CN111934199B - 一种用于1550nm波长激光器的半导体外延晶片 - Google Patents

一种用于1550nm波长激光器的半导体外延晶片 Download PDF

Info

Publication number
CN111934199B
CN111934199B CN202010813856.6A CN202010813856A CN111934199B CN 111934199 B CN111934199 B CN 111934199B CN 202010813856 A CN202010813856 A CN 202010813856A CN 111934199 B CN111934199 B CN 111934199B
Authority
CN
China
Prior art keywords
layer
type
epitaxial wafer
thickness
semiconductor epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010813856.6A
Other languages
English (en)
Other versions
CN111934199A (zh
Inventor
陈基生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Smic Semiconductor Co ltd
Original Assignee
Xiamen Smic Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Smic Semiconductor Co ltd filed Critical Xiamen Smic Semiconductor Co ltd
Priority to CN202010813856.6A priority Critical patent/CN111934199B/zh
Publication of CN111934199A publication Critical patent/CN111934199A/zh
Application granted granted Critical
Publication of CN111934199B publication Critical patent/CN111934199B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2218Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明公开了一种用于1550nm波长激光器的半导体外延晶片,包括n‑InP衬底及衬底依次向上的盖层、限制层、势垒层、量子阱、限制层、保护层、稀释波导层、盖层、过渡层、欧姆接触层;分为衬底材料、无源波导区、有源区、稀释波导区、脊型波导,通过降低1550nm波长激光器光子腔内的内部损耗的半导体外延晶片在p层材料中吸收来提升半导体激光器的光功率;盖层、过渡层和欧姆接触层构成的脊型波导结构来增加半导体激光器外延结构中增强光的横向限制提升1550nm波长激光器半导体外延晶片光场分布。

Description

一种用于1550nm波长激光器的半导体外延晶片
技术领域
本发明属于半导体领域,特别涉及一种用于高功率和高光束质量(近场分布、远场分布、发散角)边发射激光器外延晶片。
背景技术
半导体激光器因为具有体积小、可靠性高、寿命长、转换效率高、驱动简单、能直接调制等优点被广泛应用在通讯、固体激光器和光纤激光器的泵浦源、激光打印、激光医疗、空间通讯等领域。
在光纤通讯等领域的应用中,由于需要将边发射激光器发射出的光束直接耦合进单模光纤内,基模以外的其他模式向单向光纤中耦合的效率非常低,为了克服这些问题,增强高功率和高光束质量边发射半导体激光器的半导体外延晶片设计成为半导体技术领域比较重要的研究领域。因此研制高功率和高光束质量半导体激光器不仅具有重要的理论意义,而且还具有实际的应用价值。
其次,在石英系光纤三个低损窗口 850nm、1310nm 和 1550nm 中,1550nm波段光纤衰减最小为0.2dB/km,还具有人眼安全、抗干扰能力强的优点,另外,光纤通讯目前的光通信系统通常依靠工作在1550nm的半导体激光器来产生光信号;1550nm的半导体激光器有源区带隙为0.8eV,与InP晶格匹配的材料体系对应带隙为0.75eV至1.45eV,具有很强优势;由于调制和波导功能也可以在同一类型的InP材料中实现,因此将这些器件集成在一起是非常有意义的。
再次,半导体激光器主要包含内部损耗和腔面损耗,内部损耗主要是由外延材料中内部载流子吸收、波导散射损耗等导致光学色散较大所引起的,尤其在1550nm光波段领域,p层的自由载流子的吸收是相当高的,导致光损较大;势必导致1550nm波段激光器的光功率降低。由于半导体外延晶片中波导区域设计无法限制横向和侧向模式,造成出射光的光束质量较低,多种模式共同存在也降低了光束的相干性和光功率密度。
目前,传统的1550nm半导体激光器一般采用InP衬底材料,在InP衬底材料生长n型盖层,通常选用与InP晶格匹配的InP二元材料或者InxGa(1-x)P三元材料体系制备n型盖层结构,为满足半导体激光器的激射条件,生长InP衬底材料与有源区之间过渡层,也是器件的波导限制层,波导限制层选用不同组分的AlxInyGa(1-x-y)As 或InxGa(1-x)AsyP(1-y)四元材料,组分的选择折射率介于InP衬底材料及势垒材料之间。生长器件的有源层,通常为3-7对量子阱。生长p型波导限制层,生长三元或四元AlxInyGa(1-x-y)As 或InxGa(1-x)AsyP(1-y)的保护层。在保护层上方引入周期分布的InP/ AlxInyGa(1-x-y)As 或InP/InxGa(1-x)AsyP(1-y)的稀释波导结构,在稀释波导层上生长p型盖层,p型盖层上生长p型过渡层。p型过渡生长p型欧姆接触层。
通常采用n型结构作为衬底,生长如上的外延结构,刻蚀出p型的脊型波导结构,在脊型波导上面蒸镀正面电极。将衬底减薄,蒸镀背面电极,器件的腔长、脊型波导的宽度、外延层中掺杂浓度等都会影响光功率和光束质量。
本发明要解决的技术问题是提供一种用于1550nm波长激光器的半导体外延晶片,以减少光在 p 型材料中的限制因子而减少损耗;p型盖层、过渡层、欧姆接触层构成激光器的脊型波导结构在外延制作过程中进一步降低半导体外延晶片内部光损耗;实现半导体外延晶片的高功率和高光束质量光场分布。
发明内容
本发明采用如下技术方案:
本发明提供一种用于1550nm波长激光器的半导体外延晶片,由下至上依次包括n型衬底、n型盖层、下限制层、势垒层、有源区、上限制层、保护层、稀释波导层、p型盖层、p型过渡层和p型欧姆接触层,其中所述有源区为应变量子阱结构,在所述有源区量子阱上方的上限制层、保护层、稀释波导层构成p型区的电流限制,所述p型盖层、p型过渡层和p型欧姆接触层构成激光器的脊型波导结构。
作为对本发明的改进,所述衬底为InP材料。
作为对本发明的进一步改进,所述n型盖层为InP材料,所述n型盖层的厚度为1000-2000nm。
作为对本发明的进一步改进,所述下限制层为AlxInyGa(1-x-y)As或InxGa(1-x)AsyP(1-y)材料,所述下限制层厚度40-140nm,所述势垒层为AlxInyGa(1-x-y)As或InxGa(1-x)AsyP(1-y)材料,所述势垒层为非掺杂且厚度为0-20nm。
作为对本发明的进一步改进,所述有源区为单个量子阱或多个量子阱结构,所述量子阱材料组分为AlxInyGa(1-x-y)As(阱)/AlxInyGa(1-x-y)As(垒)或InxGa(1-x)AsyP(1-y)(阱)/InxGa(1-x)AsyP(1-y)(垒),量子阱厚度为0-20nm。
作为对本发明的进一步改进,所述上限制层为AlxInyGa(1-x-y)As 或InxGa(1-x)AsyP(1-y)材料且厚度为40-140nm。
作为对本发明的进一步改进,所述保护层为p型AlxInAs或InxGaP材料且厚度为0-40nm。
作为对本发明的进一步改进,所述稀释波导层为单个或多个迭代周期InP/AlxInyGa(1-x-y)As或者InP/ InxGa(1-x)AsyP(1-y)且厚度为0-40nm。
作为对本发明的进一步改进,所述盖层为p型InP材料且厚度为0-1500nm。
作为对本发明的进一步改进,所述过渡层为p型AlxInyGa(1-x-y)As 或InxGa(1-x)AsyP(1-y)材料且厚度为0-100nm,所述欧姆接触层为p型AlxInyGa(1-x-y)As 或InxGa(1-x)AsyP(1-y)三元或四元材料且厚度为0-400nm。
本发明的有益效果在于:通过保护层上稀释波导外延结构和p层的盖层、过渡层和欧姆接触层脊型结构,可以减少1550nm光波段外延层p层损耗提升1550nm半导体外延晶片的光功率;脊型波导外延层设计加强横向限制,进一步增强整体半导体外延晶片的光束质量。
附图说明
图1为本发明的一种实施例结构示意图。
图2为本发明实例中制得的器件结构示意图。
具体实施方式
下面结合附图详细说明本发明的优选实施例。
请参阅图1,,一种用于1550nm波长激光器的半导体外延晶片,包括:
n型InP衬底1;
n型InP盖层2,其制作在衬底1上,所述n-InP盖层厚度为1000nm;
非掺杂AlxInyGa(1-x-y)As限制层3,其制作在n型盖层上,所述非掺杂限制层厚度为60nm;
非掺杂AlxInyGa(1-x-y)As势垒层4,其制作在非掺杂AlxInyGa(1-x-y)As上,所述非掺杂势垒层厚度为13nm;
AlxInyGa(1-x-y)As/AlxInyGa(1-x-y)As应变量子阱结构5,其制作在非掺杂的势垒层上,所述AlxInyGa(1-x-y)As/AlxInyGa(1-x-y)As应变量子阱为不掺杂应变量子阱结构,包括厚度为7nm的AlxInyGa(1-x-y)As量子阱层和厚度为11nm的AlxInyGa(1-x-y)As量子势垒层,量子阱个数是7个;
AlxInyGa(1-x-y)As限制层6,其制作在应变量子阱上,所述AlxInyGa(1-x-y)As限制层6是非掺杂结构,厚度为60nm;
AlxIn(1-x)As 保护层7,其制作在非掺杂AlxInyGa(1-x-y)As限制层7上,厚度为10nm;
InP/AlxInyGa(1-x-y)As稀释波导层8,其制作在AlxIn(1-x)As 保护层7上,所述InP是p型轻掺杂,厚度为40nm;AlxInyGa(1-x-y)As是p型轻掺杂,厚度为30nm,稀释波导层周期数为4个;
p型盖层9,其制作在稀释波导层8上,所述p型盖层是InP材料,InP是p型轻掺杂,厚度为1000nm;
过渡层10,其制作在p型盖层10上,所述过渡层是AlxInyGa(1-x-y)As材料,厚度为1600nm;
欧姆接触层11,其制作在过渡层10上,所述欧姆接触层是InxGaAs材料;InxGaAs材料是重掺杂,厚度为200nm;
参阅图2并结合图1所示,本发明提供一种1550nm半导体激光器的制备方法,包括如下步骤:
步骤1:在n型InP衬底上1生长n型盖层2、限制层3、势垒层4、量子阱5、限制层6、保护层7、稀释波导层8、盖层9、过渡层10、接触层11;
步骤2:第一次刻蚀,使欧姆接触层11、过渡层10、盖层11形成脊型条状,其两侧的高度至保护层7上,脊型宽度为10um;
步骤3:蒸镀正面电极电极;
步骤4:将衬底2进行减薄;
步骤5:蒸镀背面电极;
步骤6:快速退火;
步骤7:激光器解离成150×150um的分立芯片。
上述实施例并非限定本发明的产品形态和式样,任何所属技术领域的普通技术人员对其所做的适当变化或修饰,皆应视为不脱离本发明的专利范畴。

Claims (5)

1.一种用于1550nm波长激光器的半导体外延晶片,其特征在于:由下至上依次包括n型衬底(1)、n型盖层(2)、下限制层(3)、势垒层(4)、有源区(5)、上限制层(6)、保护层(7)、稀释波导层(8)、p型盖层(9)、p型过渡层(10)和p型欧姆接触层(11),其中所述有源区(5)为应变量子阱结构,在所述有源区(5)量子阱上方的上限制层(6)、保护层(7)、稀释波导层(8)构成p型区的电流限制,所述p型盖层(9)、p型过渡层(10)和p型欧姆接触层(11)构成激光器的脊型波导结构,所述下限制层(3)为AlxInyGa(1-x-y)As或InxGa(1-x)AsyP(1-y)材料,所述下限制层(3)厚度40-140nm,所述势垒层(4)为AlxInyGa(1-x-y)As或InxGa(1-x)AsyP(1-y)材料,所述势垒层(4)为非掺杂且厚度为0-20nm,所述有源区(5)为单个量子阱或多个量子阱结构,所述量子阱材料组分为AlxInyGa(1-x-y)As(阱)/AlxInyGa(1-x-y)As(垒)或InxGa(1-x)AsyP(1-y)(阱)/InxGa(1-x)AsyP(1-y)(垒),量子阱厚度为0-20nm,所述上限制层(6)为AlxInyGa(1-x-y)As 或InxGa(1-x)AsyP(1-y)材料且厚度为40-140nm,所述稀释波导层(8)为单个或多个迭代周期InP/AlxInyGa(1-x-y)As或者InP/ InxGa(1-x)AsyP(1-y)且厚度为0-40nm,所述过渡层(10)为p型AlxInyGa(1-x-y)As 或InxGa(1-x)AsyP(1-y)材料且厚度为0-100nm,所述欧姆接触层(11)为p型AlxInyGa(1-x-y)As 或InxGa(1-x)AsyP(1-y)三元或四元材料且厚度为0-400nm。
2.根据权利要求1所述的一种用于1550nm波长激光器的半导体外延晶片,其特征在于:所述衬底(1)为InP材料。
3.根据权利要求1所述的一种用于1550nm波长激光器的半导体外延晶片,其特征在于:所述n型盖层(2)为InP材料,所述n型盖层(2)的厚度为1000-2000nm。
4.根据权利要求1所述的一种用于1550nm波长激光器的半导体外延晶片,其特征在于:所述保护层(7)为p型AlxInAs或InxGaP材料且厚度为0-40nm。
5.根据权利要求1所述的一种用于1550nm波长激光器的半导体外延晶片,其特征在于:所述盖层(9)为p型InP材料且厚度为0-1500nm。
CN202010813856.6A 2020-08-13 2020-08-13 一种用于1550nm波长激光器的半导体外延晶片 Active CN111934199B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010813856.6A CN111934199B (zh) 2020-08-13 2020-08-13 一种用于1550nm波长激光器的半导体外延晶片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010813856.6A CN111934199B (zh) 2020-08-13 2020-08-13 一种用于1550nm波长激光器的半导体外延晶片

Publications (2)

Publication Number Publication Date
CN111934199A CN111934199A (zh) 2020-11-13
CN111934199B true CN111934199B (zh) 2022-02-08

Family

ID=73311871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010813856.6A Active CN111934199B (zh) 2020-08-13 2020-08-13 一种用于1550nm波长激光器的半导体外延晶片

Country Status (1)

Country Link
CN (1) CN111934199B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768468A (zh) * 2019-02-28 2019-05-17 华中科技大学 一种半导体激光器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768468A (zh) * 2019-02-28 2019-05-17 华中科技大学 一种半导体激光器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"1.55μm大功率高速直调半导体激光器阵列";王皓 等;《光学学报》;20190930;第39卷(第09期);2-3页 *

Also Published As

Publication number Publication date
CN111934199A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
US20070013996A1 (en) Quantum dot vertical lasing semiconductor optical amplifier
US20040131097A1 (en) Optoelectronic and electronic devices based on quantum dots having proximity-placed acceptor impurities, and methods therefor
US8130809B2 (en) Optoelectronic device having light source emitter and receiver integrated
US6472691B2 (en) Distributed feedback semiconductor laser device
CN114649742B (zh) 一种高效垂直腔面eml芯片及其制备方法
US20210408767A1 (en) O-band silicon-based high-speed semiconductor laser diode for optical communication and its manufacturing method
CN111987588A (zh) 具有光场集中结构的半导体激光器
US5623363A (en) Semiconductor light source having a spectrally broad, high power optical output
JP7298715B2 (ja) 受光デバイス
CN117134196A (zh) 单模掩埋半导体激光器及其制备方法
CN111934199B (zh) 一种用于1550nm波长激光器的半导体外延晶片
CN216529835U (zh) 一种940nm垂直腔面发射激光器外延片
CN114188819B (zh) 一种1342纳米波长大功率微结构dfb激光器
JP2812273B2 (ja) 半導体レーザ
CN108988124B (zh) 一种用于微波振荡源的单片集成隧道结激光器
US4521887A (en) W-shaped diffused stripe GaAs/AlGaAs laser
JPH0376287A (ja) ブロードエリアレーザ
JP2518255B2 (ja) 多重量子井戸型光双安定半導体レ−ザ
JP3204969B2 (ja) 半導体レーザ及び光通信システム
JP4003250B2 (ja) 半導体レーザ
JPS62249496A (ja) 半導体レ−ザ装置
JPH04199587A (ja) 光半導体素子
JPS59155978A (ja) 半導体発光装置
Zhu et al. Widely Tunable 1.3 μm InGaAlAs/InP DBR Laser
CN118040465A (zh) 一种新型半导体激光器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant