CN111918845B - 在深度处具有高的应力大小的基于玻璃的制品 - Google Patents

在深度处具有高的应力大小的基于玻璃的制品 Download PDF

Info

Publication number
CN111918845B
CN111918845B CN201980020804.9A CN201980020804A CN111918845B CN 111918845 B CN111918845 B CN 111918845B CN 201980020804 A CN201980020804 A CN 201980020804A CN 111918845 B CN111918845 B CN 111918845B
Authority
CN
China
Prior art keywords
glass
stress
mpa
mol
microns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980020804.9A
Other languages
English (en)
Other versions
CN111918845A (zh
Inventor
V·M·施奈德
T·E·维兰特维兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN111918845A publication Critical patent/CN111918845A/zh
Application granted granted Critical
Publication of CN111918845B publication Critical patent/CN111918845B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

基于玻璃的制品具有第一表面和与第一表面相对的第二表面,它们限定了厚度(t),以及第一表面与第二表面之间的中心,所述基于玻璃的制品含有Li2O、经离子交换的钾和经离子交换的钠。基于玻璃的制品具有应力分布,其包括从第一表面(或者低于第一表面的点)延伸到0.001t至0.1t范围内的峰点的峰丘应力区域。峰点处的压缩应力是25至750MPa。峰丘区域包括应力增加的区域和应力减小的区域。压缩深度是0.1t至0.25t。拉伸应力区域从压缩深度延伸到最大拉伸应力。

Description

在深度处具有高的应力大小的基于玻璃的制品
本申请根据35 U.S.C. § 119,2018年1月24日提交的美国临时申请系列第62/621241号的优先权,本文以该申请为基础并将其全文通过引用结合于此。
背景技术
本公开内容涉及在深度处展现出高的应力大小的基于玻璃的制品,更具体地,涉及如下基于玻璃的制品,其含有经离子交换的钠和钾且展现出的应力分布具有包含在深度处的高应力区域的深的压缩深度。
基于玻璃的制品经常遭受严重冲击,这会将大的瑕疵引入此类制品的表面中。此类瑕疵会从表面延伸到高至约200微米的深度。通常来说,已经将热回火玻璃用于防止由于此类瑕疵引入玻璃中所引起的失效,因为热回火玻璃通常展现出大的压缩应力(CS)层(例如,约为玻璃总厚度的21%),这可以防止瑕疵进一步扩展进入玻璃,从而可以防止失效。通过热回火产生的应力分布的一个例子如图1所示。在图1中,经热处理的基于玻璃的制品100包括第一表面101、厚度t1、和表面CS 110。经热处理的基于玻璃的制品100展现出的CS从第一表面101到压缩深度(DOC)130发生下降,如本文所定义,在该深度处,应力从压缩变化为拉伸应力。拉伸应力在120达到最大中心张力(CT)。
热回火目前受限于基于厚玻璃的制品(例如,厚度t1是约3毫米或更大的的基于玻璃的基材),因为为了实现热强化和所需的残留应力,必须在此类制品的芯与表面之间形成足够的热梯度。在许多应用中,例如显示器(例如,消费者电子产品,包括移动电话、平板、计算机、导航系统和手表等),建筑(例如,窗、淋浴板、工作台面等),运输工具(例如,车辆、火车、航天器、航海器等),电器或者需要会受益于优异的抗破碎性但是薄且轻量化制品的任意应用,此类厚的制品是不合乎希望或者不实际的。
虽然化学强化不像热回火那样受到基于玻璃的基材的厚度的限制,但是已知的基于化学强化玻璃的制品无法展现出基于热回火玻璃的制品的应力分布。通过化学强化(例如,离子交换工艺)产生的应力分布的一个例子如图2所示。在图2中,基于化学强化玻璃的制品200包括第一表面201、厚度t2、和表面CS 210。基于玻璃的制品200展现出的CS从第一表面201到DOC 230是下降的,并且达到最大CT 220。如图2所示,此类分布展现出基本平坦的CT区域或者CT区域具有沿着至少一部分的CT区域恒定或近恒定的拉伸应力。通常,相比于图1所示的最大中心值,已知的基于化学强化玻璃的制品展现出较低的最大CT值。
存在对于薄的基于玻璃的制品的需求,其展现出改进的性质,例如对于制品掉落所导致的破碎的抗性以及稳定的裂纹生长。
发明内容
本公开内容的第一个方面属于基于玻璃的制品,其包括:第一表面和与第一表面相对的第二表面,它们限定了厚度(t)以及第一表面与第二表面之间的中心,所述基于玻璃的制品包含:Li2O,经过离子交换的钾和经过离子交换的钠;以及应力分布,所述应力分布包括:“峰丘(hump)”应力区域,其从第一表面(或者低于第一表面的点)延伸到0.001t至0.1t的峰点(apex),峰点处的压缩应力是25 MPa至750 MPa(或者25 MPz至500 MPa),其中,峰丘应力区域在第一表面与峰点之间的至少一个点包括斜率值为25 MPa/微米至500 MPa/微米的正切,从峰点延伸的应力减小区域,它的减小使得从峰点朝向中心延伸的应力减小区域中的至少一个点包括斜率值为-20 MPa/微米至-200 MPa/微米的正切直到所述应力减小区域到达基于玻璃的制品的应力值为零的压缩深度,所述压缩深度的范围是0.1t至0.25t,以及从压缩深度延伸到最大拉伸应力的拉伸应力区域,其中,所述基于玻璃的制品包括0.01 mm至3 mm的厚度。
本公开内容的另一个方面属于基于玻璃的制品的制造方法,其包括:将钠和钾离子交换到包含0.1摩尔%至20摩尔%的Li2O的基于玻璃的基材中,其中,所述基于玻璃的基材包括:第一表面和与第一表面相对的第二表面,它们限定了厚度(t)(mm)以及第一表面与第二表面之间的中心;以及应力分布,所述应力分布包括:“峰丘(hump)”应力区域,其从第一表面(或者低于第一表面的点)延伸到0.001t至0.1t的峰点(apex),峰点处的压缩应力是25MPa至750 MPa(或者25 MPz至500 MPa),其中,峰丘区域在第一表面与峰点之间的至少一个点包括斜率值为25 MPa/微米至500 MPa/微米的正切,从峰点延伸的应力减小区域,它的减小使得从峰点朝向中心延伸的应力减小区域中的至少一个点包括斜率值为-20 MPa/微米至-200 MPa/微米的正切直到应力减小区域到达基于玻璃的制品的应力值为零的压缩深度,所述压缩深度的范围是0.1t至0.25t,以及从压缩深度延伸到最大拉伸应力的拉伸应力区域,其中,所述基于玻璃的制品包括0.01 mm至3 mm的厚度。
在以下的详细描述中提出了本文的其他特征和优点,其中的部分特征和优点对本领域的技术人员而言,根据所作描述就容易看出,或者通过实施包括以下详细描述、权利要求书以及附图在内的本文所述的各种实施方式而被认识。
要理解的是,上面的一般性描述和下面的详细描述都仅仅是示例性的,用来提供理解权利要求书的性质和特点的总体评述或框架。所附附图提供了进一步理解,附图被结合在本说明书中并构成说明书的一部分。附图说明了一个或多个实施方式,并与说明书一起用来解释各种实施方式的原理和操作。
附图说明
图1是贯穿已知的基于热回火玻璃的制品的厚度的应力分布的横截面图;
图2是贯穿已知的基于化学强化玻璃的制品的厚度的应力分布的横截面图;
图3是贯穿根据本公开内容一个或多个实施方式的基于化学强化玻璃的制品的厚度的应力分布的横截面图;
图4是贯穿根据本公开内容一个或多个实施方式和根据实施例1的基于化学强化玻璃的制品的厚度的应力分布的横截面图;
图5显示比较例1和2以及比较例4-6的砂纸上增量式面跌落测试的结果图;
图6显示比较例1和2以及比较例4-6的砂纸上增量式面跌落测试的结果图;
图7A-C是逐渐增加的划痕测试之后的样品图像;
图8A-C是逐渐增加的划痕测试之后的样品图像;
图9是在表面上具有限定厚度t的涂层的基于玻璃的基材图;以及
图10是结合了本文所述的基于玻璃的制品的一个或多个实施方式的电子装置的前平面图。
实施方式
下面详细参考各个实施方式,这些实施方式的例子在所附的实施例和附图中示出。
在以下描述中,相同的附图标记表示附图所示的若干视图中类似或相应的部分。此外,每当将一个组描述为包含一组要素中的至少一个要素和它们的组合时,应将其理解为所述组可以单个要素或相互组合的形式包含任何数量的这些所列要素,或者主要由它们组成,或者由它们组成。类似地,每当将一个组描述为由一组要素中的至少一个要素或它们的组合组成时,应将其理解为所述组可以单个要素或相互组合的形式由任何数量的这些所列要素组成。除非另有说明,否则,列举的数值范围同时包括所述范围的上限和下限,以及所述范围之间的任意范围。除非另外说明,否则,本文所用的不定冠词“一个”或“一种”及其相应的定冠词“该”表示“至少一(个/种)”,或者“一(个/种)或多(个/种)”。还要理解的是,在说明书和附图中揭示的各种特征可以任意和所有的组合方式使用。
本文所用的方向术语,例如上、下、左、右、前、后、顶、底、内、外,仅仅是参照绘制的附图而言,并不用来表示绝对的取向。
如本文所用术语“基于玻璃的”旨在包括至少部分由玻璃制造的任意材料,包括玻璃、玻璃陶瓷和蓝宝石。“玻璃陶瓷”包括通过玻璃的受控结晶产生的材料。在实施方式中,玻璃陶瓷具有约1%至约99%结晶度。合适的玻璃陶瓷的例子可以包括Li2O-Al2O3-SiO2体系(即,LAS体系)玻璃陶瓷、MgO-Al2O3-SiO2体系(即,MAS体系)玻璃陶瓷、ZnO-Al2O3-nSiO2(即,ZAS体系)和/或包括具有β-石英固溶体、β-锂辉石、堇青石和二硅酸锂的主晶相的玻璃陶瓷。可以采用本文所揭示的化学强化工艺对玻璃陶瓷基材进行强化。在一个或多个实施方式中,MAS体系玻璃陶瓷基材可以在Li2SO4熔盐中进行强化,从而可以发生2Li+被Mg2+交换。除非另外说明,否则所有组成表示为摩尔百分数(摩尔%)。
如本文所用,术语“约”表示量、尺寸、制剂、参数和其他变量和特性不是也不需要是确切的,而是可以按照需要是近似的和/或更大或更小的,反映了容差、转换因子、舍入和测量误差等,以及本领域技术人员已知的其他因素。当使用术语“约”来描述范围的值或端点时,应理解本公开内容包括所参考的具体值或者端点。无论本说明书的数值或者范围的端点有没有陈述“约”,该数值或者范围的端点旨在包括两种实施方式:一种用“约”修饰,一种没有用“约”修饰。还会理解的是,每个范围的端点在与另一个端点有关及独立于另一个端点时都是重要的。
本文所用术语“基本”、“基本上”及其变化形式旨在表示所描述的特征与数值或描述相等同或近似相同。例如,“基本平面”表面旨在表示平面或近似平面的表面。此外,“基本上”旨在表示两个值是相等或者近似相等的。在一些实施方式中,“基本上”可以表示数值相互相差在约为10%之内,例如相互相差在约为5%之内,或者相互相差在约为2%之内。
除非另有说明,否则所有温度都表述为摄氏度(°C)。
至于附图,大致来说,应理解图示说明是为了描述具体实施方式,这些图示说明不构成对本公开内容或所附权利要求的限制。为了清楚和简明起见,附图不一定按比例绘制,附图的某些特征和某些视图可能按比例放大显示或以示意图方式显示。
如本文所用,术语“化学深度”、“化学层的深度”和“化学层深度”可以互换使用,并且指的是金属氧化物或者碱金属氧化物的离子(例如,金属离子或者碱金属离子)扩散进入到基于玻璃的制品中的深度,并且在该深度,离子的浓度到达最小值,这是通过电子探针微分析(EPMA)或辉光放电-光学发射光谱(GD-OES)确定的。具体来说,可以采用EPMA和表面应力计来确定Na2O扩散的深度或者Na+离子浓度(下文更详细描述)。
除非另有说明,否则压缩表述为负(<0)应力,而张力表述为正(>0)应力。但是,在本说明书全文中,除非另有说明,否则CS表示为正值或者绝对值,即,本文所陈述的CS = ½CS½。
本文描述的薄的基于化学强化玻璃的制品包括玻璃,例如硅酸盐玻璃(包括含碱性玻璃)和玻璃陶瓷,其可用作移动电子装置和可触摸显示器的覆盖玻璃。基于玻璃的制品还可以用于显示器(或者作为显示器制品)(例如广告牌、销售点系统、计算机、导航系统、手表和手机等),建筑制品(墙壁、固定装置、面板、窗户等),运输制品(例如,汽车应用、火车、飞机、航海器等),电器(例如,洗衣机、烘干机、洗碗机、冰箱等),或者会受益于一定抗破碎性的任何制品。
具体来说,本文所述的基于玻璃的制品是薄的并且展现出通常通过基于厚玻璃的基材(即,厚度约3 mm或更大)的热回火所能够实现的应力分布。基于玻璃的制品沿其厚度展现出独特的应力分布。在一些情况下,本文所述的基于玻璃的制品展现出的表面CS大于基于回火玻璃的制品。在一个或多个实施方式中,相比于已知的基于化学强化玻璃的制品,所述基于玻璃的制品的压缩应力层延伸更深入到基于玻璃的制品中(其中,CS的减小和增加更为逐步),此类基于玻璃的制品展现出明显改善的抗破碎性,甚至当基于玻璃的制品或者包含其的装置跌落到硬表面(例如,花岗岩)上或者硬且粗糙表面(例如,沥青)上的时候仍然如此。一个或多个实施方式的基于玻璃的制品展现出的最大中心张力(CT)值大于一些已知的基于化学强化玻璃的制品。此外,根据一个或多个实施方式,基于玻璃的制品(包括基于玻璃的基材和作为用于移动电子装置的覆盖玻璃的基于玻璃的基材)展现出稳定的裂纹生长,这是相对于现有玻璃而言。
通过表面应力计(FSM),采用日本折原实业有限公司(Orihara Industrial Co.,Ltd. (Japan))制造的商业仪器如FSM-6000,来测量压缩应力(包括表面CS)。表面应力测量依赖于应力光学系数(SOC)的精确测量,其与玻璃的双折射相关。进而根据ASTM标准C770-16中所述的方案C(玻璃碟的方法)来测量SOC,题为“Standard Test Method forMeasurement of Glass Stress-Optical Coefficient(测量玻璃应力-光学系数的标准测试方法)”,其全文通过引用结合入本文。
可以使用折射近场(RNF)方法或者散射光偏振(SCALP)来测量应力分布。当采用RNF方法来测量应力分布时,在RNF方法中采用SCALP提供的最大CT值。具体来说,通过RNF测得的应力分布是作用力平衡的,并且用SCALP测量提供的最大CT值进行校准。RNF方法如题为“Systems and methods for measuring a profile characteristic of a glasssample(用于测量玻璃样品的分布特性的系统和方法)”的美国专利第8,854,623号所述,其全文通过引用结合入本文。具体来说,RNF方法包括将玻璃制品靠近参照块放置,产生偏振切换光束(其以1 Hz至50 Hz的速率在正交偏振之间切换),测量偏振切换光束中的功率量,以及产生偏振切换参比信号,其中,每个正交偏振中测得的功率量是在相互50%之内。方法还包括使偏振切换光束穿过玻璃样品和参照块,进入玻璃样品不同深度,然后采用延迟光学系统来延迟穿过的偏振切换光束到达信号光检测器,所述信号光检测器产生偏振切换的检测器信号。方法还包括:用参比信号除检测器信号以形成标准化检测器信号,以及从标准化检测器信号来确定玻璃样品的分布特性。
采用SCALP测量最大CT值。如本文所用,压缩深度(DOC)表示本文所述的化学强化的碱性铝硅酸盐玻璃制品中的应力从压缩变化至拉伸的深度。取决于离子交换处理,可以通过FSM或SCALP测量DOC。当通过将钾离子交换进入玻璃制品,在玻璃制品中产生应力时,使用FSM来测量DOC。当通过将钠离子交换进入玻璃制品,在玻璃制品中产生应力时,使用SCALP来测量DOC。当通过将钾离子和钠离子这两者交换进入玻璃中,在玻璃制品中产生应力时,通过SCALP测量DOC,因为相信钠的交换深度表示了DOC,以及钾离子的交换深度表示了压缩应力的大小的变化(而不是应力从压缩变化至拉伸);在此类玻璃制品中,钾离子的交换深度通过FSM测量。
如上文所述,本文所述的基于玻璃的制品通过离子交换进行化学强化,并且展现出的应力分布不同于已知的基于强化玻璃的制品所展现出的那些。在本公开内容中,基于玻璃的基材通常是未经强化的,而基于玻璃的制品通常指的是(例如通过离子交换)经过强化的基于玻璃的基材。在这个过程中,用具有相同价态或氧化态的较大离子代替或交换基于玻璃的制品的表面处或者靠近表面处的离子。在基于玻璃的制品包括碱性铝硅酸盐玻璃的那些实施方式中,玻璃的表面层中的离子以及较大离子是一价的碱金属阳离子,例如Li+(当存在于玻璃基制品中的时候)、Na+、K+、Rb+、和Cs+
离子交换工艺通常是通过将基于玻璃的基材浸入熔盐浴中(或者两个或更多个熔盐浴中)来进行的,所述熔盐浴包含要与基于玻璃的基材中的较小离子进行交换的较大离子。应注意的是,也可以使用水性盐浴。此外,根据一个或多个实施方式,浴组成包括不止一种类型的较大离子(例如,Na+和K+)。本领域技术人员会理解的是,离子交换工艺的参数包括但不限于浴组成和温度、浸入时间、玻璃基制品在盐浴(或多个盐浴)中的浸入次数、多盐浴的使用、其它的步骤(例如退火和洗涤等),它们通常是由以下的因素决定的:玻璃基制品的组成(包括制品的结构和存在的任意晶相),以及由强化获得的玻璃基制品所需的DOC和CS。例如,基于玻璃的制品的离子交换可以通过以下方式实现:将基于玻璃的制品浸泡在至少一种包含盐的熔浴中,所述盐是例如但不限于较大碱金属离子的硝酸盐、硫酸盐和氯化物。典型的硝酸盐包括KNO3、NaNO3、LiNO3,及其组合。熔盐浴的温度通常是约350ºC至最高至约480ºC,而浸入时间是约15分钟至最高至100小时,这取决于玻璃厚度、浴温和玻璃(或单价离子)扩散系数。但是,也可以采用与上述不同的温度和浸没时间。
在一个或多个实施方式中,基于玻璃的基材可以浸入温度是约350°C至约480°C的100% NaNO3或100% KNO3的熔盐浴中,持续时间是约15分钟至最高至约100小时,这取决于玻璃厚度、浴温度和玻璃(或单价离子)的扩散系数。在本公开内容所述的熔浴中,所有百分比都是重量%。在一些实施方式中,基于玻璃的基材可以浸入混合熔盐浴中,其具有约350°C至约480°C的温度并且包含约5%至约90% KNO3和约10%至约95% NaNO3,持续时间是约15分钟至最高至约100小时,这取决于玻璃厚度、浴温度和玻璃(或单价离子)的扩散系数。
可以调节离子交换条件从而在基于玻璃的制品中提供峰丘区域。由于本文所述的基于玻璃的制品中所用的玻璃组合物的独特性质,可以通过单浴或多浴实现这种峰丘区域,浴具有单种组成或者混合组成。
如图3所示,根据一个或多个实施方式的基于玻璃的制品300包括第一表面302和与第一表面相对的第二表面304,它们限定了厚度t。在一个或多个实施方式中,厚度t可以是约3毫米或更小(例如,如下范围:约0.01毫米至约3毫米,约0.1毫米至约3毫米,约0.2毫米至约3毫米,约0.3毫米至约3毫米,约0.4毫米至约3毫米,约0.01毫米至约2.5毫米,约0.01毫米至约2毫米,约0.01毫米至约1.5毫米,约0.01毫米至约1毫米,约0.01毫米至约0.9毫米,约0.01毫米至约0.8毫米,约0.01毫米至约0.7毫米,约0.01毫米至约0.6毫米,约0.01毫米至约0.5毫米,约0.1毫米至约0.5毫米,或者约0.3毫米至约0.5毫米)。图3显示厚度t是0.8毫米的一些实施方式。
在图3中,基于玻璃的制品300包括从第一表面302延伸到第二表面304(或者沿着整个厚度t的尺度延伸)的应力分布301,中心在第一表面与第二表面之间(在0.5t处,且通常对应于最大CT点320)。在图3中,拉伸应力显示为负数,而压缩应力显示为正数。在如图3所示的实施方式中,显示了通过SCALP或RNF测得的本文所述的应力分布301。y轴表示应力值,而x轴表示基于玻璃的制品内的厚度或深度。此外,应力分布301包括:表面应力310,峰丘应力区域315,峰点317,应力减小区域316,应力分布301从压缩转变为拉伸的DOC 330,拉伸应力区域325,以及最大拉伸应力320。在所示的实施方式中,表面应力310是表面CS。在一个或多个实施方式中,表面应力310可以是拉伸应力。如图3所示,表面302处的CS是约100MPa。在一个或多个实施方式中,可能在第一表面302处具有拉伸应力,且值为-200 MPa至小于0 MPa。但是,在如图3所示的实施方式中,在第一表面处的压缩应力是大于0 MPa至500MPa,或者大于0 MPa至750 MPa。CT层325也具有相关深度或长度327(沿着厚度),其定义了CT区域或层。出于简化目的,将对一侧(如图3所示的左侧)进行详细解释,要理解的是,另一侧(如图3所示的右侧)可以与所解释的那个相同、相似或者不同。对于附图的一半的CT层325对应于DOC 330与最大CT 320之间的距离,而对于整个应力分布(如这个附图所示),CT层325包括从一侧上的DOC 330到另一侧上的DOC 330的整个距离327。DOC可以是0.1t至0.25t。基于玻璃的制品的厚度是0.01 mm至3 mm。
峰丘应力区域315从第一表面302(或者低于第一表面302的点)延伸到峰点317。在一些实施方式中,峰点317在0.001t至0.1t的范围内。在具体实施方式中,峰点是0.003t至0.03t。如本文所用,“峰点”指的是峰丘应力区域的顶部或者最高部分,并且可以是局部最大值(在一些实施方式中,其可以高于表面CS并且因此是整体最大CS,以及在其他实施方式中,其可以小于表面CS并且不是整体最大值)。如图3所示,在一个或多个实施方式中,峰丘应力区域315中的压缩应力从第一表面302(或者低于第一表面302的点)到峰点317是增加的。类似地,对于第二表面304,第二峰丘应力区域315从第二表面304(或者低于第二表面304的点)延伸到0.999t至0.9t的范围内的峰点317。在具体实施方式中,峰点是0.997t至0.97t。峰点317的CS是25 MPa至500 MPa(或者25 MPa至500 MPa)。在一个或多个实施方式中,峰点处的CS会高于表面应力。在具体实施方式中,峰点317处的CS是100 MPa至300 MPa。在具体实施方式中,峰点317具有如下压缩应力:25 MPa至750 MPa,或者25 MPa至700 MPa,或者25 MPa至650 MPa,或者25 MPa至600 MPa,或者25 MPa至550 MPa,或者25 MPa至575MPa,25 MPa至450 MPa,25 MPa至400 MPa,25 MPa至350 MPa,25 MPa至300 MPa,25 MPa至250 MPa,25 MPa至200 MPa,25 MPa至150 MPa,25 MPa至100 MPa,25 MPa至50 MPa,50 MPa至450 MPa,50 MPa至400 MPa,50 MPa至350 MPa,50 MPa至300 MPa,50 MPa至250 MPa,50MPa至200 MPa,50 MPa至150 MPa,50 MPa至100 MPa,100 MPa至450 MPa,100 MPa至400MPa,100 MPa至350 MPa,100 MPa至300 MPa,100 MPa至250 MPa,100 MPa至200 MPa,100MPa至150 MPa,150 MPa至750 MPa,150 MPa至700 MPa,150 MPa至650 MPa,150 MPa至600MPa,150 MPa至550 MPa,150 MPa至500 MPa,150 MPa至450 MPa,150 MPa至400 MPa,150MPa至350 MPa,150 MPa至300 MPa,150 MPa至250 MPa,150 MPa至200 MPa,200 MPa至750MPa,200 MPa至700 MPa,200 MPa至650 MPa,600 MPa至550 MPa,200 MPa至500 MPa,200MPa至450 MPa,200 MPa至400 MPa,200 MPa至350 MPa,200 MPa至300 MPa,或者200 MPa至250 MPa。
在一些实施方式中,峰丘应力区域315的所有点包括斜率值是25 MPa/微米至500MPa/微米的正切。在一些实施方式中,峰丘应力区域315的至少一个点包括斜率值是25MPa/微米至500 MPa/微米的正切。如本文所述,当应力分布描述为具有“斜率值为……的正切”时,应理解的是,代表了应力分布的数学式或者曲线沿着曲率在一个或多个点处包含此类正切。在其他实施方式中,峰丘应力区域315不含或者基本不含平坦段。
在一些实施方式中,峰丘应力区域315包括在第一表面302与峰点317之间延伸的应力增加的区域312。在一些实施方式中,应力增加区域312中的应力分布的至少一个点包括斜率值是20 MPa/微米至200 MPa/微米的正切。在一些实施方式中,应力增加区域312的所有点包括斜率值是20 MPa/微米至200 MPa/微米的正切。在其他实施方式中,应力增加区域312不含平坦段。在一个或多个实施方式中,峰丘应力区域315埋入第一表面302的下方,也就是说,峰丘应力区域315从低于第一表面302的位置沿着基材的厚度方向延伸,并且是朝向厚度的中心延伸。在一些实施方式中,第二峰丘区域以类似的方式埋入第二表面304的下方。
应力减小区域316在峰点317与DOC之间延伸。在一些实施方式中,应力减小区域316的所有点包括斜率值是-20 MPa/微米至-200 MPa/微米的正切。在一些实施方式中,应力减小区域316的至少一个点包括斜率值是-20 MPa/微米至-200 MPa/微米的正切。在其他实施方式中,应力减小区域316不含或者基本不含平坦段。
在一个或多个实施方式中,应力分布在峰点317与中心(最大CT 320处的点)之间的所有点是具有幂指数的幂律分布的形式,其中,幂指数是约1.2至3.4。在一些实施方式中,应力分布在峰点317与中心之间的所有点形成幂律函数,其中,幂指数是约1.3至约2.8。如本文所用,“幂律函数”指的是应力相对于深度或厚度呈指数比例的曲线。
可以通过两步骤离子交换工艺实现图3所示的应力分布。本文所述且如图3所示例的应力分布在低于第一表面302和第二表面304的分布的深区域处提供了非常高的应力。在一个或多个实施方式中,可以通过玻璃内的多种离子的扩散强化此类应力分布。含有LiO2的基于玻璃的基材允许钾(K)、钠(Na)和锂(Li)同时交换(例如,盐浴中的钠与基于玻璃的基材中的锂发生交换进入到基于玻璃的基材中,并且同时盐浴中的钾与钠(初始在基于玻璃的基材中或者与基于玻璃的基材中的锂交换从而进入到基于玻璃的基材中)发生交换进入到基于玻璃的基材中),以及所产生的独特的应力分布会是难以以合理的离子交换时间通过基于钠玻璃的基材中的单次钾离子交换得到的。根据一个或多个实施方式中,三种离子同时进行离子交换提供了制造得到具有独特应力分布的基于离子交换玻璃的制品。
在一个或多个实施方式中,相比于现有的基于离子交换玻璃的制品,可以产生在深度处更高的压缩应力。因此,可以提供具有如下应力分布的基于玻璃的制品,其中,在基于玻璃的基材的表面处的应力低于内部,其中,峰丘应力区域可以具有应力高于表面的峰点。或者,表面处的应力可以高于峰丘应力区域的峰点处,以及在一些实施方式中,这可以通过额外的离子交换步骤实现。在一个或多个实施方式中,可以在基于玻璃的制品的第一表面或第二表面中的一个或两个上沉积耐划痕膜/涂层。在包含此类耐划痕涂层的实施方式中,基于玻璃的基材的表面处的高应力对于避免划痕不是必需的。在一个或多个实施方式中,在低于第一表面的深度处的峰丘应力区域可以用来提供改善的掉落性能或者其他所需属性。根据一个或多个实施方式,本文所提供的独特的应力分布可以提供相比于现有的基于玻璃的制品而言改善的划痕行为。
现参见图4,显示了所具有的应力分布401具有类似于图3所示的应力分布的区域的基于玻璃的基材400的一些实施方式。但是,在如图4所示的基于玻璃的基材的应力分布中,在表面处具有较高的表面应力区域。根据一个或多个实施方式的基于玻璃的制品400包括第一表面402和与第一表面相对的第二表面404,它们限定了厚度t,在第一表面与第二表面之间具有中心(在0.5t处,大致对应于最大CT的点420)。
在图4中,基于玻璃的制品400包括应力分布401,其从第一表面402延伸到第二表面404(或者沿着整个厚度t的尺度延伸)。在图4中,显示了通过SCALP或RNF测得的应力分布401,如本文所述。y轴表示应力值,而x轴表示基于玻璃的制品内的厚度或深度。在这个例子中,厚度(t)是800微米(微米,μm)。
如图4所示,应力分布401包括CS层414和CT区域425(具有最大CT 420),以及应力分布401从压缩转变为拉伸的DOC 430。CS层414包括:表面应力区域413(或尖峰区域),过渡421,峰丘应力区域415,峰点417,以及应力减小区域416。CT层425具有相关深度或长度427(沿着厚度),其定义了CT区域或层。出于简化目的,将对一侧(如图4所示的左侧)进行详细解释,要理解的是,另一侧(如图4所示的右侧)可以与所解释的那个相同、相似或者不同。对于附图的一半的CT层425对应于DOC 430与最大CT 420之间的距离,而对于整个应力分布(如这个附图所示),CT层425包括从一侧上的DOC 430到另一侧上的DOC 430的整个距离427。
第一表面402处的应力可以是0至1500 MPa。在一个或多个实施方式中,第一表面402处的表面应力是:约150 MPa至1500 MPa,或者约200 MPa至约1500 MPa,或者约300 MPa至约1500,或者约400 MPa至约1500,或者约500 MPa至约1500 MPa,或者约600 MPa至约1500 MPa。任意前述范围的最大表面应力可以是800 MPa、900 MPa、1000 MPa、1100 MPa、或者1200 MPa。在一个或多个实施方式中,第一表面处的压缩应力是650 MPa至1100 MPa。在图4中,表面402处的CS是约1000 MPa。
表面应力区域413在第一表面402与过渡421之间延伸。表面应力区域413所具有的压缩应力的大小从第一表面402的表面应力区域最大值419移动到表面应力区域最小值,这提供了过渡421。在一些实施方式中,表面应力区域413的所有点包括斜率值是-25 MPa/微米至-200 MPa/微米的正切。在具体实施方式中,表面应力区域413的所有点包括斜率值是-30 MPa/微米至-170 MPa/微米的正切,以及在更具体实施方式中,是-35 MPa/微米至-140MPa/微米的正切。在一些实施方式中,表面应力区域413中的应力分布的至少一个点包括斜率值是-25 MPa/微米至-200 MPa/微米的正切。在具体实施方式中,表面应力区域413中的应力分布的至少一个点包括斜率值是-30 MPa/微米至-170 MPa/微米的正切,以及在更具体实施方式中,是-35 MPa/微米至-140 MPa/微米的正切。在一些实施方式中,表面应力区域413不含或者基本不含平坦段。表面应力区域413也可以被称作尖峰区域。
峰丘应力区域415包括应力增加区域412。应力增加区域412在过渡421与峰点417之间延伸,使得应力增加区域412的所有点或者至少一个点包括斜率值是20 MPa/微米至200 MPa/微米的正切。在一个或多个实施方式中,峰丘应力区域415埋入第一表面402的下方。在一些实施方式中,第二峰丘区域415以类似的方式埋入第二表面404的下方。在一些实施方式中,应力增加区域412的所有点包括斜率值是20 MPa/微米至200 MPa/微米的正切。在一些实施方式中,应力增加区域412中的应力分布的至少一个点包括斜率值是20 MPa/微米至200 MPa/微米的正切。在一些实施方式中,应力增加区域412不包含任何平坦段。
峰点417可以在0.001t至0.1t的范围内。在具体实施方式中,峰点417是0.003t至0.03t。类似地,对于第二表面404,在一些实施方式中,第二峰丘应力区域415从第二表面404处的点(或者低于第二表面404的点)延伸到0.999t至0.9t的范围内的峰点417。在具体实施方式中,峰点是0.997t至0.97t。峰点417在峰点处的CS是25 MPa至500 MPa(或者25MPa至750 MPa)。在一个或多个实施方式中,峰点处的CS会低于表面应力。在具体实施方式中,峰点417处的CS是100 MPa至300 MPa。在具体实施方式中,峰点417具有如下CS:25 MPa至750 MPa,25 MPa至700 MPa,25 MPa至650 MPa,25 MPa至600 MPa,25 MPa至550 MPa,25MPa至500 MPa,25 MPa至450 MPa,25 MPa至400 MPa,25 MPa至350 MPa,25 MPa至300 MPa,25 MPa至250 MPa,25 MPa至200 MPa,25 MPa至150 MPa,25 MPa至100 MPa,25 MPa至50MPa,50 MPa至450 MPa,50 MPa至400 MPa,50 MPa至350 MPa,50 MPa至300 MPa,50 MPa至250 MPa,50 MPa至200 MPa,50 MPa至150 MPa,50 MPa至100 MPa,100 MPa至450 MPa,100MPa至400 MPa,100 MPa至350 MPa,100 MPa至300 MPa,100 MPa至250 MPa,100 MPa至200MPa,100 MPa至150 MPa,150 MPa至750 MPa,150 MPa至700 MPa,150 MPa至650 MPa,150MPa至600 MPa,150 MPa至550 MPa,150 MPa至500 MPa,150 MPa至450 MPa,150 MPa至400MPa,150 MPa至350 MPa,150 MPa至300 MPa,150 MPa至250 MPa,150 MPa至200 MPa,200MPa至750 MPa,200 MPa至700 MPa,200 MPa至650 MPa,200 MPa至600 MPa,200 MPa至550MPa,200 MPa至500 MPa,200 MPa至450 MPa,200 MPa至400 MPa,200 MPa至350 MPa,200MPa至300 MPa,或者200 MPa至250 MPa。
如图4所示,表面应力区域413和峰丘应力区域415实现了应力分布在增加到峰点417之前从表面朝向中心发生下降。
应力减小区域416在峰点417与DOC 430之间延伸。在一些实施方式中,应力减小区域416的所有点包括斜率值是-20 MPa/微米至-200 MPa/微米的正切。在一些实施方式中,应力减小区域416中的应力分布的至少一个点包括斜率值是-20 MPa/微米至-200 MPa/微米的正切。在一些实施方式中,应力减小区域416不含或者基本不含平坦段。DOC是0.1t至0.25t,以及拉伸应力区域425从DOC 430延伸到最大拉伸应力420。
在一个或多个实施方式中,应力分布在峰点417与中心之间的所有点是具有幂指数的幂律函数的形式,其中,幂指数是约1.2至约3.4。在一些实施方式中,应力分布在峰点417与中心之间的所有点形成幂律函数,其中,幂指数是约1.3至约2.8。如本文所用,“幂律函数”指的是应力相对于深度或厚度呈指数比例的曲线。
在一个或多个实施方式中,基于玻璃的制品和/或基于玻璃的基材中存在的Li2O范围是0.1摩尔%至20摩尔%,以及在更具体的实施方式中,是0.1摩尔%至10摩尔%。在一个或多个实施方式中,基于玻璃的制品和/或基于玻璃的基材中存在的P2O5的范围是0.1摩尔%至10摩尔%。在一个或多个实施方式中,基于玻璃的制品和/或基于玻璃的基材不含K2O。
根据一个或多个实施方式,采用三步骤离子交换工艺制造具有如图4所示的分布401的基于玻璃的制品。
可以通过两步骤离子交换工艺或者三步骤离子交换工艺制造本文所述的基于玻璃的制品,并且相比于通过单步骤离子交换工艺制造的基于玻璃的制品展现出改进的裂纹生长稳定性。本文所述的基于玻璃的制品还可以在第一表面和第二表面中的一个或两个上包含涂层,例如,耐划痕涂层。
在一个或多个实施方式中,基于玻璃的制品包括应力分布,其不含或者基本不含以深度方向或者沿着基于玻璃的制品的至少一部分厚度t延伸的任何平坦段。换言之,应力分布沿着厚度t明显连续增加或减小。在一些实施方式中,应力分布在长度约10微米或更长、约50微米或更长、或者约100微米或更长、或者约200微米或更长的深度方向不含或者基本不含任何平坦段。如本文所用,术语“平坦”指的是沿着该段的斜率大小小于约5 MPa/微米,或者小于约2 MPa/微米,或者小于约1 MPa/微米,或者小于0.5 MPa/微米,或者小于0.3MPa/微米,或者小于0.2 MPa/微米,或者小于0.1 MPa/微米,最低至且包括零斜率。在一些实施方式中,在深度方向上不含或者基本不含任何平坦段的应力分布的一个或多个部分存在于基于玻璃的制品内距离第一表面或第二表面中的一个或两个约5微米或更大的深度处(例如,10微米或更大或者15微米或更大)。例如,沿着距离第一表面约0微米至小于约5微米的深度,应力分布可以包括平坦段,但是从距离第一表面约5微米或更大的深度开始,应力分布可以不含或者基本不含平坦段。
在一些实施方式中,可以通过热处理改变应力分布。在此类实施方式中,可以在任意离子交换过程之前、在离子交换过程之间、或者在所有的离子交换过程之后进行热处理。在一些实施方式中,热处理可以降低表面处或者靠近表面处的应力分布的斜率。在一些实施方式中,当在表面处需要更为陡峭或者更大斜率时,可以采用热处理之后的离子交换过程,从而提供“尖峰”或者从而增加表面处或者靠近表面处的应力分布的斜率。
在一个或多个实施方式中,应力分布是由于沿着一部分的厚度变化的金属氧化物的非零浓度产生的。如上文所述,金属氧化物浓度的变化可以在本文中被称为金属氧化物浓度梯度。
金属氧化物的浓度可以包括不止一种金属氧化物(例如,Na2O和K2O的组合)。在一些实施方式中,当采用两种金属氧化物以及当离子半径相互不同时,在浅深度处,具有较大半径的离子的浓度大于具有较小半径的离子的浓度,而在较深深度处,具有较小半径的离子的浓度大于具有较大半径的离子的浓度。例如,当在离子交换过程中使用含有Na和K的单个浴时,在较浅深度处,玻璃基制品中的K+离子的浓度大于Na+离子的浓度,而在较深深度处,Na+离子的浓度大于K+离子的浓度。这部分是由于与较小单价离子发生交换进入到玻璃中的单价离子的尺寸所导致的。在此类基于玻璃的制品中,由于表面处或者靠近表面处的更大量的较大离子(例如,K+离子),表面处的区域或者靠近表面处的区域包括较大的CS。在表面处或者靠近表面处具有更陡峭斜率的应力分布(例如,表面处的应力分布中的尖峰)可以展现出这种较大的CS。
如上文所述,通过对基于玻璃的基材进行化学强化,产生一种或多种金属氧化物的浓度梯度或变化,其中,基于玻璃的基材中的多种第一金属离子与多种第二金属离子发生交换。第一离子可以是锂、钠、钾和铷的离子。第二金属离子可以是钠、钾、铷和铯中的一种的离子,前提是第二碱金属离子的离子半径大于第一碱金属离子的离子半径。第二金属离子在基于玻璃的基材中作为其氧化物存在(例如,Na2O、K2O、Rb2O、Cs2O,或其组合)。
在一个或多个实施方式中,金属氧化物浓度梯度延伸通过基于玻璃的制品的大部分厚度t或者整个厚度t,包括CT层。在一个或多个实施方式中,金属氧化物的浓度在CT层中是约0.5摩尔%或更大。在一些实施方式中,金属氧化物的浓度可以沿着基于玻璃的制品的整个厚度是约0.5摩尔%或更大(例如,约1摩尔%或更大),并且在第一表面和/或第二表面处最大,以及基本恒定地降低至第一表面与第二表面之间的一点的值。在该点,金属氧化物的浓度是沿着整个厚度t最小的;但是,浓度在该点也是非零的。换言之,该特定金属氧化物的非零浓度沿着大部分的厚度t(如本文所述)或者沿着整个厚度t延伸。在一些实施方式中,特定金属氧化物中的最低浓度在CT层中。基于玻璃的制品中的特定金属氧化物的总浓度可以是约1摩尔%至约20摩尔%。
在一个或多个实施方式中,基于玻璃的制品包括第一金属氧化物浓度和第二金属氧化物浓度,使得沿着约0t至约0.5t的第一厚度范围的第一金属氧化物浓度是约0摩尔%至约15摩尔%,以及从约0微米至约25微米(或者约0微米至约12微米,或者约2微米至约25微米,或者约2微米至约22微米,或者约2微米至约20微米,或者约2微米至约19微米,或者约2微米至约18微米,或者约2微米至约17微米,或者约2微米至约16微米,或者约2微米至约15微米,或者约2微米至约14微米,或者约2微米至约12微米,或者约4微米至约22微米,或者约5微米至约20微米,或者约5微米至约18微米,或者约5微米至约16微米,或者约5微米至约14微米,或者约5微米至约12微米,或者约7微米至约12微米,或者约7微米至约14微米,或者约7微米至约15微米,或者约7微米至约16微米,或者约7微米至约17微米,或者约7微米至约18微米,或者约7微米至约19微米)的第二厚度范围的第二金属氧化物浓度是约0摩尔%至约10摩尔%;但是,沿着基于玻璃的制品的大部分的厚度或者整个厚度,第一金属氧化物和第二金属氧化物中的一个或两个的浓度是非零的。基于玻璃的制品可以包括任选的第三金属氧化物浓度。第一金属氧化物可以包括Na2O,而第二金属氧化物可以包括K2O。可以通过在改性以包含此类金属氧化物浓度梯度之前的基于玻璃的基材中的该金属氧化物的基线量,来确定金属氧化物的浓度。
在一些实施方式中,基于玻璃的基材包括高液相线粘度,这实现了通过下拉技术(例如,熔合拉制、狭缝拉制以及其他类似方法)形成基于玻璃的基材,这可以提供高精度的表面光滑度。如本文所用,术语“液相线粘度”指的是熔融玻璃在液相线温度的粘度,其中,术语“液相线温度”指的是如下温度:随着熔融玻璃从熔化温度开始冷却,晶体第一次出现的温度,或者随着温度从室温开始增加,最后一点晶体熔化时的温度。通常来说,用于制造本文所述的基于玻璃的基材(或制品)的玻璃的液相线粘度是约100千泊(kP)或更大。在对于可下拉加工性而言希望更高液相线粘度的场景中,用于制造基于玻璃的基材(或者制品)的玻璃展现出约200 kP或更大的液相线粘度(例如,约300 kP或更大、或者约400 kP或更大、或者约500 kP或更大、或者约600 kP或更大)。通过如下方法确定液相线粘度。首先根据ASTM C829-81 (2015)来测量玻璃的液相线温度,题为“Standard Practice forMeasurement of Liquidus Temperature of Glass by the Gradient Furnace Method(通过梯度炉方法测量玻璃的液相线温度的标准实践)”。接着,根据ASTM C965-96 (2012)来测量玻璃在液相线温度的粘度,题为“Standard Practice for Measuring Viscosityof Glass Above the Softening Point(测量高于软化点的玻璃粘度的标准实践)”。
在一些情况下,相比于如果相同的基于玻璃的制品不包含根据本文所述概念的压缩应力分布的情况,当其包含根据本文所述概念的压缩应力分布时,基于玻璃的制品展现出改进的掉落破碎性能。通过掉落测试评估破碎性能,如本文所述。
对于掉落测试,使用经过碳化硅或氧化铝工程加工的砂纸的磨料表面,30目或180目。在一些掉落测试的版本中,使用30目的砂纸,因为其表面形貌相比混凝土或沥青而言更一致,并且粒度和锐度产生所需的试样表面破坏水平。如本文所用,术语“破碎”指的是当基材掉落或者受到物体撞击时,裂纹扩展穿过基材的整个厚度和/或整个表面。
为了进行掉落测试,将基于玻璃的制品翻新为i-phone® 3G作为覆盖玻璃。然后,手机以面掉落的方式(即,覆盖玻璃面朝下)落到面朝上的磨料表面上(规定为180目砂纸或者30目砂纸)。砂纸支撑在标准铝测试工作台上。首先从20 cm高度使得手机掉落。如果基于玻璃的制品没有破碎,则再次也相似的方式使得手机从高了10 cm(或者30 cm)的地方掉落到同样的砂纸上。如果手机再次在先前的掉落高度存活下来,则高度增量10 cm,并且以此直到获得最大掉落高度。最大掉落高度是规定的测试最大值或者基于玻璃的制品由于破碎而失效。如果样品在特定的掉落高度失效,则用黑点表示该掉落高度,并且因此样品经受住了比黑点所示高度小了10 cm的掉落高度。如果样品通过了最大掉落高度,则该情况表示为灰色点。因此,例如参见图5,对于实施例1,四个样品通过220 cm的最大掉落高度,以及在该附图中,对于10个样品存活的平均掉落高度是192 cm。对于每个样品,使用新的砂纸片,并且对于该样品的所有掉落高度,使用同一片砂纸。
图5显示各种样品(实施例1和2以及比较例4-6)的掉落测试结果,使用180目砂纸和220 cm的测试最大高度。图6显示各种样品(实施例1和2以及比较例4-6)的掉落测试结果,使用30目砂纸和220 cm的测试最大高度,其中,每个样品是先前在图5的掉落测试中存活下来的那个,即,它们分别在180目砂纸上的220 cm最大掉落高度存活了下来。在图6中,虽然没有样品在整个的220 cm掉落高度存在下来,但是例如对于实施例1可以说4个样品中的4个(或者100%)在50 cm或更大的最大高度存活了下来。
为了确定当采用上文所述的掉落测试从预定高度掉落时基于玻璃的制品的可存活率,测试了基于玻璃的制品的至少5个同样(或近似相同)样品(即,近似相同组成,以及如果经过强化的话,近似相同的压缩应力以及压缩深度/层深度),但是也可以使得更多数量(例如,10个、20个、30个等)的样品经受测试,以提升测试结果的置信水平。每个样品从逐渐更高的高度掉落,并且如果没有发生破碎的话直到到达预定高度,以及视觉(即,裸眼)检查破碎证据(形成裂纹以及扩展穿过样品的整个厚度和/或整个表面)。如果在从预定高度掉落之后没有观察到破碎,则将样品视为在跌落测试中“存活”,如果当样品从小于或等于预定高度的高度掉落时观察到破碎,则将样品视为“失效”(或者“没有存活”)。将可存活率确定为通过掉落测试的样品数量的百分比。例如,如果一组10个样品中的7个样品在从预定高度跌落时没有发生破碎,则玻璃的可存活率会是70%。
当经受上文所述的掉落测试时,当从规定高度掉落到规定目数的砂纸上的时候,本文所述的基于玻璃的制品的实施方式具有约60%或更高的存活率。例如,当从给定高度掉落时,当从规定高度(此处是100 cm)掉落时,当5个一样(或者近似一样)的样品中的3个(如下文所述)在掉落测试中存活下来而没有发生破碎时,将基于玻璃的制品描述为具有60%的存活率。在其他实施方式中,经过强化的基于玻璃的制品的100 cm掉落测试(180目砂纸)的存活率是约70%或更高,在其他实施方式中,是约80%或更高,以及在其他实施方式中,是约90%或更高。在其他实施方式中,在(30目砂纸)掉落测试中,从50 cm高度掉落的经强化的基于玻璃的制品的存活率是约60%或更高,在其他实施方式中,是约70%或更高,在其他实施方式中,是约80%或更高,以及在其他实施方式中,是约90%或更高。在一个或多个实施方式中,在(180目砂纸)掉落测试中,从225 cm高度跌落的经过强化的基于玻璃的制品的存活率是约50%或更高,在其他实施方式中,是约60%或更高,在其他实施方式中,是约70%或更高,在其他实施方式中,是约80%或更高,以及在其他实施方式中,是约90%或更高。在一些实施方式中,在(180目砂纸)掉落测试中存活下来的经强化的基于玻璃的制品的(至少10个测试样品的)平均掉落高度是约150 cm或更高,在一些实施方式中是约160 cm或更高,在一些实施方式中是约170 cm或更高,在一些实施方式中是约180 cm或更高,在一些实施方式中是约190 cm或更高。在一些实施方式中,在(30目砂纸)掉落测试中存活下来的经强化的基于玻璃的制品的(至少2个测试样品的)平均掉落高度是约40 cm或更高,在一些实施方式中是约50 cm或更高,在一些实施方式中是约60 cm或更高,在一些实施方式中是约70 cm或更高。
本文所述的基于玻璃的制品可以是透明的。在一个或多个基于玻璃的制品中,其厚度可以是约1毫米或更小,并且在约380 nm至约780 nm的波长范围展现出约88%或更大的透射率。在一个或多个实施方式中,当采用180目纸对0.8 mm的基于玻璃的制品在掉落测试中进行测试时,基于玻璃的制品展现出的跌落性能的平均值大于100 cm。
对于阳离子扩散性而言,基材的选择没有特别的限制。在一些例子中,基于玻璃的制品可以描述为具有高的离子交换的阳离子扩散系数。在一个或多个实施方式中,玻璃或者玻璃陶瓷具有快速离子交换能力,例如,在460°C扩散系数大于500 µm2/小时,或者可以表征为大于450 µm2/小时。在一个或多个实施方式中,玻璃或玻璃陶瓷展现出的钠离子扩散系数是在460°C时约450 µm2/小时或更大,或者是在460°C时约500 µm2/小时或更大。在一个或多个实施方式中,玻璃或玻璃陶瓷展现出的钾离子扩散系数是在460°C时约450 µm2/小时或更大,或者是在460°C时约500 µm2/小时或更大。
基于玻璃的制品可以包括无定形基材、晶体基材或其组合(例如,玻璃陶瓷基材)。在一个或多个实施方式中,(如本文所述,在经过化学强化成为基于玻璃的制品之前的)基于玻璃的基材可以包含如下玻璃组成,以摩尔百分比(摩尔%)计,其包含:约40至约80的SiO2,约10至约30的Al2O3,约0至约10的B2O3,约0至约20的R2O,以及约0至约15的RO。如本文所用,R2O指的是碱金属氧化物(例如Li2O、Na2O、K2O、Rb2O、和Cs2O)的总量。如本文所用,RO指的是碱土金属氧化物(例如MgO、CaO、SrO、BaO和ZnO等)的总量。在一些情况下,组合物可以包括以下任意一种或两种:约0摩尔%至约5摩尔%的ZrO2和约0至约15摩尔%的P2O5。可以存在约0摩尔%至约2摩尔%的TiO2
在一些实施方式中,以摩尔%计,玻璃组合物可以包含如下量的SiO2:约45至约80,约45至约75,约45至约70,约45至约65,约45至约60,约45至约65,约45至约65,约50至约70,约55至约70,约60至约70,约60至约72,约68至约75,约70至约75,约70至约72,约50至约65,或者约60至约65。
在一些实施方式中,以摩尔%计,玻璃组合物可以包含如下量的Al2O3:约5至约28,约5至约26,约5至约25,约5至约24,约5至约22,约5至约20,约6至约30,约6至约10,约8至约30,约10至约30,约12至约30,约14至约30,15至约30,约12至约18,约6至约28,约6至约26,约6至约25,约6至约24,约6至约22,约6至约20,约6至约19,约7至约18,约7至约17,约7至约16,约7至约15,约7至约28,约7至约26,约7至约25,约7至约24,约7至约22,约7至约20,约7至约19,约7至约18,约7至约17,约7至约16,约7至约15, 约8至约28,约8至约26,约8至约25,约8至约24,约8至约22,约8至约20,约8至约19,约8至约18,约8至约17,约8至约16,约8至约15,约9至约28,约9至约26,约9至约25,约9至约24,约9至约22,约9至约20,约9至约19,约9至约18,约9至约17,约9至约16,约9至约15; 约10至约28,约10至约26,约10至约25,约10至约24,约10至约22,约10至约20,约10至约19,约10至约18,约10至约17,约10至约16,约10至约15,约11至约28,约11至约26,约11至约25,约11至约24,约11至约22,约11至约20,约11至约19,约11至约18,约11至约17,约11至约16,约11至约15,约12至约28,约12至约26,约12至约25,约12至约24,约12至约22,约12至约20,约12至约19,约12至约18,约12至约17,约12至约16,约12至约15。
在一个或多个实施方式中,以摩尔%计,玻璃组合物可以包含如下量的B2O3:约0至约8,约0至约6,约0至约4,约0.1至约10,约0.1至约8,约0.1至约6,约0.1至约4,约0.5至约5,约1至约10,约2至约10,约4至约10,约2至约8,约0.1至约5,或者约1至约3。在一些情况下,玻璃组合物可以不含或者基本不含B2O3。如本文所用,相对于组合物组分的术语“基本不含”或者“不含”指的是在初始配料中,没有主动或者故意将该组分添加到组合物,但是可能作为杂质以小于约0.001摩尔%的量存在。
在一些实施方式中,玻璃组合物可以包含一种或多种碱土金属氧化物,例如MgO、CaO和ZnO。在一些实施方式中,所述一种或多种碱土金属氧化物的总量可以是非零量到最高至约15摩尔%。在一个或多个具体实施方式中,任意碱土金属氧化物的总量可以是非零量到最高至约14摩尔%,最高至约12摩尔%,最高至约10摩尔%,最高至约8摩尔%,最高至约6摩尔%,最高至约4摩尔%,最高至约2摩尔%,或者最高至约1.5摩尔%。在一些实施方式中,以摩尔%计,所述一种或多种碱土金属氧化物的总量可以是约0.01至10、约0.01至8、约0.01至6、约0.01至5、约0.05至10、约0.05至2、或者约0.05至1。MgO的量可以是约0摩尔%至约5摩尔%(例如,约0.001至约1、约0.01至约2、或者约2至约4、约1至约4)。CaO的量可以是约0摩尔%至约5摩尔%(例如,约0.001至约1、约0.01至约2、或者约2至约4、约1至约4)。ZnO的量可以是约0至约3摩尔%、约0至约2摩尔%(例如约1摩尔%至约2摩尔%)。CaO的量可以是约0摩尔%至约2摩尔%(例如约1至约2)。在一个或多个实施方式中,玻璃组合物可以包含MgO,并且可以不含或者基本不含CaO和ZnO。在一个变化形式中,玻璃组合物可以包含CaO或ZnO中的任意一种,并且可以不含或者基本不含MgO、CaO和ZnO中的其他那些。在一个或多个具体实施方式中,玻璃组合物可以仅包含碱土金属氧化物MgO、CaO和ZnO中的两种,并且可以不含或者基本不含碱土金属氧化物中的第三种。在一些实施方式中,以摩尔%计,MgO + CaO + ZnO的总量是约0.1至约14,约0.1至约12,约0.1至约10,约0.1至约9,约0.1至约8,约0.1至约7,约0.1至约6,约0.1至约5。
以摩尔%计,玻璃组合物中的碱金属氧化物R2O的总量可以是如下范围:约为5至约20、约为5至约18、约为5至约16、约为5至约15、约为5至约14、约为5至约12、约为5至约10、约为5至约8、约为5至约20、约为6至约20、约为7至约20、约为8至约20、约为9至约20、约为10至约20、约为11至约20、约为12至约18、或者约为14至约18。在一些实施方式中,以摩尔%计,Li2O + Na2O + K2O的总量是约5至约15,约5至约14,约5至约12,约5至约10。
在一个或多个实施方式中,玻璃组合物包含如下量的Na2O:约0摩尔%至约18摩尔%,约0摩尔%至约16摩尔%或者约0摩尔%至约14摩尔%,约0摩尔%至约12摩尔%,约0至约10,约0至约8,约0至约6,约0.1至约6,约2摩尔%至约18摩尔%,约4摩尔%至约18摩尔%,约6摩尔%至约18摩尔%,约8摩尔%至约18摩尔%,约8 摩尔%至约14摩尔%,约8 摩尔%至约12摩尔%,或者约10摩尔%至约12摩尔%。在一些实施方式中,组合物可以包含约4摩尔%或更多的Na2O。
在一些实施方式中,将Li2O和Na2O的量控制到具体量或比例,以平衡可成形性和可离子交换性。例如,随着Li2O的量增加,液相线粘度可能降低,从而阻止了对于一些成形方法的使用;但是,此类玻璃组合物经离子交换至更深的DOC水平,如本文所述。Na2O的量可以对液相线粘度进行改性,但是会抑制在更深的DOC水平进行离子交换。
在一个或多个实施方式中,玻璃组合物可以包含如下量的K2O:小于约5摩尔%、小于约4摩尔%、小于约3摩尔%、小于约2摩尔%、或者小于约1摩尔%。在一个或多个替代实施方式中,玻璃组合物可以不含或者基本不含K2O。
在一个或多个实施方式中,玻璃组合物可以包含如下量的Li2O:约0摩尔%至约18摩尔%,约0摩尔%至约15摩尔%或者约0摩尔%至约10摩尔%,约0摩尔%至约8摩尔%,约0摩尔%至约6摩尔%,约0摩尔%至约4摩尔%或者约0摩尔%至约2摩尔%,约2至约15,约2至约14,约2至约12,约2至约10,约2至约9。在一些实施方式中,玻璃组合物可以包含如下量的Li2O:约1摩尔%至约20摩尔%、2摩尔%约10摩尔%、约4摩尔%至约10摩尔%、约5摩尔%至约15摩尔%、约5摩尔%至约10摩尔%、约6摩尔%至约10摩尔、或者约5摩尔%至约8摩尔%。
在一个或多个实施方式中,玻璃组合物可以包含Fe2O3。在此类实施方式中,Fe2O3存在的量可以是:小于约1摩尔%、小于约0.9摩尔%、小于约0.8摩尔%、小于约0.7摩尔%、小于约0.6摩尔%、小于约0.5摩尔%、小于约0.4摩尔%、小于约0.3摩尔%、小于约0.2摩尔%、小于约0.1摩尔%,以及其间的所有范围和子范围。在一个或多个替代实施方式中,玻璃组合物可以不含或者基本不含Fe2O3
在一个或多个实施方式中,玻璃组合物可以包含ZrO2。在此类实施方式中,ZrO2存在的量可以是:小于约1摩尔%、小于约0.9摩尔%、小于约0.8摩尔%、小于约0.7摩尔%、小于约0.6摩尔%、小于约0.5摩尔%、小于约0.4摩尔%、小于约0.3摩尔%、小于约0.2摩尔%、小于约0.1摩尔%,以及其间的所有范围和子范围,包括:约0.1至约1、0.1至约0.9、约0.1至约0.8约0.1至约0.7、约0.1至约0.6、约0.1至约0.5。在一个或多个替代实施方式中,玻璃组合物可以不含或者基本不含ZrO2
在一个或多个实施方式中,玻璃组合物可以包含如下量的P2O5:约0摩尔%至约10摩尔%,约0摩尔%至约8摩尔%,约0摩尔%至约6摩尔%,约0摩尔%至约4摩尔%,约0.1摩尔%至约10摩尔%,约0.1摩尔%至约8摩尔%,约2摩尔%至约8摩尔%,约2摩尔%至约6摩尔%或者约2摩尔%至约4摩尔%。在一些情况下,玻璃组合物可以不含或者基本不含P2O5
在一个或多个实施方式中,玻璃组合物可以包含TiO2。在此类实施方式中,TiO2存在的量可以是:小于约6摩尔%、小于约4摩尔%、小于约2摩尔%、或者小于约1摩尔%。在一个或多个替代实施方式中,玻璃组合物可以不含或者基本不含TiO2。在一些实施方式中,TiO2存在的量是约0.1摩尔%至约6摩尔%,或者约0.1摩尔%至约4摩尔%。
在一些实施方式中,玻璃组合物可以包括各种组成关系。例如,玻璃组合物可以包括如下LiO2的量(单位,摩尔%)与R2O的总量(单位,摩尔%)的比例:约0至约1,约0至约0.5,约0.5至约1,约0至约0.4,约0.4至约1,约0.1至约0.5,或者约0.2至约0.4。
在一些实施方式中,玻璃组合物可以包括如下R2O的总量(单位,摩尔%)与Al2O3的量(单位,摩尔%)的差异(R2O - Al2O3):约0至约5(例如,约0至约4,约0至约3,约0.1至约4,约0.1至约3,约0.1至约2或者约1至约2)。在一些实施方式中,玻璃组合物可以包括约为-5至约0的R2O总量(单位,摩尔%)与Al2O3的量(单位,摩尔%)之差(R2O - Al2O3)。
在一些实施方式中,玻璃组合物可以包括如下RxO的总量(单位,摩尔%)与Al2O3的量(单位,摩尔%)的差异(RxO - Al2O3):约0至约5(例如,约0至约4,约0至约3,约0.1至约4,约0.1至约3,约1至约3,或者约2至约3)。如本文所用,RxO包括R2O和RO,如本文所定义。
在一些实施方式中,玻璃组合物可以包括如下R2O的总量(单位,摩尔%)与Al2O3的量(单位,摩尔%)的比例(R2O/Al2O3):约0至约5(例如,约0至约4,约0至约3,约1至约4,约1至约3,或者约1至约2)。
在一个或多个实施方式中,玻璃组合物包括的Al2O3和Na2O的总量大于约15摩尔%(例如,大于18摩尔%、大于约20摩尔%、或者大于约23摩尔%)。Al2O3和Na2O的总量可以最高至且包括约30摩尔%、约32摩尔%或者约35摩尔%。
一个或多个实施方式的玻璃组合物可以展现出约0至约2的MgO的量(单位,摩尔%)与RO总量(单位,摩尔%)之比。
在一些实施方式中,玻璃组合物可以不含或者基本不含成核剂。典型成核剂的例子是TiO2和ZrO2等。成核剂可以描述为成核剂的功能是玻璃中可以引发玻璃中的晶体形成的组分。
在一些实施方式中,用于基于玻璃的基材的组合物可以配料有约0摩尔%至约2摩尔%的选自下组的至少一种澄清剂,包括:Na2SO4、NaCl、NaF、NaBr、K2SO4、KCl、KF、KBr和SnO2。根据一个或多个实施方式,玻璃组合物还可以包含约0至约2、约0至约1、约0.1至约2、约0.1至约1、或者约1至约2的SnO2。本文所揭示的玻璃组合物可以不含或者基本不含As2O3和/或Sb2O3
在一个或多个实施方式中,具体来说,组合物可以包含:约62摩尔%至75摩尔%SiO2,约10.5摩尔%至约17摩尔% Al2O3,约5摩尔%至约13摩尔% Li2O,约0摩尔%至约4摩尔%ZnO,约0摩尔%至约8摩尔% MgO,约2摩尔%至约5摩尔% TiO2,约0摩尔%至约4摩尔% B2O3,约0摩尔%至约5摩尔% Na2O,约0摩尔%至约4摩尔% K2O,约0摩尔%至约2摩尔% ZrO2,约0摩尔%至约7摩尔% P2O5,约0摩尔%至约0.3摩尔% Fe2O3,约0摩尔%至约2摩尔% MnOx,以及约0.05摩尔%至约0.2摩尔% SnO2
在一个或多个实施方式中,具体来说,组合物可以包含:约67摩尔%至约74摩尔%SiO2,约11摩尔%至约15摩尔% Al2O3,约5.5摩尔%至约9摩尔% Li2O,约0.5摩尔%至约2摩尔%ZnO,约2摩尔%至约4.5摩尔% MgO,约3摩尔%至约4.5摩尔% TiO2,约0摩尔%至约2.2摩尔%B2O3,约0摩尔%至约1摩尔% Na2O,约0摩尔%至约1摩尔% K2O,约0摩尔%至约1摩尔% ZrO2,约0摩尔%至约4摩尔% P2O5,约0摩尔%至约0.1摩尔% Fe2O3,约0摩尔%至约1.5摩尔% MnOx,以及约0.08摩尔%至约0.16摩尔% SnO2
在一个或多个实施方式中,组合物可以包含:约70摩尔%至75摩尔% SiO2,约10摩尔%至约15摩尔% Al2O3,约5摩尔%至约13摩尔% Li2O,约0摩尔%至约4摩尔% ZnO,约0.1摩尔%至约8摩尔% MgO,约0摩尔%至约5摩尔% TiO2,约0.1摩尔%至约4摩尔% B2O3,约0.1摩尔%至约5摩尔% Na2O,约0摩尔%至约4摩尔% K2O,约0摩尔%至约2摩尔% ZrO2,约0摩尔%至约7摩尔% P2O5,约0摩尔%至约0.3摩尔% Fe2O3,约0摩尔%至约2摩尔% MnOx,以及约0.05摩尔%至约0.2摩尔% SnO2
在一个或多个实施方式中,组合物可以包含:约52摩尔%至约65摩尔% SiO2;约14摩尔%至约18摩尔% Al2O3;约5.5摩尔%至约7摩尔% Li2O;约1摩尔%至约2摩尔% ZnO;约0.01摩尔%至约2摩尔% MgO;约4摩尔%至约12摩尔% Na2O;约0.1摩尔%至约4摩尔% P2O5;以及约0.01摩尔%至约0.16摩尔% SnO2。在一些实施方式中,组合物可以不含或者基本不含B2O3、TiO2、K2O和ZrO2中的任意一种或多种。
在一个或多个实施方式中,组合物可以包含0.5摩尔%或更多的P2O5、Na2O和任选的Li2O,其中,Li2O(摩尔%)/Na2O(摩尔%)<1。此外,这些组合物可以不含或者基本不含B2O3和K2O。在一些实施方式中,组合物可以包含ZnO、MgO和SnO2
在一些实施方式中,组合物可以包含:约58摩尔%至约65摩尔% SiO2;约11摩尔%至约19摩尔% Al2O3;约0.5摩尔%至约3摩尔% P2O5;约6摩尔%至约18摩尔% Na2O;0摩尔%至约6摩尔% MgO;以及0摩尔%至约6摩尔% ZnO。在某些实施方式中,组合物可以包含:约63摩尔%至约65摩尔% SiO2;约11摩尔%至约17摩尔% Al2O3;约1摩尔%至约3摩尔% P2O5;约9摩尔%至约20摩尔% Na2O;0摩尔%至约6摩尔% MgO;以及0摩尔%至约6摩尔% ZnO。
在一些实施方式中,组合物可以包括如下组成关系:R2O(摩尔%)/Al2O3(摩尔%)<2,式中,R2O = Li2O + Na2O。在一些实施方式中,65摩尔%<SiO2(摩尔%) + P2O5(摩尔%)<67摩尔%。在某些实施方式中,R2O(摩尔%) + R´O(摩尔%) - Al2O3(摩尔%) + P2O5(摩尔%)>-3摩尔%,式中,R2O = Li2O + Na2O,以及R´O是组合物中存在的二价金属氧化物的总量。
在一个或多个实施方式中,具体来说,组合物可以包含:约68摩尔%至75摩尔%SiO2,约0.5摩尔%至约5摩尔% B2O3,约2摩尔%至约10摩尔% Li2O, 约1摩尔%至约4摩尔%MgO,Li2O与R2O之比大于0.5且小于或等于1,其中,R2O是玻璃基材中的Li2O、K2O和Na2O的总和(摩尔%),以及玻璃基材基本不含TiO2。这个段落的一些实施方式还可以包括以下任意一种或多种:5摩尔%至约28摩尔% Al2O3;0摩尔%至约6摩尔% Na2O;基本不含ZrO2;R2O与Al2O3之差是约-5至约0;RxO与Al2O3之差是约0至约3,其中,RxO是玻璃基材中的BaO、CaO、MgO、PbO、SrO、ZnO、Li2O、K2O和Na2O的总和(摩尔%);MgO与RO之比是约0至约2,其中,RO是玻璃基材中的BaO、CaO、MgO、PbO、SrO和ZnO的总和(摩尔%)。
在一个或多个实施方式中,具体来说,组合物可以包含:约45摩尔%至约80摩尔%SiO2,约5摩尔%至约28摩尔% Al2O3,约0.5摩尔%至约5摩尔% B2O3,约1摩尔%至约4摩尔%MgO,以及约2摩尔%至约10摩尔% Li2O,其中:R2O与Al2O3之差是约-5至约0,其中,R2O是玻璃基材中的Li2O、K2O和Na2O的总和(摩尔%),以及玻璃基材基本不含TiO2。这个段落的一些实施方式还可以包括以下任意一种或多种:SiO2存在的量是约68摩尔%至约75摩尔%;Al2O3存在的量是约5摩尔%至约20摩尔%;约0摩尔%至约6摩尔% Na2O;玻璃基本不含ZrO2;Li2O与R2O之比大于0.5且小于或等于1;RxO与Al2O3之差是约0至约3,其中,RxO是玻璃基材中的BaO、CaO、MgO、PbO、SrO、ZnO、Li2O、K2O和Na2O的总和(摩尔%);MgO与RO之比是约0至约2,其中,RO是玻璃基材中的BaO、CaO、MgO、PbO、SrO和ZnO的总和。
在一个或多个实施方式中,具体来说,组合物可以包含:约68摩尔%至约75摩尔%SiO2,约5摩尔%至约28摩尔% Al2O3,约0.5摩尔%至约5摩尔% B2O3,约1摩尔%至约4摩尔%MgO,约2摩尔%至约10摩尔% Li2O,其中:RxO与Al2O3之差是约0至约3,其中,RxO是玻璃中的BaO、CaO、MgO、PbO、SrO、ZnO、Li2O、K2O和Na2O的总和(摩尔%),以及玻璃基本不含TiO2。这个段落的一些实施方式还可以包括以下任意一种或多种:Al2O3存在的量是约5摩尔%至约20摩尔%;约0摩尔%至约6摩尔% Na2O;玻璃基本不含ZrO2;R2O与Al2O3之差是约-5至约0;MgO与RO之比是约0至约2,其中,RO是玻璃基材中的BaO、CaO、MgO、PbO、SrO和ZnO的总和(摩尔%);Li2O与R2O之比大于0.5且小于或等于1。
在一个或多个实施方式中,具体来说,组合物可以包含:约68摩尔%至约75摩尔%SiO2,约5摩尔%至约28摩尔% Al2O3,约0.5摩尔%至约5摩尔% B2O3,约1摩尔%至约4摩尔%MgO,以及约2摩尔%至约10摩尔% Li2O,其中:MgO与RO之比是约0至约2,其中,RO是玻璃中的BaO、CaO、MgO、PbO、SrO和ZnO的总和(摩尔%),以及玻璃基本不含TiO2。这个段落的一些实施方式还可以包括以下任意一种或多种:Al2O3存在的量是约5摩尔%至约20摩尔%;约0摩尔%至约6摩尔% Na2O;玻璃基本不含ZrO2;R2O与Al2O3之差是约-5至约0;RxO与Al2O3之差是约0至约3,其中,RxO是玻璃中的BaO、CaO、MgO、PbO、SrO、ZnO、Li2O、K2O和Na2O的总和(摩尔%);Li2O与R2O之比大于0.5且小于或等于1。
在一个或多个实施方式中,具体来说,组合物可以包含:约60摩尔%至约70摩尔%SiO2,约2摩尔%至约4摩尔% MgO,和约2摩尔%至约10摩尔% Li2O,其中:Li2O与R2O之比大于0.5且小于厚等于1,其中,R2O是玻璃中的Li2O、K2O和Na2O的总和(摩尔%),以及玻璃基本不含TiO2。这个段落的一些实施方式还可以包括以下任意一种或多种:约5摩尔%至约28摩尔%Al2O3;Al2O3存在的量是约5摩尔%至约20摩尔%;约0摩尔%至约8摩尔% B2O3;约0摩尔%至约6摩尔% Na2O;约1摩尔%至约2摩尔% CaO;玻璃基本不含ZrO2;R2O与Al2O3之差是约-5至约0;MgO与RO之比是约0至约2,其中,RO是玻璃中的BaO、CaO、MgO、PbO、SrO和ZnO的总和(摩尔%);约0摩尔%至约2摩尔% SnO2
在一个或多个实施方式中,具体来说,组合物可以包含:约60摩尔%至约70摩尔%SiO2,约5摩尔%至约28摩尔% Al2O3,小于约5摩尔% MgO,和约2摩尔%至约10摩尔% Li2O,其中:RxO与Al2O3之差是约0至约3,其中,RxO是玻璃中的BaO、CaO、MgO、PbO、SrO、ZnO、Li2O、K2O和Na2O的总和(摩尔%),以及玻璃基本不含TiO2。这个段落的一些实施方式还可以包括以下任意一种或多种:约5摩尔%至约20摩尔% Al2O3;约0.1摩尔%至约4摩尔% B2O3;玻璃基本不含B2O3;约0摩尔%至约6摩尔% Na2O;约0摩尔%至约2摩尔% ZnO;玻璃基本不含ZrO2;MgO与RO之比是约0至约2,其中,RO是玻璃基材中的BaO、CaO、MgO、PbO、SrO和ZnO的总和(摩尔%);约0摩尔%至约2摩尔% SnO2;约0.1摩尔%至约10摩尔% P2O5
在一个或多个实施方式中,具体来说,组合物可以包含:SiO2的量是约60至约72,Al2O3的量是约6至约10,MgO + CaO + ZnO的总量是约0.1至约8,Li2O + Na2O + K2O的总量是约5至约15,Li2O的量是约6至约10,Na2O的量是约0至约10,K2O的量小于约2,和ZrO2的量是约0.1至约1,其中:玻璃组合物基本不含Ti2O;玻璃组合物基本不含Fe2O3,以及Li2O与(Li2O + Na2O + K2O)之比是约0.5至约1。这个段落的一些实施方式还可以包括以下任意一种或多种:玻璃组合物基本不含B2O3;玻璃组合物包含的Na2O的量是约0.1至约6;玻璃组合物包含的ZnO的量是约0至约3;玻璃组合物包含的CaO的量是约0至约5;MgO的量(单位是摩尔%)与RO的总量(单位是摩尔%)之比是约0至约2。
在一个或多个实施方式中,具体来说,组合物可以包含:SiO2的量是约60至约72,Al2O3的量是约6至约10,MgO + CaO + ZnO的总量是约0.1至约8,Li2O + Na2O + K2O的总量是约5至约15,Li2O的量是约6至约10,Na2O的量是约0至约10,K2O的量小于约2,和ZrO2的量是约0.1至约1,其中:玻璃基材基本不含Ti2O;玻璃基材基本不含Fe2O3,以及Li2O与(Li2O +Na2O + K2O)之比是约0.5至约1。这个段落的一些实施方式还可以包括以下任意一种或多种:玻璃组合物是可离子交换的且是无定形的;玻璃组合物基本不含B2O3;Na2O的量是约0.1至约6;ZnO的量是约0至约3;CaO的量是约0至约5;MgO的量(单位是摩尔%)与RO的总量(单位是摩尔%)之比是约0至约2。
在一个或多个实施方式中,具体来说,组合物可以包含:SiO2的量是约60至约70,Al2O3的量是约6至约10,MgO + CaO + ZnO的总量是非零量至最高至约15摩尔%,Li2O +Na2O + K2O的总量是约5至约15,Li2O的量是约6至约10,Na2O的量是约0至约10,K2O的量小于约2,和ZrO2的量是约0.1至约1,其中,组合物基本不含Ti2O,组合物基本不含Fe2O3,以及MgO(摩尔%)与RO(摩尔%)之比是约0至约2,其中,RO是玻璃中的BaO、CaO、MgO、PbO、SrO和ZnO的总和(摩尔%)。这个段落的一些实施方式还可以包括以下任意一种或多种:玻璃是可离子交换的且是无定形的;组合物基本不含B2O3;Na2O的量是约0.1至约6;ZnO的量是约0至约3;CaO的量是约0至约5;MgO + CaO + ZnO的总量是非零量至最高至约12摩尔%。
在一个或多个实施方式中,具体来说,组合物可以包含:SiO2的量是约60至约70,Al2O3的量是约6至约10,MgO + CaO + ZnO的总量是非零量至最高至约15摩尔%,Li2O +Na2O + K2O的总量是约5至约15,Li2O的量是约6至约10,Na2O的量是约0至约10,K2O的量小于约2,和ZrO2的量是约0.1至约1,其中,组合物基本不含Ti2O,以及组合物基本不含Fe2O3。这个段落的一些实施方式还可以包括以下任意一种或多种:Na2O浓度沿着由其制造的玻璃基材的深度变化;玻璃是可离子交换的且是无定形的;组合物基本不含B2O3;Na2O的量是约0.1至约6;ZnO的量是约0至约3;CaO的量是约0至约5;MgO + CaO + ZnO的总量是非零量至最高至约14摩尔%。
在一个或多个具体实施方式中,基于玻璃的基材在进行交换之前可以具有如下标称组成:约63.60摩尔% SiO2、15.67摩尔% Al2O3、6.24摩尔% Li2O、10.81摩尔% Na2O、1.16摩尔% ZnO、2.48摩尔% P2O5和0.04摩尔% SnO2
对于基于玻璃的基材包括玻璃陶瓷的情况,晶相可以包括β-锂辉石、金红石、锌尖晶石或者其他已知晶相,及其组合。合适的玻璃陶瓷的例子可以包括Li2O-Al2O3-SiO2体系(即,LAS体系)玻璃陶瓷、MgO-Al2O3-SiO2体系(即,MAS体系)玻璃陶瓷、ZnO-Al2O3-nSiO2(即,ZAS体系)和/或包括例如包含β-石英固溶体、β-锂辉石、堇青石和二硅酸锂的主晶相的玻璃陶瓷。
基于玻璃的制品和/或基于玻璃的基材可以是基本平坦的,但是其他实施方式可以采用弯曲或任意其他形状或造型的基材。在一些情况下,基于玻璃的制品和/或基于玻璃的基材可以具有3D或者2.5D形状。基于玻璃的制品和/或基于玻璃的基材可以是基本上光学透澈的、透明和没有或者基本没有光散射的。基于玻璃的制品和/或基于玻璃的基材可以具有约1.45至约1.55的折射率。如本文所用,折射率值是相对于550 nm波长而言。
作为补充或替代,出于美观和/或功能原因,基于玻璃的制品和/或基于玻璃的基材的厚度可以沿一个或多个尺寸是恒定的,或者可以沿其一个或多个尺寸发生变化。例如,基于玻璃的制品和/或基于玻璃的基材的边缘可以相比于基于玻璃的制品和/或基于玻璃的基材的更为中心区域而言是较厚的。根据制品的应用或用途,基于玻璃的制品和/或基于玻璃的基材的长度、宽度和厚度尺寸也可以发生变化。
可以通过其形成的方式来对基于玻璃的基材进行表征。例如,基于玻璃的基材可以表征为可浮法成形(例如,通过浮法工艺形成)、可辊制的、可下拉成形的,并且具体地,可熔合成形或者可狭缝拉制(例如,通过下拉工艺例如熔合拉制工艺或者狭缝拉制工艺形成)。
可浮法成形的基于玻璃的基材可以表征为通过使得熔融玻璃在熔融金属(通常是锡)床上浮动所制得的光滑表面和均匀厚度。在示例性过程中,将熔融玻璃进料到熔融锡床表面上,形成浮动玻璃带。随着玻璃带沿着锡浴流动,温度逐渐降低直至玻璃带固化成固体的基于玻璃的基材,可以将其从锡上举起到辊上。一旦离开浴,可以对玻璃基于玻璃的基材进行进一步冷却和退火以降低内应力。当基于玻璃的基材是玻璃陶瓷时,由浮法工艺形成的基于玻璃的基材可以经受陶瓷化工艺,通过该工艺产生一个或多个晶相。
下拉工艺生产具有均匀厚度的基于玻璃的基材,所述基于玻璃的基材具有较原始的表面。因为基于玻璃的基材的平均挠曲强度受到表面瑕疵的量和尺寸的控制,因此接触程度最小的原始表面具有较高的初始强度。当随后对这种高强度的基于玻璃的基材进行进一步强化(例如化学强化)时,所得到的强度可以高于表面已经进行过磨光和抛光的基于玻璃的制品的强度。下拉的基于玻璃的基材可以被拉制成小于约3 mm的厚度。此外,基于下拉玻璃的制品具有非常平坦、光滑的表面,其可以不经高成本的研磨和抛光就用于最终应用。对于基于玻璃的制品是玻璃陶瓷的情况,由下拉工艺形成的基于玻璃的制品可以经受陶瓷化工艺,通过该工艺产生一个或多个晶相。
熔合拉制工艺使用例如拉制罐,该拉制罐具有用来接收熔融玻璃原材料的通道。通道具有堰,其沿着通道的长度在通道两侧的顶部开放。当用熔融材料填充通道时,熔融玻璃从堰溢流。在重力的作用下,熔融玻璃从拉制罐的外表面作为两个流动玻璃膜流下。这些拉制罐的外表面向下和向内延伸,使得它们在拉制罐下方的边缘处接合。这两个流动玻璃膜在该边缘处结合以熔合并形成单个流动的基于玻璃的基材。熔合拉制法的优点在于:由于从通道溢流的两个玻璃膜熔合在一起,因此所得到的基于玻璃的基材的任一外表面都没有与设备的任意部件相接触。因此,基于熔合拉制玻璃的基材的表面性质没有受到此类接触的影响。对于基于玻璃的制品是玻璃陶瓷的情况,由熔合工艺形成的基于玻璃的基材可以经受陶瓷化工艺,通过该工艺产生一个或多个晶相。
狭缝拉制工艺与熔合拉制方法不同。在狭缝拉制工艺中,向拉制罐提供熔融原材料玻璃。拉制容器的底部具有开放狭缝,其具有沿着狭缝的长度延伸的喷嘴。熔融玻璃流过狭缝/喷嘴,以连续的基于玻璃的基材下拉并进入退火区。
基于玻璃的基材可以经过酸性抛光或者任意其他方式的处理,以去除或减少表面瑕疵的影响。
本公开内容的一些实施方式属于包括本文所述的基于玻璃的制品的装置。例如,装置可以包括包含显示器的任何装置。在一个或多个实施方式中,装置是电子装置,其可以包括手持式装置,例如,手机、笔记本电脑、平板、mp3播放器、手表和导航装置等,或者固定装置,例如,计算机、电子显示器、车内信息/娱乐系统、广告板、销售点系统和导航系统等)。在一些实施方式中,本文所述的基于玻璃的制品可以被结合到建筑制品(墙壁、固定装置、面板、窗户等)、运输制品(例如,车辆应用、火车、飞机、海运工具等中的玻璃窗或内表面)、电器(例如,洗衣机、干燥机、洗碗机和冰箱等)或者会受益于一定的耐破碎性的任意制品中。如图10所示,电子装置1000可以包括根据本文所述一个或多个实施方式的基于玻璃的制品100。装置1000包括:具有前表面1040、背表面1060和侧表面1080的外壳1020;(未示出的)电子组件,其至少部分位于外壳内或者完全位于外壳内,并且至少包括控制器、存储器;以及位于外壳的前表面或者与外壳的前表面相邻的显示器1120。基于玻璃的制品100显示为布置在外壳的前表面处或者前表面上的覆盖,从而使其位于显示器1120的上方。在一些实施方式中,基于玻璃的制品可以用作背面覆盖。
本公开内容的一些实施方式属于形成基于玻璃的制品的方法。方法包括提供基于玻璃的基材,其具有第一表面和第二表面,它们限定了约3毫米或更小的厚度(例如,约0.01毫米至约3毫米、约0.1毫米至约3毫米、约0.2毫米至约3毫米、约0.3毫米至约3毫米、约0.4毫米至约3毫米、约0.01毫米至约2.5毫米、约0.01毫米至约2毫米、约0.01毫米至约1.5毫米、约0.01毫米至约1毫米、约0.01毫米至约0.9毫米、约0.01毫米至约0.8毫米、约0.01毫米至约0.7毫米、约0.01毫米至约0.6毫米、约0.01毫米至约0.5毫米、约0.1毫米至约0.5毫米、或者约0.3毫米至约0.5毫米),以及在基于玻璃的基材中产生应力分布,如本文所述(如图3和图4所示),从而提供耐破碎的基于玻璃的制品。在一个或多个实施方式中,产生应力分布包括:将多种碱性离子离子交换进入基于玻璃的基材中,以形成非零的碱金属氧化物浓度,其沿着大部分的厚度(如本文所述)或者沿着整个厚度发生变化。在一个例子中,产生应力分布包括将基于玻璃的基材浸入熔盐浴中,所述熔盐浴包含Na+、K+、Rb+、Cs+的硝酸盐或其组合,其温度是约350°C或更高(例如,约350°C至约500°C)。在一个例子中,熔浴可以包含NaNO3、KNO3或其组合,并且温度可以是约485°C或更小。在另一个例子中,浴可以包含NaNO3和KNO3的混合物,并且温度约为460°C。基于玻璃的基材可以在浴中浸入约2小时或更久、最高至约48小时(例如,约2小时至约10小时,约2小时至约8小时,约2小时至约6小时,约3小时至约10小时,或者约3.5小时至约10小时)。
在一些实施方式中,方法可以包括在单个浴中或者在不止一个浴中采用连续浸入步骤以不止一个步骤的方式对基于玻璃的基材进行化学强化或者离子交换。例如,可以依次使用两个或更多个浴。所述一个或多个浴的组成可以包含单种金属(例如,Ag+、Na+、K+、Rb+、Cs+),或者在同一浴中包括金属的组合。当使用不止一个浴时,浴相互可具有相同或不同组成和/或温度。每个此类浴中的浸入时间可以相同或者可以发生变化,以提供所需的应力分布。
在方法的一个或多个实施方式中,可以采用第二浴或者后续浴来产生较大的表面CS。在一些情况下,方法包括:将基于玻璃的基材浸入第二浴或后续浴中,以产生较大的表面CS,而没有明显影响层的化学深度和/或DOC。在此类实施方式中,第二浴或后续浴可以包括单种金属(例如,KNO3或NaNO3)或者金属的混合物(KNO3和NaNO3)。第二浴或后续浴的温度可以进行调节以产生较大的表面CS。在一些实施方式中,还可以对基于玻璃的基材在第二浴或后续浴中的浸入时间进行调节,以产生较大的表面CS,而没有明显影响层的化学深度和/或DOC。例如,第二浴或后续浴中的浸入时间可以小于10小时(例如,约8小时或更短、约5小时或更短、约4小时或更短、约2小时或更短、约1小时或更短、约30分钟或更短、约15分钟或更短、或者约10分钟或更短)。
在一个或多个替代实施方式中,方法可以包括一个或多个热处理步骤,其可以与本文所述的离子交换工艺结合使用。热处理包括对基于玻璃的制品进行热处理,以获得所需的应力分布。在一些实施方式中,热处理包括将基于玻璃的基材退火、回火或加热至约300°C至约600°C的温度。热处理可以持续1分钟至最高至约18小时。在一些实施方式中,可以在一个或多个离子交换过程之后使用热处理,或者可以在离子交换过程之间使用热处理。
本公开内容的实施方式属于基于玻璃的制品和它们的制造方法,这在应力分布的深区域提供了非常高的应力。在一个或多个实施方式中,钾(K)和钠(Na)的扩散是四离子相互作用的方式,其中,K、Li、Na会在靠近表面处相互作用以提供独特的应力分布和具有改善的抗掉落性的基于玻璃的制品,这是相比于不具有如图3和4所示的应力分布的制品而言。由于钾(K)非常缓慢且具有较低的扩散系数,其最主要会存在于靠近表面处,而钠(Na)会存在于表面中且还存在于玻璃内部,锂(Li)以不同水平渗透玻璃。除了提供改进的应力分布和跌落诱发的破碎性能之外,根据一个或多个实施方式,基于玻璃的制品还可以具有抗微生物性。
根据一个或多个实施方式,可以通过使用不同的Na/K比例以及离子交换步骤中的不同的相对离子交换持续时间,来进一步调节应力分布形状。在具体实施方式中,可能不需要靠近表面处的高压缩应力,这允许对应力分布进行进一步调节以使用靠近表面的应力更朝向基材的中心,作为埋入峰的形式。这可以在维持非常深的DOC(样品内应力为零的地方)的同时实现。这会是可适用的一种具体情况会是玻璃在限定了厚度的一个或两个表面上具有涂层(具体来说,耐划痕涂层)的情形。由于涂层可以在一定程度上保护基于玻璃的基材,所以现在可以将靠近表面处的应力用于玻璃内的其他地方。
因此,在一个或多个实施方式中,例如,如图9所示的基于玻璃的制品包括:基材700(其具有限定了厚度t的第一表面702和第二表面704)以及涂层720。涂层可以位于第一表面和/或第二表面上,从而保护基于玻璃的制品免受破坏(例如,锋利接触诱发的破碎和表面划痕)。在一个或多个实施方式中,可以出于其他功能施涂一层或多层涂层,例如用于电容触摸传感器、或者其他光学质量。因此,本公开内容的实施方式属于在基于玻璃的制品上具有多层涂层的基于玻璃的制品。在一些实施方式中,提供了厚度约为2微米的多层耐划痕涂层(例如,8层的耐划痕涂层),其可以是仅有的涂层,或者可以与其他减反射涂层(用于使得涂层的折射率与下方的基于玻璃的基材相匹配)相结合,或者可以与其他功能涂层相结合。在一个或多个实施方式中,耐划痕涂层的杨氏模量值是100 GPa至300 GPa。在一个或多个实施方式中,耐划痕涂层选自下组:Al2O3、Mn、AlOxNy、Si3N4、SiOxNy、SiuAlvOxNy、钻石、钻石状碳、SixCy、SixOyCz、ZrO2、TiOxNy,及其组合。
在一个或多个实施方式中,本文所述的基于玻璃的制品的第一表面和/或第二表面上具有易清洁(ETC)涂层。在一个或多个实施方式中,ETC涂层包括化学式为(RF)y-SiX4-y的全氟烷基硅烷,式中,y = 1、2、或3,RF基团是全氟烷基基团,具有从硅原子到该链最大长度端部的6-130个碳原子的碳链长度,以及X是-Cl、乙酰氧基、-OCH3或-OCH2CH3。施涂ETC涂层以最小化和/或防止基于玻璃的制品上的污点和/或指纹。
本文所述的玻璃组合物的一个或多个实施方式可以用于制造本文所述的基于玻璃的制品,包括下面的实施例1-3,以及本文所述的组成范围。
实施例
通过以下实施例进一步阐述各个实施方式。在实施例中,在经过强化之前,将实施例称作“基材”。在经过强化之后,将实施例称作“制品”或者“基于玻璃的制品”。
下面的每个实施例采用的基于玻璃的基材具有如下标称组成:约63.60摩尔%SiO2、15.67摩尔% Al2O3、6.24摩尔% Li2O、10.81摩尔% Na2O、1.16摩尔% ZnO、2.48摩尔%P2O5、和0.04摩尔% SnO2。基于玻璃的基材的厚度是0.8 mm。
实施例
将玻璃基材浸入温度为380°C的含有约74重量% KNO3和26重量% NaNO3的浴中,持续时间是10小时。在基材的中心处测得的中心张力是59.56 MPa。在第二离子交换步骤中,将玻璃基材浸入温度为380°C的含有100重量% NaNO3的浴中,持续时间是3小时。所得到的应力分布如图3所示。在基材的中心处测得的中心张力是59.41 MPa。混合浴中的第一离子交换步骤由于K和Na的同时扩散产生了双重IOX分布,其类似于图2的分布。第二离子交换步骤由于Li和Na扩散进入玻璃基材中,产生了具有非常深的DOC的埋入峰或峰丘应力区域。
实施例
将玻璃基材浸入温度为380°C的含有约74重量% KNO3和26重量% NaNO3的浴中,持续时间是10小时。在第二离子交换步骤中,将玻璃基材浸入温度为380°C的含有100重量%NaNO3的浴中,持续时间是3小时。在第三离子交换步骤中,将玻璃基材浸入温度为380°C的含有100重量% KNO3的浴中,持续时间是0.2小时。所得到的应力分布如图4所示。第三离子交换步骤产生了靠近表面处的尖峰区域。在基材的中心处测得的中心张力是64.43 MPa。
比较例3
将玻璃基材浸入温度为380°C的含有约15重量% KNO3和85重量% NaNO3的浴中,持续时间是3.6小时。在第二离子交换步骤中,将玻璃基材浸入温度为390°C的含有95重量%KNO3和5重量% NaNO3的浴中,持续时间是0.5小时。
比较例4
将玻璃基材浸入温度为380°C的含有约51重量% KNO3和49重量% NaNO3的浴中,持续时间是3.75小时。
比较例5
将玻璃基材浸入温度为390°C的含有约80重量% KNO3和20重量% NaNO3的浴中,持续时间是3小时。
比较例6
将玻璃基材浸入温度为390°C的含有约80重量% KNO3和20重量% NaNO3的浴中,持续时间是7.5小时。
实施例7:掉落测试
在根据实施例1-2和比较例3-6制造的基材上进行上文所述的掉落测试。图5显示180目砂纸的结果,其中:对于至少10个样品,实施例1的平均掉落高度是192 cm(高于190cm),这个掉落高度与比较例3-6的那些是相当的;对于至少10个样品,实施例2的平均掉落高度是153 cm(高于150 cm),这看起来略低于比较例3-6的那些;对于至少10个样品,对于225 cm的最大掉落高度,实施例1在掉落测试中的存活率是50%;以及对于至少10个样品,对于225 cm的最大掉落高度,实施例2在掉落测试中的存活率是20%。图6显示30目砂纸的结果,其中:对于至少4个样品,实施例1的平均掉落高度是73 cm(高于70 cm),这个掉落高度与比较例3-6的那些是相当的;对于至少2个样品,实施例2的平均掉落高度是45 cm(高于40cm),这略低于比较例3-6的那些;对于其中最大掉落高度是50 cm的至少4个样品,实施例1的存活率是100%。对于掉落性能,两步骤IOX(实施例1)表现得非常好,而三步骤IOX(实施例2)看上去没有两步骤IOX或者比较例那么好。但是,在如下文所述的采用136°的4侧钻石尖端的第二组划痕测试组中,三步骤IOX的表现要(比实施例1或比较例3-6)好得多,因此对于一些应用而言是抗掉落性与耐划痕性之间的良好平衡。
实施例7:划痕测试
在第一测试中,在比较例4、实施例1和实施例2上采用球形尖端圆锥轮廓尖端(20微米直径的cono球(conosphere)的球形部分)进行上升的划痕测试。在20秒的测试持续时间中,尖端上的负荷从0线性上升到2N。尖端以0.4 mm/s的速率移动8 mm,以及负荷以1N每10秒的速率线性上升。图7A显示比较例4的划痕结果,图7B显示实施例1的划痕结果,以及图7C显示实施例2的划痕结果。如更窄的划痕图案所示,实施例1和2表现优于比较例4。在图7A中,对于3个样品,比较例4显示345微米、406微米和345微米的划痕“长度”(纵向线之间的水平距离,表示为划痕最宽部分处的双箭头线)。平均划痕长度是365微米,以及最短长度是345微米。在图7B中,对于3个样品,实施例1显示233微米、224微米和294微米的划痕长度。平均划痕长度是250微米,以及最短长度是224微米。因此,例如,一些实施方式包括小于300微米、或者小于275微米、或者小于250微米、或者小于225微米的划痕长度。一些实施方式包括小于300微米、或者小于275微米、或者小于或等于250微米的平均划痕长度(球形尖端圆锥轮廓尖端,样品尺寸为3或更大)。在图7C中,对于3个样品,实施例2显示311微米、371微米和319微米的划痕长度。平均划痕长度是334微米,以及最短长度是311微米。因此,例如,一些实施方式包括小于340微米、或者小于325微米、或者小于320微米的划痕长度。一些实施方式包括小于350微米、或者小于340微米、或者小于或等于334微米的平均划痕长度(球形尖端圆锥轮廓尖端,样品尺寸为3或更大)。根据上述内容,实施例1(图7B)看上去提供了最好的耐划痕性。
采用136°的4侧钻石尖端对比较例4、实施例1和实施例2进行第二组划痕测试。尖端上的负荷以1N力每10秒从0线性上升到0.5N。测试持续时间是5秒,以及尖端以0.4 mm/s的速率移动2 mm。图8A显示比较例4的划痕结果,图8B显示实施例1的划痕结果,以及图8C显示实施例2的划痕结果。图8A显示比较例4的划痕长度为195微米。图8B显示实施例1的划痕长度为141微米。以及图8C显示实施例2在采用这种上升测试的这些负荷下没有形成裂纹。这里,同样的是,具有埋入峰丘应力区域的实施例1和实施例2的表现都优于比较例4,证据是更窄(更短的裂纹“长度”)裂纹。因此,一些实施方式(当以5秒测试持续时间,以0.4 mm/s探针速度,以1N力每10秒速率从0上升到0.5N,以136°的4侧钻石尖端进行测试时)包括如下划痕长度:小于190微米,或者小于175微米,或者小于150微米,或者小于145微米,或者小于125微米,或者小于100微米,或者小于75微米,或者小于50微米,或者小于40微米,或者小于30微米,或者小于25微米,或者小于20微米,或者小于15微米,或者小于10微米,或者小于5微米,或者小于4微米,或者小于3微米,或者0至小于190微米,或者任意上述值之间的任意和全部子范围。
对本领域的技术人员而言,显而易见的是可以在不偏离本公开内容的精神和范围的情况下对本公开内容进行各种修改和变动。以下实施方式中描述了特征的各种示例性组合。
实施方式1,一种基于玻璃的制品,其包括:
第一表面和与第一表面相对的第二表面,它们限定了厚度(t),以及第一表面与第二表面之间的中心,所述基于玻璃的制品包含Li2O、经离子交换的钾和经离子交换的钠;以及
应力分布,其包括:从第一表面(或者低于第一表面的点)延伸到0.001t至0.1t范围内的峰点的峰丘应力区域,峰点处的压缩应力是25 MPa至750 MPa,其中,应力分布在第一表面与峰点之间的峰丘应力区域中的至少一个点包括斜率值是25 MPa/微米至500 MPa/微米的正切,从峰点延伸的应力减小区域,它的减小使得从峰点朝向中心延伸的应力减小区域中的应力分布的至少一个点包括斜率值是-20 MPa/微米至-200 MPa/微米的正切,直到应力减小区域到达基于玻璃的制品具有零应力值的压缩深度,所述压缩深度的范围是0.1t至0.25t,以及从压缩深度延伸到最大拉伸应力的拉伸应力区域,其中,基于玻璃的制品包括0.01 mm至3 mm的厚度。
实施方式2,如实施方式1所述的基于玻璃的制品,其中,峰点处的应力是100 MPa至300 MPa的压缩应力。
实施方式3,如实施方式1或实施方式2所述的基于玻璃的制品,其中,在第一表面处存在拉伸应力,拉伸应力的绝对值是200 MPa至0 MPa,以及峰丘应力区域包括从第一表面延伸到峰点的应力增加区域,从而使得从第一表面延伸到峰点的应力增加区域中的应力分布的至少一个点包括斜率值是20 MPa/微米至200 MPa/微米的正切,其中,在应力增加区域中,应力变得越来越压缩。
实施方式4,如实施方式1或实施方式2所述的基于玻璃的制品,其中,在第一表面处存在压缩应力,压缩应力的绝对值是大于0 MPa至750 MPa,以及峰丘应力区域包括从第一表面延伸到峰点的应力增加区域,从而使得从第一表面延伸到峰点的应力增加区域中的应力分布的至少一个点包括斜率值是20 MPa/微米至200 MPa/微米的正切,其中,在应力增加区域中,应力变得越来越压缩。
实施方式5,如实施方式1-4中任一项所述的基于玻璃的制品,其中,峰丘区域从低于第一表面的点开始延伸。
实施方式6:如实施方式1或实施方式2所述的基于玻璃的制品,所述应力分布还包括包含经离子交换的钾和经离子交换的钠的压缩应力层,所述压缩应力层限定了从第一表面延伸到峰丘应力区域的表面应力区域,所述表面应力区域包括压缩应力,所述压缩应力从第一表面开始移动的压缩应力大小减小,从而使得从第一表面延伸到过渡部分的具有峰丘区域的表面应力区域中的应力分布的至少一个点包括斜率值是-25 MPa/微米至-200MPa/微米的正切。
实施方式7,如实施方式6所述的基于玻璃的制品,其中,从第一表面延伸到过渡部分的具有峰丘区域的表面应力区域的应力分布的至少一个点包括斜率值是-30 MPa/微米至-170 MPa/微米的正切。
实施方式8,如实施方式6或实施方式7所述的基于玻璃的制品,其中,第一表面处的压缩应力是500 MPa至1500 MPa。
实施方式9,如实施方式8所述的基于玻璃的制品,其中,第一表面处的压缩应力是650 MPa至1100 MPa。
实施方式10,如实施方式1-9中任一项所述的基于玻璃的制品,其中,所述基于玻璃的制品中存在的Li2O是0.1摩尔%至20摩尔%。
实施方式11,如实施方式1-10中任一项所述的基于玻璃的制品,其中,所述基于玻璃的制品中存在的B2O3是0.1摩尔%至10摩尔%。
实施方式12,如实施方式1-11中任一项所述的基于玻璃的制品,其中,所述基于玻璃的制品中存在的P2O5是0.1摩尔%至10摩尔%。
实施方式13,如实施方式1-12中任一项所述的基于玻璃的制品,其中,所述基于玻璃的制品不含K2O。
实施方式14,如实施方式1-13中任一项所述的基于玻璃的制品,其中,应力分布在峰点与中心之间的所有点是包括幂指数的幂律分布的形式,其中,幂指数是约1.2至约3.4。
实施方式15,如实施方式1-14中任一项所述的基于玻璃的制品,其中,基于玻璃的制品还包括以下任意一种或多种:对于至少10个样品,180目砂纸上的平均掉落高度大于190 cm;对于至少10个样品,180目砂纸上的平均掉落高度是192 cm或更高;对于至少10个样品,180目砂纸上的最大掉落高度为225 cm的掉落测试中的存活率是50%或更高;对于至少4个样品,30目砂纸上的平均掉落高度大于70 cm;对于至少4个样品,30目砂纸上的平均掉落高度是73 cm或更高;对于至少4个样品,30目砂纸上的存活率是100%,其中,最大掉落高度是50 cm。
实施方式16,如实施方式1-15中任一项所述的基于玻璃的制品,(对于球形尖端圆锥轮廓尖端,3或更大的样品尺寸)其还包括以下至少一种平均划痕长度:(i)小于300微米;或者(ii)小于275微米;或者(iii)小于或等于250微米。
实施方式17,如实施方式1-16中任一项所述的基于玻璃的制品,(当以136°的4侧钻石尖端进行测试时,以1N力每10秒的速率从0上升到0.5N,5秒测试持续时间,探针速度为0.4 mm/s)其还包括以下至少一种划痕长度:(i)小于190微米,或者(ii)小于175微米,或者(iii)小于150微米,或者(iv)小于145微米。
实施方式18,如实施方式1-14中任一项所述的基于玻璃的制品,其中,基于玻璃的制品还包括以下至少一种:对于至少10个样品,180目砂纸上的平均掉落高度大于150 cm;对于至少10个样品,180目砂纸上的平均掉落高度是153 cm或更高;对于至少10个样品,180目砂纸上的最大掉落高度为225 cm的掉落测试中的存活率是20%或更高;对于至少2个样品,30目砂纸上的平均掉落高度大于40 cm;以及对于至少2个样品,30目砂纸上的平均掉落高度是43 cm或更高。
实施方式19,如实施方式1-14或18中任一项所述的基于玻璃的制品,(对于球形尖端圆锥轮廓尖端,3或更大的样品尺寸)其还包括如下平均划痕长度:小于350微米、或者小于340微米、或者小于或等于334微米。
实施方式20,如实施方式1-14或18-19中任一项所述的基于玻璃的制品,(当以136°的4侧钻石尖端进行测试时,以1N力每10秒的速率从0上升到0.5N,5秒测试持续时间,探针速度为0.4 mm/s)其还包括以下至少一种划痕长度:(i)小于190微米;或者(ii)小于175微米;或者(iii)小于150微米;或者(iv)小于145微米;或者(v)小于125微米;或者(vi)小于100微米;或者(vii)小于75微米;或者(viii)小于50微米;或者(ix)小于40微米;或者(x)小于30微米;或者(xi)小于25微米;或者(xii)小于20微米;或者(xiii)小于15微米;或者(xiv)小于10微米;或者(xv)小于5微米;或者(xvi)小于4微米;或者(xvii)小于3微米;或者(xviii)0至小于190微米。
实施方式21,如实施方式1-20中任一项所述的基于玻璃的制品,其还包括第一表面上的涂层。
实施方式22,如实施方式21所述的基于玻璃的制品,其还包括第二表面上的涂层。
实施方式23,如实施方式21或实施方式22所述的基于玻璃的制品,其中,涂层包括耐划痕涂层。
实施方式24,一种装置,其包括:
包括前表面、后表面和侧表面的外壳;
至少部分位于所述外壳内的电子组件;
位于所述外壳的前表面或者与所述外壳的前表面相邻的显示器;以及
布置在显示器上方的覆盖基材,其中,所述覆盖基材包括实施方式1-23中任一项所述的基于玻璃的制品。
实施方式25,一种基于玻璃的制品的制造方法,其包括:
将钠和钾离子交换到基于玻璃的基材中,所述基于玻璃的基材包含0.1摩尔%至20摩尔% Li2O,从而所述基于玻璃的基材包括:
第一表面和与第一表面相对的第二表面,它们限定了厚度(t)(mm),以及第一表面与第二表面之间的中心;以及
应力分布,其包括:从第一表面(或者低于第一表面的点)延伸到0.001t至0.1t范围内的峰点的峰丘应力区域,峰点处的压缩应力是25 MPa至750 MPa,其中,在第一表面与峰点之间的峰丘区域的应力分布的至少一个点包括斜率值是25 MPa/微米至500 MPa/微米的正切,从峰点延伸的应力减小区域,它的减小使得从峰点朝向中心延伸的应力减小区域的应力分布的至少一个点包括斜率值是-20 MPa/微米至-200 MPa/微米的正切,直到应力减小区域到达基于玻璃的制品具有零应力值的压缩深度,所述压缩深度的范围是0.1t至0.25t,以及从压缩深度延伸到最大拉伸应力的拉伸应力区域,其中,基于玻璃的制品包括0.01 mm至3 mm的厚度。
实施方式26:如实施方式25所述的方法,其中,所述应力分布还包括包含经离子交换的钾和经离子交换的钠的压缩应力层,所述压缩应力层限定了从第一表面延伸到峰丘应力区域的表面应力区域,所述表面应力区域包括压缩应力,所述压缩应力从第一表面开始移动的压缩应力大小减小,从而使得从第一表面延伸到过渡部分的具有峰丘区域的表面应力区域的应力分布的至少一个点包括斜率值是-25 MPa/微米至-200 MPa/微米的正切。
实施方式27,如实施方式25或实施方式26所述的方法,其还包括使得基于玻璃的基材经受两次离子交换过程。
实施方式28,如实施方式25或26所述的方法,其还包括使得基于玻璃的基材经受三次离子交换过程。

Claims (25)

1.一种基于玻璃的制品,其包括:
第一表面和与第一表面相对的第二表面,它们限定了厚度t,以及第一表面与第二表面之间的中心,所述基于玻璃的制品包含0.1摩尔%至20摩尔%的Li2O、经离子交换的钾和经离子交换的钠;
在经过化学强化成为基于玻璃的制品之前,所述基于玻璃的基材包含如下玻璃组成,以摩尔百分比计,其包含:40摩尔%至80摩尔%的SiO2,10摩尔%至30摩尔%的Al2O3,0摩尔%至10摩尔%的B2O3,0摩尔%至20摩尔%的R2O,以及0摩尔%至15摩尔%的RO,其中R2O指的是碱金属氧化物的总量,RO指的是碱土金属氧化物的总量,所述玻璃组成包含0.1摩尔%至12摩尔%的Na2O,大于0摩尔%且小于或等于3摩尔%的ZnO;以及
应力分布,其包括:从第一表面或者低于第一表面的点延伸到0.001t至0.1t范围内的峰点的峰丘应力区域,峰点处的压缩应力是25 MPa至750 MPa,其中,在第一表面与峰点之间的峰丘应力区域的应力分布的至少一个点包括斜率值是25 MPa/微米至500 MPa/微米的正切,从峰点延伸的应力减小区域,它的减小使得从峰点朝向中心延伸的应力减小区域的应力分布的至少一个点包括斜率值是-20 MPa/微米至-200 MPa/微米的正切,直到应力减小区域到达基于玻璃的制品具有零应力值的压缩深度,所述压缩深度的范围是0.1t至0.25t,以及从压缩深度延伸到最大拉伸应力的拉伸应力区域,其中,基于玻璃的制品包括0.01 mm至3 mm的厚度。
2.如权利要求1所述的基于玻璃的制品,其中,峰点处的应力是100 MPa至300 MPa的压缩应力。
3.如权利要求1所述的基于玻璃的制品,其中,在第一表面处存在拉伸应力,拉伸应力的绝对值是200 MPa至0 MPa,以及峰丘应力区域包括从第一表面延伸到峰点的应力增加区域,从而使得从第一表面延伸到峰点的应力增加区域的应力分布的至少一个点包括斜率值是20 MPa/微米至200 MPa/微米的正切,其中,在应力增加区域中,应力变得越来越压缩。
4.如权利要求1所述的基于玻璃的制品,其中,在第一表面处存在压缩应力,压缩应力的绝对值是大于0 MPa至750 MPa,以及峰丘应力区域包括从第一表面延伸到峰点的应力增加区域,从而使得从第一表面延伸到峰点的应力增加区域的应力分布的至少一个点包括斜率值是20 MPa/微米至200 MPa/微米的正切,其中,在应力增加区域中,应力变得越来越压缩。
5.如权利要求1所述的基于玻璃的制品,其中,峰丘区域从低于第一表面的点开始延伸。
6.如权利要求1所述的基于玻璃的制品,所述应力分布还包括包含经离子交换的钾和经离子交换的钠的压缩应力层,所述压缩应力层限定了从第一表面延伸到峰丘应力区域的表面应力区域,所述表面应力区域包括压缩应力,所述压缩应力从第一表面开始移动的压缩应力大小减小,从而使得从第一表面延伸到过渡部分的具有峰丘区域的表面应力区域的应力分布的至少一个点包括斜率值是-25 MPa/微米至-200 MPa/微米的正切。
7.如权利要求6所述的基于玻璃的制品,其中,从第一表面延伸到过渡部分的具有峰丘区域的表面应力区域的应力分布的至少一个点包括斜率值是-30 MPa/微米至-170 MPa/微米的正切。
8.如权利要求7所述的基于玻璃的制品,其中,第一表面处的压缩应力是500 MPa至1500 MPa。
9.如权利要求8所述的基于玻璃的制品,其中,第一表面处的压缩应力是650 MPa至1100 MPa。
10.如权利要求1-9中任一项所述的基于玻璃的制品,其中,所述基于玻璃的制品中存在的B2O3是0.1摩尔%至10摩尔%。
11.如权利要求1-9中任一项所述的基于玻璃的制品,其中,所述基于玻璃的制品中存在的P2O5是0.1摩尔%至10摩尔%。
12.如权利要求1-9中任一项所述的基于玻璃的制品,其中,所述基于玻璃的制品不含K2O。
13.如权利要求1-9中任一项所述的基于玻璃的制品,其中,应力分布在峰点与中心之间的所有点是包括幂指数的幂律分布的形式,其中,幂指数是1.2至3.4。
14.如权利要求1-9中任一项所述的基于玻璃的制品,其中,基于玻璃的制品还包括以下任意一种或多种:对于至少10个样品,180目砂纸上的平均掉落高度大于190 cm;对于至少10个样品,180目砂纸上的平均掉落高度是192 cm或更高;对于至少10个样品,180目砂纸上的最大掉落高度为225 cm的掉落测试中的存活率是50%或更高;对于至少4个样品,30目砂纸上的平均掉落高度大于70 cm;对于至少4个样品,30目砂纸上的平均掉落高度是73 cm或更高;对于至少4个样品,30目砂纸上的存活率是100%,其中,最大掉落高度是50 cm。
15.如权利要求1-9中任一项所述的基于玻璃的制品,对于球形尖端圆锥轮廓尖端,3或更大的样品尺寸,其还包括以下至少一种平均划痕长度:(i)小于300微米;或者(ii)小于275微米;或者(iii)小于或等于250微米。
16.如权利要求1-9中任一项所述的基于玻璃的制品,当以136°的4侧钻石尖端进行测试时,以1N力每10秒的速率从0上升到0.5N,5秒测试持续时间,探针速度为0.4 mm/s,其还包括以下至少一种划痕长度:(i)小于190微米,或者(ii)小于175微米,或者(iii)小于150微米,或者(iv)小于145微米。
17.如权利要求1-9中任一项所述的基于玻璃的制品,其中,基于玻璃的制品还包括以下至少一种:对于至少10个样品,180目砂纸上的平均掉落高度大于150 cm;对于至少10个样品,180目砂纸上的平均掉落高度是153 cm或更高;对于至少10个样品,180目砂纸上的最大掉落高度为225 cm的掉落测试中的存活率是20%或更高;对于至少2个样品,30目砂纸上的平均掉落高度大于40 cm;以及对于至少2个样品,30目砂纸上的平均掉落高度是43 cm或更高。
18.如权利要求1-9中任一项所述的基于玻璃的制品,对于球形尖端圆锥轮廓尖端,3或更大的样品尺寸,其还包括如下平均划痕长度:小于350微米、或者小于340微米、或者小于或等于334微米。
19.如权利要求1-9中任一项所述的基于玻璃的制品,当以136°的4侧钻石尖端进行测试时,以1N力每10秒的速率从0上升到0.5N,5秒测试持续时间,探针速度为0.4 mm/s,其还包括以下至少一种划痕长度:(i)小于190微米;或者(ii)小于175微米;或者(iii)小于150微米;或者(iv)小于145微米;或者(v)小于125微米;或者(vi)小于100微米;或者(vii)小于75微米;或者(viii)小于50微米;或者(ix)小于40微米;或者(x)小于30微米;或者(xi)小于25微米;或者(xii)小于20微米;或者(xiii)小于15微米;或者(xiv)小于10微米;或者(xv)小于5微米;或者(xvi)小于4微米;或者(xvii)小于3微米。
20.如权利要求1-9中任一项所述的基于玻璃的制品,其还包括第一表面上的涂层。
21.如权利要求20所述的基于玻璃的制品,其还包括第二表面上的涂层。
22.如权利要求20所述的基于玻璃的制品,其中,所述涂层包括耐划痕涂层。
23.一种显示装置,其包括:
包括前表面、后表面和侧表面的外壳;
至少部分位于所述外壳内的电子组件;
位于所述外壳的前表面或者与所述外壳的前表面相邻的显示器;以及
布置在显示器上方的覆盖基材,其中,所述覆盖基材包括权利要求1-9中任一项所述的基于玻璃的制品。
24.一种制造基于玻璃的制品的方法,其包括:
将钠和钾离子交换到基于玻璃的基材中,所述基于玻璃的基材包含0.1摩尔%至20摩尔% Li2O,从而所述基于玻璃的基材包括:
第一表面和与第一表面相对的第二表面,它们限定了厚度t,单位是mm,以及第一表面与第二表面之间的中心;以及
应力分布,其包括:从第一表面或者低于第一表面的点延伸到0.001t至0.1t范围内的峰点的峰丘应力区域,峰点处的压缩应力是25 MPa至750 MPa,其中,在第一表面与峰点之间的峰丘区域的应力分布的至少一个点包括斜率值是25 MPa/微米至500 MPa/微米的正切,从峰点延伸的应力减小区域,它的减小使得从峰点朝向中心延伸的应力减小区域的应力分布的至少一个点包括斜率值是-20 MPa/微米至-200 MPa/微米的正切,直到应力减小区域到达基于玻璃的制品具有零应力值的压缩深度,所述压缩深度的范围是0.1t至0.25t,以及从压缩深度延伸到最大拉伸应力的拉伸应力区域,其中,基于玻璃的制品包括0.01 mm至3 mm的厚度;
所述将钠和钾离子交换到基于玻璃的基材中包括使得基于玻璃的基材经受两次离子交换过程,在第一次离子交换过程中,将基于玻璃的基材浸入熔盐浴中8小时至10小时,所述熔盐浴包含NaNO3、KNO3的组合,并且温度是485oC或更小;在第二次离子交换过程中,第二浴包含单种金属NaNO3
在经过化学强化成为基于玻璃的制品之前,所述基于玻璃的基材包含如下玻璃组成,以摩尔百分比计,其包含:40摩尔%至80摩尔%的SiO2,10摩尔%至30摩尔%的Al2O3,0摩尔%至10摩尔%的B2O3,0摩尔%至20摩尔%的R2O,以及0摩尔%至15摩尔%的RO,其中R2O指的是碱金属氧化物的总量,RO指的是碱土金属氧化物的总量,所述玻璃组成包含0.1摩尔%至12摩尔%的Na2O,大于0摩尔%且小于或等于3摩尔%的ZnO。
25.如权利要求24所述的方法,其中,所述应力分布还包括包含经离子交换的钾和经离子交换的钠的压缩应力层,所述压缩应力层限定了从第一表面延伸到峰丘应力区域的表面应力区域,所述表面应力区域包括压缩应力,所述压缩应力从第一表面开始移动的压缩应力大小减小,从而使得从第一表面延伸到过渡部分的具有峰丘区域的表面应力区域的应力分布的至少一个点包括斜率值是-25 MPa/微米至-200 MPa/微米的正切。
CN201980020804.9A 2018-01-24 2019-01-23 在深度处具有高的应力大小的基于玻璃的制品 Active CN111918845B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862621241P 2018-01-24 2018-01-24
US62/621,241 2018-01-24
PCT/US2019/014838 WO2019147733A1 (en) 2018-01-24 2019-01-23 Glass-based articles having high stress magnitude at depth

Publications (2)

Publication Number Publication Date
CN111918845A CN111918845A (zh) 2020-11-10
CN111918845B true CN111918845B (zh) 2023-06-09

Family

ID=65529770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980020804.9A Active CN111918845B (zh) 2018-01-24 2019-01-23 在深度处具有高的应力大小的基于玻璃的制品

Country Status (7)

Country Link
US (1) US11724965B2 (zh)
EP (1) EP3743394B1 (zh)
JP (1) JP7312756B2 (zh)
KR (1) KR102614080B1 (zh)
CN (1) CN111918845B (zh)
TW (1) TWI705048B (zh)
WO (1) WO2019147733A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6794866B2 (ja) * 2017-02-15 2020-12-02 Agc株式会社 化学強化ガラスおよびその製造方法
US11964908B2 (en) * 2018-12-25 2024-04-23 Nippon Electric Glass Co., Ltd. Tempered glass sheet and method for manufacturing same
KR20210077057A (ko) * 2019-12-16 2021-06-25 삼성디스플레이 주식회사 유리 제품 및 이를 포함하는 디스플레이 장치
KR20210077854A (ko) 2019-12-17 2021-06-28 삼성디스플레이 주식회사 유리 제품 및 그 제조 방법
KR20210080654A (ko) * 2019-12-20 2021-07-01 삼성디스플레이 주식회사 유리 제품 및 이를 포함하는 디스플레이 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097319A (zh) * 2010-09-13 2013-05-08 法国圣-戈班玻璃公司 玻璃片
CN106866000A (zh) * 2015-12-11 2017-06-20 康宁股份有限公司 包含金属氧化物浓度梯度的可熔合成形的基于玻璃的制品
CN107265884A (zh) * 2016-04-08 2017-10-20 康宁股份有限公司 具有含两个区域的应力分布的玻璃基制品及其制备方法
CN206580739U (zh) * 2014-10-08 2017-10-24 康宁股份有限公司 玻璃基制品

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6516634B1 (en) 1999-02-12 2003-02-11 The Penn State Research Foundation Strengthening, crack arrest and multiple cracking in brittle materials using residual stresses
US6472068B1 (en) 2000-10-26 2002-10-29 Sandia Corporation Glass rupture disk
ITTO20010673A1 (it) 2001-07-10 2003-01-10 Uni Di Trento Dipartiment O Di Vetro con funzionalita' di sensore di frattura, di sforzo e deformazione e relativo metodo di realizzazione.
DE102004022629B9 (de) 2004-05-07 2008-09-04 Schott Ag Gefloatetes Lithium-Aluminosilikat-Flachglas mit hoher Temperaturbeständigkeit, das chemisch und thermisch vorspannbar ist und dessen Verwendung
CN101689376B (zh) 2007-09-28 2012-07-11 Hoya株式会社 磁盘用玻璃基板及其制造方法、磁盘
WO2009041618A1 (ja) 2007-09-28 2009-04-02 Hoya Corporation 磁気ディスク用ガラス基板及びその製造方法、磁気ディスク
US8232218B2 (en) 2008-02-29 2012-07-31 Corning Incorporated Ion exchanged, fast cooled glasses
EP2307328A1 (en) * 2008-07-11 2011-04-13 Corning Incorporated Glass with compressive surface for consumer applications
US8193128B2 (en) 2009-06-17 2012-06-05 The Penn State Research Foundation Treatment of particles for improved performance as proppants
JP5863674B2 (ja) 2010-02-02 2016-02-17 アップル インコーポレイテッド ポータブル電子デバイス用カバーのガラスの改善された化学強化
US8950215B2 (en) 2010-10-06 2015-02-10 Apple Inc. Non-contact polishing techniques for reducing roughness on glass surfaces
JP5897595B2 (ja) 2010-11-30 2016-03-30 コーニング インコーポレイテッド 圧縮下にある表面及び中央領域を有するガラス
US20120216569A1 (en) 2011-02-24 2012-08-30 Douglas Clippinger Allan Method of producing constancy of compressive stress in glass in an ion-exchange process
US20120216565A1 (en) 2011-02-24 2012-08-30 Douglas Clippinger Allan Method of producing constancy of compressive stress in glass in an ion exchange process
US9140543B1 (en) 2011-05-25 2015-09-22 Corning Incorporated Systems and methods for measuring the stress profile of ion-exchanged glass
WO2013116420A1 (en) 2012-02-01 2013-08-08 Corning Incorporated Method of producing constancy of compressive stress in glass in an ion-exchange process
US9359251B2 (en) 2012-02-29 2016-06-07 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
US8854623B2 (en) 2012-10-25 2014-10-07 Corning Incorporated Systems and methods for measuring a profile characteristic of a glass sample
US9714192B2 (en) 2013-02-08 2017-07-25 Corning Incorporated Ion exchangeable glass with advantaged stress profile
US11079309B2 (en) 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
US10442730B2 (en) * 2013-11-25 2019-10-15 Corning Incorporated Method for achieving a stress profile in a glass
US20150166407A1 (en) 2013-12-08 2015-06-18 Saxon Glass Technologies, Inc. Strengthened glass and methods for making utilizing electric field assist
WO2016033038A1 (en) 2014-08-28 2016-03-03 Corning Incorporated Laminated glass article with ion exchangeable core and clad layers having diffusivity contrast and method of making the same
US10150698B2 (en) * 2014-10-31 2018-12-11 Corning Incorporated Strengthened glass with ultra deep depth of compression
CN108137396B (zh) * 2015-10-14 2022-04-26 康宁股份有限公司 具有确定的应力分布的层压玻璃制品及其形成方法
TWI771909B (zh) * 2015-12-08 2022-07-21 美商康寧公司 S型應力輪廓及製造方法
KR101927013B1 (ko) * 2016-01-21 2018-12-07 에이지씨 가부시키가이샤 화학 강화 유리 및 화학 강화 유리의 제조 방법
US11059744B2 (en) * 2016-06-14 2021-07-13 Corning Incorporated Glasses having improved drop performance
JP6794866B2 (ja) 2017-02-15 2020-12-02 Agc株式会社 化学強化ガラスおよびその製造方法
US20210387904A1 (en) * 2018-10-09 2021-12-16 Nippon Electric Glass Co., Ltd. Reinforced glass and method for producing reinforced glass
JP7400738B2 (ja) * 2019-01-18 2023-12-19 Agc株式会社 化学強化ガラスおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097319A (zh) * 2010-09-13 2013-05-08 法国圣-戈班玻璃公司 玻璃片
CN206580739U (zh) * 2014-10-08 2017-10-24 康宁股份有限公司 玻璃基制品
CN106866000A (zh) * 2015-12-11 2017-06-20 康宁股份有限公司 包含金属氧化物浓度梯度的可熔合成形的基于玻璃的制品
CN107265884A (zh) * 2016-04-08 2017-10-20 康宁股份有限公司 具有含两个区域的应力分布的玻璃基制品及其制备方法

Also Published As

Publication number Publication date
CN111918845A (zh) 2020-11-10
WO2019147733A1 (en) 2019-08-01
US20210047237A1 (en) 2021-02-18
TWI705048B (zh) 2020-09-21
KR20200110695A (ko) 2020-09-24
JP2021511281A (ja) 2021-05-06
JP7312756B2 (ja) 2023-07-21
EP3743394B1 (en) 2021-12-15
US11724965B2 (en) 2023-08-15
KR102614080B1 (ko) 2023-12-14
TW201934513A (zh) 2019-09-01
EP3743394A1 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
US11279652B2 (en) Glass-based articles including a metal oxide concentration gradient
US20230147808A1 (en) Glass-based articles including a metal oxide concentration gradient
CN109952278B (zh) 具有改善的破碎性能的玻璃基制品
KR102029948B1 (ko) 금속 산화물 농도 구배를 포함하는 융합-형성가능한 유리계 제품
CN111918845B (zh) 在深度处具有高的应力大小的基于玻璃的制品
TWI810155B (zh) 具有改良掉落性能之玻璃
JP2020073442A (ja) 金属酸化物濃度勾配を有するガラスおよびガラスセラミック
US11131611B2 (en) Impact testing apparatus and methods
US11968794B2 (en) Glass-based articles having crack resistant stress profiles
JP2024073578A (ja) 金属酸化物濃度グラジエントを含むガラス系物品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant