺寸
Figure RE-GDA0002445093870000046
图4为本发明的NGD电路的群时延仿真结果示意图;图5为本发明的NGD电路的S11仿真结果示意图;图6为本发明的NGD电路的S21仿真结果示意图基于ADS电磁仿真软件对该NGD电路在2.4~2.8GHz进行仿真。由ADS仿真示意图可知:该NGD电路工作于S频段,在中心频率2.59GHz时,电路的群时延约为-1.4ns,电路的损耗S21约为-2.7dB,电路的反射S11约为-14dB。由计算示意图可知:该NGD电路工作于S频段,在中心频率2.61GHz 时,电路的群时延约为-0.7ns,电路的损耗S21约为-3.1dB,电路的反射S11约为-13dB。计算与仿真值基本符合。

Claims (7)

1.一种水母形低损耗负群时延电路,其特征在于:由在FR4基板上镀铜的耦合微带线CL和镀铜的微带线TL组成;所述耦合微带线CL由微带连接线IL1、微带连接线IL2、微带连接线IL3组成的;所述微带线TL为半圆形,且两端为沿半圆形半径向内延伸的直线段,直线段长度小于半圆形半径,所述微带线TL两端分别与微带连接线IL1、微带连接线IL3连接,微带连接线IL1、微带连接线IL3延伸方向垂直于微带线TL直线段延伸方向,微带连接线IL1、微带连接线IL2、微带连接线IL3相互平行;所述微带连接线IL1和微带连接线IL3远离微带线TL的一端包括向外直线延伸的延伸段,微带连接线IL1和微带连接线IL3的延伸段延伸方向相反,且均平行于微带线TL的直线段,所述耦合微带线CL与微带线TL组成的结构为水母形状,且结构对称。
2.根据权利要求1所述的水母形低损耗负群时延电路,其特征在于,所述的微带连接线IL1、微带连接线IL2、微带连接线IL3并列排布,且微带线的长度为IL1=IL2=IL3
3.根据权利要求1所述的水母形低损耗负群时延电路,其特征在于,耦合微带线CL和微带线TL的镀铜宽度相同,所述宽度值可调。
4.根据权利要求1所述的水母形低损耗负群时延电路,其特征在于,耦合微带线CL和镀铜的微带线TL组成的时延电路的耦合线等效电路包括端口1、端口2、端口3、端口4、端口5和端口6;所述微带连接线IL1与微带线TL连接的一端为端口4,另一端为端口3;所述微带连接线IL2两端分别为端口1和端口2;所述微带连接线IL3与微带线TL连接的一端为端口6,另一端为端口5,所述耦合线等效电路的端口4和端口6之间连接着一条微带传输线TL,端口1和端口2均是开路,端口3和4分别作为信号的输入和输出端口。
5.如权利要求1所述的水母形低损耗负群时延电路的实现方法,其特征在于,包括步骤如下:(1)推导出微带线的S(jω)参数矩阵,整个NGD电路的S参数矩阵;(2)由公式
Figure FDA0004195579730000011
求出电路相位函数;(3)求出群时延函数τ(ω);(4)确定电路各个参数的尺寸。
6.根据权利要求5所述的水母形低损耗负群时延电路的实现方法,其特征在于,所述步骤(1)根据电路等效模型,得到耦合线的S参数矩阵、NGD电路插入损耗S21和反射系数S11
7.根据权利要求5所述的水母形低损耗负群时延电路的实现方法,其特征在于,所述步骤(3)中由群时延定义
Figure FDA0004195579730000012
来求出群时延函数τ(ω)。
CN202010123122.5A 2020-02-27 2020-02-27 一种水母形低损耗负群时延电路及实现方法 Active CN111934637B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010123122.5A CN111934637B (zh) 2020-02-27 2020-02-27 一种水母形低损耗负群时延电路及实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010123122.5A CN111934637B (zh) 2020-02-27 2020-02-27 一种水母形低损耗负群时延电路及实现方法

Publications (2)

Publication Number Publication Date
CN111934637A CN111934637A (zh) 2020-11-13
CN111934637B true CN111934637B (zh) 2023-06-20

Family

ID=73316156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010123122.5A Active CN111934637B (zh) 2020-02-27 2020-02-27 一种水母形低损耗负群时延电路及实现方法

Country Status (1)

Country Link
CN (1) CN111934637B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915568B (zh) * 2021-02-09 2024-04-09 大唐移动通信设备有限公司 信号传输线的性能确定方法、装置及存储介质
CN113328253B (zh) * 2021-05-19 2022-07-12 大连海事大学 基于非对称共面带线的双l型负群时延微波电路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109918864A (zh) * 2019-05-05 2019-06-21 南京信息工程大学 基于扇形短截线和耦合微带线的负群时延电路及设计方法
CN110334470A (zh) * 2019-07-17 2019-10-15 南京信息工程大学 一种基于耦合线的多频段负群时延电路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109918864A (zh) * 2019-05-05 2019-06-21 南京信息工程大学 基于扇形短截线和耦合微带线的负群时延电路及设计方法
CN110334470A (zh) * 2019-07-17 2019-10-15 南京信息工程大学 一种基于耦合线的多频段负群时延电路

Also Published As

Publication number Publication date
CN111934637A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
Svensson et al. Time domain modeling of lossy interconnects
CN111934637B (zh) 一种水母形低损耗负群时延电路及实现方法
Simonovich et al. Differential via modeling methodology
US5946211A (en) Method for manufacturing a circuit on a circuit substrate
KR101041555B1 (ko) 비아 구조의 고주파 성능 최적화 방법
US20130211759A1 (en) Method for evaluating the effects of an interconnection on electrical variables
US8046208B1 (en) Method and apparatus for representing high speed interconnects in closed forms
Araneo et al. Two-port equivalent of PCB discontinuities in the wavelet domain
Shu et al. DC blocking capacitor design and optimization for high speed signalling
Ryu et al. Signal Integrity Analysis of Notch-Routing to Reduce Near-End Crosstalk for Tightly Coupled and Short Microstrip Channel
Wu et al. Modeling of crosstalk between two nonparallel striplines on adjacent layers
Ouyang et al. Optimizing the Placement of Non-Functional Pads on Signal Vias Using Multiple Reflection Analysis
CN111934638A (zh) 基于耦合微带线的ic形低损耗负群时延电路及实现方法
Scharff et al. Physical scaling effects of differential crosstalk in via arrays up to frequencies of 100 GHz
Win et al. A frequency-domain high-speed bus signal integrity compliance model: Design methodology and implementation
Yang et al. Research on Signal Integrity in High-Speed Interconnection Channel Based on SIwave
Wu et al. Investigation of crosstalk among vias
Rimolo-Donadio et al. Differential to common mode conversion due to asymmetric ground via configurations
Stewart et al. Microstrip discontinuity modeling
Vladuta et al. HIGH FREQUENCY COMMON-MODE NOISE IN SERDES CIRCUITS’OPTIMIZED INTERCONNECTIONS
CN111934075B (zh) 基于多耦合线的三频带负群时延电路及实现方法
Cho et al. Differential via optimization for PCIe Gen5 channel based on particle swarm optimization algorithm
Deng et al. Application of transmission line models to backpanel plated through-hole via design
Lin et al. Research of Impedance Optimization with Mesh Reference Ground
Rao et al. Impact of Copper Pour on Crosstalk: Measurement and Simulation Correlation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant