CN111905742B - 用于no直接分解的改性铁氧体催化剂及制造和使用催化剂的方法 - Google Patents
用于no直接分解的改性铁氧体催化剂及制造和使用催化剂的方法 Download PDFInfo
- Publication number
- CN111905742B CN111905742B CN202010375925.XA CN202010375925A CN111905742B CN 111905742 B CN111905742 B CN 111905742B CN 202010375925 A CN202010375925 A CN 202010375925A CN 111905742 B CN111905742 B CN 111905742B
- Authority
- CN
- China
- Prior art keywords
- composition
- emission
- stage
- catalyst
- abatement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 32
- 229910000859 α-Fe Inorganic materials 0.000 title abstract description 3
- 239000000203 mixture Substances 0.000 claims abstract description 82
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000010949 copper Substances 0.000 claims abstract description 35
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 32
- 238000003860 storage Methods 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000011701 zinc Substances 0.000 claims abstract description 19
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 17
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 16
- 150000001768 cations Chemical class 0.000 claims abstract description 11
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 8
- 239000010941 cobalt Substances 0.000 claims abstract description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 43
- 238000006722 reduction reaction Methods 0.000 claims description 10
- 231100001143 noxa Toxicity 0.000 claims description 7
- 230000009467 reduction Effects 0.000 claims description 6
- 239000003638 chemical reducing agent Substances 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 238000010531 catalytic reduction reaction Methods 0.000 claims description 4
- 238000002485 combustion reaction Methods 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 claims description 2
- 238000004611 spectroscopical analysis Methods 0.000 claims description 2
- 238000001179 sorption measurement Methods 0.000 abstract description 15
- 238000001556 precipitation Methods 0.000 abstract description 8
- 229910052802 copper Inorganic materials 0.000 abstract description 5
- 230000002194 synthesizing effect Effects 0.000 abstract description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 4
- 150000002823 nitrates Chemical class 0.000 abstract description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical group O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 206
- 229910002089 NOx Inorganic materials 0.000 description 44
- 239000007789 gas Substances 0.000 description 36
- 230000000694 effects Effects 0.000 description 22
- 229910016516 CuFe2O4 Inorganic materials 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 229910001960 metal nitrate Inorganic materials 0.000 description 12
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000001354 calcination Methods 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 9
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 8
- 229910052596 spinel Inorganic materials 0.000 description 8
- 239000011029 spinel Substances 0.000 description 8
- 229910002651 NO3 Inorganic materials 0.000 description 7
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 5
- 238000003795 desorption Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- 229910003212 Ni0.5Cu0.5 Inorganic materials 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000002336 sorption--desorption measurement Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Inorganic materials [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- DXKGMXNZSJMWAF-UHFFFAOYSA-N copper;oxido(oxo)iron Chemical compound [Cu+2].[O-][Fe]=O.[O-][Fe]=O DXKGMXNZSJMWAF-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 235000008434 ginseng Nutrition 0.000 description 2
- 229910001691 hercynite Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- 241000208340 Araliaceae Species 0.000 description 1
- 229910003321 CoFe Inorganic materials 0.000 description 1
- 229910002518 CoFe2O4 Inorganic materials 0.000 description 1
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 1
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- 240000004371 Panax ginseng Species 0.000 description 1
- 235000002789 Panax ginseng Nutrition 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 238000012733 comparative method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- RJIWZDNTCBHXAL-UHFFFAOYSA-N nitroxoline Chemical compound C1=CN=C2C(O)=CC=C([N+]([O-])=O)C2=C1 RJIWZDNTCBHXAL-UHFFFAOYSA-N 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920003196 poly(1,3-dioxolane) Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052566 spinel group Inorganic materials 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9422—Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9431—Processes characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/9454—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9481—Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/005—Spinels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/75—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/70—Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0036—Grinding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/06—Washing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/088—Decomposition of a metal salt
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0814—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20738—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20746—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20753—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20761—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20792—Zinc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/91—NOx-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
- B01J2235/15—X-ray diffraction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/14—Nitrogen oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
本发明涉及用于NO直接分解的改性铁氧体催化剂及制造和使用催化剂的方法。NOx减排组合物具有式MxCu1‑xFe2O4,其中M是可以为钴、镍和锌中的任一种的取代金属阳离子;且x大于0且小于1。这样的组分可以用作直接分解催化剂和/或被动吸附/存储成分。合成该组分的方法包括含有铜、铁和钴、镍和锌中至少一种的硝酸盐的溶液的碱性沉淀。
Description
技术领域
本公开总体上涉及用于转化和存储燃烧废气中的不期望成分的催化剂,且更具体地,涉及用于NOx的直接分解的催化剂。
背景技术
本文提供的背景技术说明用于总体上呈现本公开的背景的目的。在该背景技术部分中可能说明的程度上,以及在提交时可能不具有现有技术资格的描述内容,目前命名的发明人的工作均未明确或暗含为反对本技术的现有技术。
一氧化氮(NO)和二氧化氮(NO2)是燃烧废气流中的有害成分。许多用于减排NO和NO2(NOx)的催化剂生成不期望的产物,例如一氧化二氮(N2O)或氨。将NOx直接转化为N2和O2的直接分解反应是已知的,但是用于直接分解的催化剂常常具有较低的活性和/或选择性。
此外,大多数转化催化剂在低温下几乎没有活性,使得在废气和转化器温度较低时,在车辆“冷启动”条件的期间NOx没有被转化。在低温下保留NOx并在较高温度下释放NOx的被动NOx吸附剂可以将该问题最小化。
因此,期望提供具有高活性和选择性的用于NOx直接分解的改善的催化剂以及改善的NOx吸附材料。
发明内容
本部分提供本公开的总体概述,且不是其全部范围或其所有特征的全面公开。
在多个方面中,本教导提供一种两阶段NOx减排装置,用于在冷启动期间从发动机废气中除去NOx。该装置包括外壳,该外壳具有相对于废气的预期流动方向限定的上游部和下游部。该装置还包括低温NOx存储构件,该低温NOx存储构件构造为在低温时吸附NOx、且在较高温时解吸NOx,并且包含具有式MxCu1-xFe2O4的NOx减排组合物,其中M是可以为钴、镍和锌中的任一种的取代金属阳离子;且x大于0且小于1。该装置还包括NOx转化催化剂,其位于存储构件的下游并被构造为催化NOx的转化。在发动机冷启动期间,NOx会保留在存储构件中,直到废气和装置已充分变暖以活化下游转化催化剂。
在其它方面,本教导提供一种合成NOx减排组合物的方法。该方法包括将碱添加到混合金属硝酸盐溶液中直到达到9-10的pH,从而得到粗NOx减排组合物的沉淀的步骤。该混合金属硝酸盐溶液包括Fe(NO3)3;Cu(NO3)2;和至少一种另外的金属硝酸盐。该至少一种另外的金属硝酸盐可以为Co(NO3)2、Zn(NO3)2和Ni(NO3)2中的任一种。
在其它方面,本教导提供一种用于从气体混合物中直接分解除去NOx的方法。该方法包括步骤:将具有NOx的气体混合物暴露于具有式MxCu1-xFe2O4的NOx减排组合物,其中M是可以为钴、镍和锌中的任一种的取代金属阳离子;且x大于0且小于1。
根据本文提供的说明,其它领域的可应用性和增强上述技术的各种方法将变得显而易见。本概述中的说明和具体实施例仅旨在用于阐述的目的,并不旨在限制本公开的范围。
附图说明
本教导将由详细的说明和附图更加全面地理解,其中:
图1A和1B分别是通过比较方法和本教导的方法制造的催化剂的NO直接分解活性的图;
图2A和2B分别示出图1A和1B的组合物的X射线衍射光谱;
图3是在500℃下评估的本教导的各种NOx减排组合物和未取代的铜铁尖晶石(cuprospinel)的NO分解活性的图;
图4示出图3的未取代的铜铁尖晶石和各种NOx减排组合物的N2选择性分布;
图5示出图3和4的未取代的铜铁尖晶石和各种NOx减排组合物的X射线衍射(XRD)光谱;
图6示出图3-5的组合物的随温度而变(temperature-dependent)的NOx吸附/解吸迹线;和
图7示出示例性的两阶段NOx减排装置的示意性平面图。
应当注意,出于说明某些方面的目的,本文提出的附图旨在例示本技术的方法、算法和装置的一般特征。这些附图可能没有精确地反映任何给定方面的特征,并且不必须旨在限定或限制本技术的范围内的具体实施方式。此外,某些方面可以合并来自附图组合的特征。
具体实施方式
本教导提供用于合成具有NOx直接分解催化活性以及被动NOx存储能力的催化剂的方法。本教导还提供用于从燃烧废气流中除去NOx的两阶段方法和装置、具有催化剂的催化转化器、以及用于制造该催化剂的方法。所公开的催化剂以显著的催化活性和非常高的选择性促进NOx直接分解成N2和O2。在一种情况下,与NH3或其它选择性催化还原(SCR)产物的形成相反,对于N2产物形成的选择性超过95%。
本公开的NOx减排组合物具有通式MxCu1-xFe2O4(M=Co、Ni和Zn中的任一种),并具有强的NOx存储能力,并且与未掺杂的CuFe2O4催化剂相比,具有在400℃–650℃的温度范围内改善的催化活性。用于合成所公开的组合物的方法包括铜、铁和取代金属M的硝酸盐的共沉淀。特别地,显示出阴离子、硝酸盐的身份对于所得材料的活性很重要。NOx减排装置具有NOx吸附阶段,随后是分解催化剂阶段。本教导的NOx减排组合物存在于NOx减排组合物吸附阶段中,并且NOx减排组合物减排催化剂存在于催化剂阶段中。在冷启动期间,NOx在吸附阶段中被所公开的组合物吸附。随着废气变热,被吸附的NOx解吸并进入催化剂阶段,在那里其被分解。
因此,公开NOx减排组合物,其具有尖晶石结构和根据式A的式:
MxCu1-xFe2O4 A
其中M是可以为钴、镍和锌中的任一种的取代金属;且x大于0且小于1。在某些特定的实施方式中,x可以是0.5或0.75。可以理解的是,未取代的铜铁尖晶石(CuFe2O4)通常为反尖晶石,其中铜(II)通常占据尖晶石结构中的八面体位点,且铁(III)同时占据四面体和八面体位点。因此,随着取代金属部分地置换尖晶石结构中的铜离子,通常会希望取代金属在本教导的NOx减排组合物中占据八面体位点。
所公开的NOx减排组合物对于将NOx直接分解成N2和O2具有改善的催化活性,其中NOx被定义为氧化氮(NO)和(NO2)的任何组合。NOx的直接分解根据反应I和II中的一个或两个进行:
2NO→N2+O2 (I),和
2NO2→N2+2O2 (II)。
直接分解反应通常可通过产物形成与竞争反应区分开。例如,不完全的分解反应(诸如示例性反应III和IV)生成不期望的一氧化二氮,而不是氮气:
4NO→2N2O+O2 (III),和
4NO2→2N2O+3O2 (IV)。
类似地,各种选择性催化还原(SCR)反应可以在气态还原剂(诸如氨或烷烃)的存在下发生,并生成水、或水和二氧化碳,而不是氧气,如反应V至VIII所例示那样:
4NO+4NH3+O2→4N2+6H2O (V),
2NO2+4NH3+O2→3N2+6H2O (VI),
NO+CH4+O2→N2+CO2+2H2O (VII),和
2NO2+2CH4+2O2→N2+2CO2+2H2O (VIII)。
当存在氧气时,NOx也可以被氧化,诸如反应IX所示:
2NO+O2→2NO2 (IX)。
在其中将催化剂暴露于含氧化氮的气流的受控反应条件下,反应I和IV中的任一个或全部能够主要地发生,但随着O2通过反应I和IV生成,反应IX也能够次要地发生。在反应X中示出组合反应:
(4a+4c-2b)NO→aN2+bO2+cN2O+(2a-2b+c)NO2 (X)
可以根据公式1定义此类组合反应X的氮产物选择性(N2选择性):
还公开一种合成上述类型的NOx减排组合物的方法。合成方法包括将碱添加到混合金属硝酸盐溶液中直到达到9-10的pH,从而得到粗NOx减排组合物的沉淀的步骤。可替代地将该步骤称为碱性沉淀步骤。碱可包括NaOH、另一种氢氧化物或任何其它合适的碱性材料。混合金属硝酸盐溶液含有Fe(NO3)3;Cu(NO3)2;和选自Co(NO3)2、Zn(NO3)2和Ni(NO3)2的至少一种另外的金属硝酸盐。该合成方法还可包括至少一个洗涤沉淀物以生成纯NOx减排组合物的步骤。该方法可进一步包括以下步骤:将纯NOx减排组合物研磨至所需粒度,和/或煅烧纯NOx减排组合物以除去挥发性杂质。
应该理解的是,混合金属硝酸盐溶液通常将包括以足以实现上述式A中金属的所述化学计量比的摩尔比而存在的各种硝酸盐。因此,Cu(NO3)2和至少一种另外的金属硝酸盐的组合会通常相对于Fe(NO3)3以1:2的摩尔比存在。在一些实施方式中,至少一种另外的金属硝酸盐会相对于Cu(NO3)2以在约1:1至约3:1的范围内(包括端点值)的摩尔比存在。
应当注意,碱性沉淀步骤必须用构成NOx减排组合物的金属离子的硝酸盐来进行,而不是用具有与硝酸盐不同的阴离子的成分金属阳离子的盐。图1A示出用与上述方法相似的方法制造的比较性NOx减排组合物的NOx直接分解活性,除了其中碱性沉淀步骤是用氯化物盐(FeCl3、CuCl2和CoCl2)来进行,以生成比较组合物Co0.5Cu0.5Fe2O4。图1B示出本教导的组合物的类似数据,其中碱性沉淀步骤用所需的硝酸盐进行。图1A与图1B的比较表明,只有通过所公开的方法(使用硝酸盐前体)合成的组合物具有明显的NOx直接分解活性。特别地,在图1B的实施例中,通过所公开的方法形成的组合物生成165ppm的N2,并且具有约0.0134μmol/g/s的活性,而图1A的比较例仅生成1ppm的N2,且具有约0.00015μmol/g/s的活性。
图2A和2B分别示出图1A和1B的组合物的X射线衍射光谱。图2A和2B的结果表明,比较组合物(使用氯化物前体制备)和本教导的减排组合物(使用硝酸盐前体制备)仅呈现出与预期的反尖晶石结构相对应的峰,并且大致彼此相同。这意味着活性差异不归因于任何广泛的结构差异。不受任何特定理论的束缚,可以推测采用氯化物前体合成的比较组合物的低得多的活性归因于氯离子杂质,其干扰直接分解活性,并且在洗涤步骤中难以除去。应当理解的是,下文讨论的组合物通过在碱性沉淀步骤中使用硝酸盐前体的上述合成方法合成。
图3是在500℃下评估的未取代的铜铁尖晶石和本教导的各种NOx减排组合物的NO分解活性的图。图3中所示的结果表明,向CuFe2O4中添加Co、Ni和Zn改善直接NO分解活性。有趣的是,与M0.5Cu0.5Fe2O4(M=Co、Ni和Zn)催化剂相比,M0.75Cu0.25Fe2O4(M=Co、Ni和Zn)呈现出更大的活性。这些测定结果意味着,在尖晶石的八面体位点处存在较少的铜导致改善的活性。在图3中测试的各种组合物中,Co0.75Cu0.25Fe2O4呈现出最大的直接NO分解活性。
图4示出图3的未取代的铜铁尖晶石和各种NOx减排组合物的N2选择性分布。图4的结果确认,所有试验的组合物主要地催化直接分解NOx成N2,而不是更不期望的反应III-X的产物N2O或NO2。FTIR检测允许将较不期望的N2O/NO2与所期望的N2产物区分开,以及N2选择性的计算,如图4所示那样。特别地,尽管取代的铜铁尖晶石(本教导的NOx减排组合物)呈现出比未取代的铜铁尖晶石略高的N2选择性,但包括未取代的铜铁尖晶石和本教导的各种NOx减排组合物的所有试验的组合物呈现出超过90%的N2选择性。特别地,Co0.75Cu0.25Fe2O4组合物呈现出对氮的100%选择性。由于由铜置换引起的N2选择性的提高很小,因此这些测定结果表明,向CuFe2O4中添加Co、Ni和Zn没有明显改变CuFe2O4的N2选择性。
图5示出图3和4的未取代的铜铁尖晶石和各种NOx减排组合物的X射线衍射(XRD)光谱。这些结构表征测定有助于理解取代金属M对CuFe2O4铜铁尖晶石的基本结构性质的影响。在煅烧后,未取代的铜铁尖晶石在30.14、35.94、37.31、43.34、53.86、57.45、62.93度处显示峰。这些2θ值对应于表示立方反尖晶石结构的存在的(220)、(311)、(222)、(400)、(422)、(511)和(440)面的反射,并且与CuFe2O4铜铁尖晶石的存在一致。另外,衍射峰与报告值(JCPDS文件号:10-325)很好地匹配,并且对应于的晶格参数。除了由于CuFe2O4铜铁尖晶石所致的峰外,样品还在33.4、39、49.7、53.8度处显示峰,这些峰对应于Fe2O3(JCPDS文件号:1309-37-1)。据信,在煅烧期间,由于Fe3O4的氧化的发生Fe2O3的形成。有趣的是,本教导的取代的组合物MxCu1-xFe2O4均未显示Fe2O3峰。该结果表明,向CuFe2O4中添加取代的二价金属阳离子抑制煅烧期间Fe2O3的形成。同样,没有对应于原始的Co、Ni和Zn氧化物或Fe/Cu与Co、Ni和Zn金属之间的化合物的峰。这表明取代的二价金属阳离子被完全结合入尖晶石反晶格中,并在煅烧期间使得结构对氧化稳定。尽管图5的XRD结果没有显示出Fe2O3的证据,要指出的是,XRD对该相的检测下限为约5%。
对本公开的几种NOx减排组合物进行了莫斯鲍尔光谱测定,以在低于XRD的检出极限的水平测定Fe2O3的存在,结果显示在表1中。有趣的是,只有Ni0.5Cu0.5Fe2O4在煅烧后具有大量的Fe2O3;而被测的其它三种组合物在煅烧后没有形成任何Fe2O3。同样,Ni0.5Cu0.5Fe2O4催化剂在四种研究的催化剂中呈现出最低的活性。这些结果表明,在煅烧期间Fe2O3的形成降低了铜铁尖晶石基组合物对于直接NO分解的活性。CuFe2O4(可能含有部分Fe3O4)中的Co、Ni和/或Zn的取代抑制煅烧期间Fe2O3的形成,并改善直接NO分解活性。
表1.通过莫斯鲍尔测定的NOx减排组合物中的Fe2O3含量
NO<sub>x</sub>减排组合物 | 检测到的Fe<sub>2</sub>O<sub>3</sub>重量百分比 |
Co<sub>0.5</sub>Cu<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> | 0 |
Ni<sub>0.5</sub>Cu<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> | 6 |
Co<sub>0.75</sub>Cu<sub>0.25</sub>Fe<sub>2</sub>O<sub>4</sub> | 0 |
Ni<sub>0.75</sub>Cu<sub>0.25</sub>Fe<sub>2</sub>O<sub>4</sub> | 0 |
因此,鉴于以上所示的综合结果,还公开一种用于从废气流中除去NOx的方法。用于从废气流中除去NOx的方法包括使废气流流过本教导的NOx减排组合物的步骤。在各种实施方式中,废气流可包括NOx,并且不包括还原剂,使得SCR或需要还原剂的任何其它转化路径不可能。应当理解的是,这是由于如本文所公开的对于直接NOx分解的特别高的活性。在某些实施方式中,废气流在即将接触NOx减排组合物之前,应在450℃至650℃的温度范围内。在用于从废气流中除去NOx的方法中所采用的NOx减排组合物如上述那样,并且根据如上所述的用于合成NOx减排组合物的方法来合成。
如下所示,本教导的NOx减排组合物还具有相当大的被动NOx吸附能力。图6示出图3-5的组合物的随温度而变的NOx吸附/解吸迹线。表2中示出CuFe2O4和各种MxCu1-xFe2O4组合物的NOx存储容量值。参见图2,与未取代的CuFe2O4相比,本教导的所有NOx减排组合物呈现出更大的NOx存储容量。在各种组合物中,Ni0.75Cu0.25Fe2O4呈现出最大的NOx存储容量,是未取代的CuFe2O4的两倍多。这些结果显示,将取代金属M引入八面体位点改善NOx存储性能。
表2选定组合物的NOx存储容量
催化剂 | NO<sub>x</sub>存储容量(μmol/g) |
CuFe<sub>2</sub>O<sub>4</sub> | 18.5 |
Co<sub>0.5</sub>Cu<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> | 24.4 |
Co<sub>0.75</sub>Cu<sub>0.25</sub>Fe<sub>2</sub>O<sub>4</sub> | 27.9 |
Ni<sub>0.5</sub>Cu<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> | 29.1 |
Ni<sub>0.75</sub>Cu<sub>0.25</sub>Fe<sub>2</sub>O<sub>4</sub> | 45.5 |
Zn<sub>0.5</sub>Cu<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> | 35.3 |
Zn<sub>0.75</sub>Cu<sub>0.25</sub>Fe<sub>2</sub>O<sub>4</sub> | 28.1 |
参考图6,在NOx存储之后,催化剂在较高温度下释放NO用于直接NO分解。有趣的是,所有试验的组合物均呈现出相似的解吸曲线,其中大部分NO在从约170℃至约250℃的温度范围内解吸。
因此,且参考图7,公开了两阶段NOx减排装置100。图7示出示例性的两阶段装置的示意性平面图。装置100可包括具有入口和出口的外壳140。外壳140可构造成含有低温NOx存储构件110和位于该存储构件下游的高温NOx转化催化剂120。NOx存储构件110被构造为在低温时吸附NOx、并且在较高温时解吸NOx。因此,且鉴于以上在图6和表2中呈现的结果,NOx存储构件110通常将包括具有式MxCu1-xFe2O4的本教导的NOx减排组合物,如上述那样。
NOx转化催化剂120通常被构造为通过上述反应I-X中的任一个来催化NOx的转化。在某些实施方式中,转化催化剂120可具体地排除本教导的NOx减排组合物。在某些实施方式中,根据上面的反应I和/或II,转化催化剂120可含有可操作以催化直接NOx分解的催化剂。
在一些实施方式中,存储构件110和转化催化剂120可以在空间上彼此分开,如图7的示例所阐明的那样。在这样的实施方式中,存储构件110和转化催化剂120可以相邻接触,或者,如图7所示,可以由分隔空间130所分隔。当存在这种分隔空间130时,其可以是基本上空的,或者可以被多孔的、可透气的或其它合适的材料占据。
术语“上游”和“下游”在本文中相对于废气流流过装置100的的预期方向使用,如图7中的箭头F所示。例如,存储构件110可以定位于废气流的上游部中(靠近气体入口部的区域),并且转化催化剂120可以定位于废气流的下游部中(靠近气体出口部的区域)。
将理解的是,在其中存储构件110位于废气流的上游部中并且转化催化剂120位于废气流的下游部中的实施方式中,这能够使得在废气流遇到转化催化剂120之前,废气流遇到存储构件110。
因此,在车辆“冷启动”期间,当废气处于相对低温时,低温废气将首先遇到存储构件110,在那里它将根据图4的热吸附解吸曲线而被吸附和存储。废气随着发动机运转持续时间的增加而变暖,存储构件110也将变暖,导致暂时存储的NOx的解吸,使得NOx能够向下游流向转化催化剂。应当理解的是,大多数NOx转化催化剂在低的冷启动温度下将具有低至可忽略的催化活性。因此,本装置100的一个好处是,冷的NOx将被保留在存储构件中,直到废气和装置100已经充分变暖以活化下游的转化催化剂120。这样,会期望转化催化剂120与存储构件110热匹配。例如,可期望的是,转化催化剂120在300℃或400℃的温度下达到最大催化活性的至少50%,使得当NOx开始从存储构件110解吸时其将具有足够的活性。
本公开的催化剂系统可用于具有入口和出口的腔室或外壳中,例如催化转化器。如本领域普通技术人员通常已知的,这样的腔室或外壳可以构造成通过入口接收废气流,并通过出口排出废气流,使得废气流具有特定的或限定的流向。
借助以下实施例进一步说明本发明。需要理解的是,提供这些实施例以说明具体的实施方案,而不应被理解为限制本发明的范围。
实施例1.NOx减排组合物的合成。
CuFe2O4购自Sigma Aldrich,并在400℃下煅烧1小时。通过使用NaOH作为沉淀剂的共沉淀法合成MxCu1-xFe2O4(M=Co、Ni和Zn)组合物。在典型的合成过程中,将所需量的Fe(NO3)3、Cu(NO3)2和其它取代金属硝酸盐(Co(NO3)2、Zn(NO3)2或Ni(NO3)2)分别溶解在去离子水中并混合在一起。制备200ml的2M氢氧化钠,并将其缓慢滴加到硝酸盐溶液中。随着NaOH溶液的加入,不断监测溶液的pH。使用磁搅拌器不断搅拌反应物,直到达到9-10的pH,生成沉淀。然后将沉淀物先后用蒸馏水和乙醇洗涤数次。然后倾析出上清液,并过滤以获得干净的沉淀物。然后将干净的沉淀物在120℃下干燥过夜。然后将所得的物质研磨成细粉,并以2℃/min的升温速率(ramp rate)在500℃下煅烧1小时。通过根据组合物中所需的化学计量比改变取代金属硝酸盐和Cu(NO3)2的比例来制备各种MxCu1-xFe2O4(x=0.5、0.75)组合物。
实施例2.NOx减排组合物的表征。
使用X射线衍射测定来测定实施例1-4和比较例的相组成。使用Rigaku SmartLabX射线衍射仪来进行X射线粉末衍射(XRD)测定。在20-80度的2θ范围内以每分钟0.5度的速率以及每步0.02度的步长来收集光谱。使用PDXL软件进行结构分析。使用ICDD-PDF数据库来确定材料的相组成。
莫斯鲍尔测定使用2GBq 57CoRh源(使用α-Fe在室温下校准)通过恒定加速度光谱仪进行。在Janis SHl-850闭环制冷系统中,在从50K的温度范围内收集光谱。
使用配备质谱仪的NETZSCH STA-449热重分析仪测定CoFe2O4和K/CoFe2O4催化剂的NO吸附容量。实验前,将催化剂在20%O2/He的存在下预热至600℃。预处理后,将温度降至100℃。然后借由使2%NO/He在催化剂上方通过4小时来吸附NO。通过测定NO吸附前后的重量来计算NO吸附容量。
使用原位傅立叶变换红外(FT-IR)光谱测定来测定NO吸附性质。将具有环境(气流)和温度控制的Harrick高温样品池用于原位漫反射FT-IR光谱。使用配备有液态N2冷却的MCT检测器的Thermo Scientific Nicolet 8700 Research FT-IR光谱仪记录光谱。以2cm-1的分辨率和平均64次扫描获得光谱。在300℃的NO吸附期间收集了原位漫反射FT-IR光谱。在NO吸附之前,首先将样品在350℃下在30ml/min的10%O2/He中预处理。在30ml/min的UHP He中冷却至300℃后,背景光谱图(扫描64次)为催化剂。通过使30ml/min的1%NO在催化剂上方流动25分钟来实现NO的吸附。允许NO吸附进行25分钟,同时使用系列收集器每分钟获取一次光谱。为了比较不同催化剂样品之间的峰强度,将吸附光谱标准化(归一化)为~1876cm-1处的NO气相峰。
使用NO的温度程控解吸(NO-TPD)实验来测定NO的解吸性质。使用来自Micromeritics的、配备了用于气相分析的质谱仪的3flex表面特征分析仪来进行NO-TPD实验。在实验之前,将催化剂在20%O2/He的存在下预热至300℃。预处理后,将温度降至100℃,并通过使2%NO/He在样品上方通过1小时来吸附NO。在NO吸附之后,借由使氦气通过1小时来除去物理吸附的气体。通过在氦气存在下将温度从100℃升高到700℃来测定NO解吸性质。通过使用MKS Cirrus-2质谱仪监测解吸的气体(NO、N2、O2、N2O和NO2)。
在固定床流动反应器中进行直接NOx分解测定。在如下条件下进行直接NOx分解测定:使用~1%NOx,其余为氦气,气体时空速度为2100h-1,且在450℃–650℃的温度范围内。反应之前,将催化剂在20%O2/He的存在下于500℃进行预处理。预处理后,将床温度降至450℃,并收集直接NOx分解测定结果。
前面的描述本质上仅是说明性的,绝不旨在以任何方式限制本公开、其应用或用途。如本文中所使用的,短语A、B和C中的至少一个应被解释为使用非排他性逻辑“或”表示逻辑(A或B或C)。应当理解的是,在不改变本公开的原理的情况下,可以以不同的顺序执行方法内的各个步骤。范围的公开包括所有范围和整个范围内细分范围的公开。
本文中使用的标题(诸如“背景技术”和“发明内容”)和子标题仅旨在用于本公开内的主题的一般组织,并且不旨在限制本技术或其任何方面的公开。具有所陈述的特征的多个实施方案的叙述并不旨在排除具有另外特征的其它实施方案、或结合所陈述的特征的不同组合的其它实施方案。
如本文中所使用的,术语“包含”和“包括”及其变体旨在为非限制性的,使得连续的或列表中的项目的叙述并不排除该技术的设备和方法中也可能有用的其它类似的项目。类似地,术语“能够”和“可以”及其变体旨在为非限制性的,使得对实施方案能够或可以包含某些要素或特征的陈述不排除不含有那些要素或特征的本技术的其它实施方案。
本公开的广泛教导可以以多种形式实现。因此,尽管本公开包括特定实施例,但是本公开的真实范围不应受到如此限制,因为根据说明书和所附权利要求书的研究,其它修改对本领域技术人员而言将变得显而易见。本文对一个或多个方面的引用是指,与一个实施方案或特定系统结合描述的特定特征、结构或特性被包括在至少一个实施方案或方面中。短语“一方面”(或其变型)的出现不必须指相同的方面或实施方案。还应当理解的是,本文讨论的各种方法步骤不必以所描绘的相同顺序执行,并且不是在每个方面或实施方案中都需要每个方法步骤。
为了说明和描述的目的,已经提供了实施方案的前述描述。其并非旨在穷举或限制本公开。特定实施方案的各个要素或特征通常不限于该特定实施方案,而是在适用的情况下是可互换的,并且即使未具体示出或描述也可以在所选实施方案中使用。同样也可以以许多方式变化。这样的变化不应被认为是背离本公开,并且所有这样的修改旨在被包括在本公开的范围内。
Claims (11)
1.一种用于在冷启动期间从发动机废气中除去NOx的两阶段NOx减排装置,该减排装置包括:
外壳,其具有相对于废气的预期流动方向限定的上游部和下游部;
低温NOx存储构件,其构造为在低温时吸附NOx、且在较高温时解吸NOx,并且包含具有式MxCu1-xFe2O4的NOx减排组合物,其中M是可以为钴、镍和锌中的任一种的取代金属阳离子;且x大于0且小于1;
NOx转化催化剂,其位于NOx存储构件的下游并被构造为催化NOx的转化;
其中,在发动机冷启动期间,NOx被保留在NOx存储构件中,直到废气和减排装置已充分变暖以活化下游NOx转化催化剂。
2.如权利要求1所述的两阶段NOx减排装置,其中,取代金属阳离子包含镍。
3.如权利要求1所述的两阶段NOx减排装置,其中,取代金属阳离子包含钴。
4.如权利要求1所述的两阶段NOx减排装置,其中,取代金属阳离子包含锌。
5.如权利要求1所述的两阶段NOx减排装置,其中,低温NOx存储构件包含Ni0.75Cu0.25Fe2O4。
6.如权利要求1所述的两阶段NOx减排装置,其中,低温NOx存储构件包含以莫斯鲍尔光谱法测定的小于5重量%的Fe2O3。
7.如权利要求1所述的两阶段NOx减排装置,其中,下游NOx转化催化剂包括选择性催化还原催化剂和三效催化剂中的至少一种。
8.一种用于从气体混合物中直接分解除去NOx的方法,该方法包括:
将具有NOx的气体混合物暴露于具有式MxCu1-xFe2O4的NOx减排组合物,其中M是可以为钴、镍和锌中的任一种的取代金属阳离子;且x大于0且小于1;和
在不存在任何还原剂的情况下催化NOx的直接分解以生成N2。
9.如权利要求8所述的方法,其中将气体混合物暴露于NOx减排组合物的步骤包括:使具有NOx的气体混合物在450℃至650℃的范围内的温度经过NOx减排组合物。
10.如权利要求8所述的方法,其中,气体混合物是来自内燃机的废气流。
11.如权利要求8所述的方法,其中,气体混合物不包括能够参与NOx的选择性催化还原的还原剂。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/406,353 US10596519B1 (en) | 2019-05-08 | 2019-05-08 | Modified ferrite catalysts for direct no decomposition and a method of making and using a catalyst |
US16/406,353 | 2019-05-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111905742A CN111905742A (zh) | 2020-11-10 |
CN111905742B true CN111905742B (zh) | 2021-08-03 |
Family
ID=69902486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010375925.XA Active CN111905742B (zh) | 2019-05-08 | 2020-05-07 | 用于no直接分解的改性铁氧体催化剂及制造和使用催化剂的方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10596519B1 (zh) |
JP (1) | JP6810819B2 (zh) |
CN (1) | CN111905742B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103140275A (zh) * | 2011-08-08 | 2013-06-05 | 雅盖隆大学 | 用于氧化氮直接分解的催化剂以及生产该催化剂的方法 |
CN103180558A (zh) * | 2010-08-30 | 2013-06-26 | 丰田自动车株式会社 | 内燃机的排气净化装置 |
CN105792914A (zh) * | 2013-12-06 | 2016-07-20 | 庄信万丰股份有限公司 | 冷启动催化剂和其在排气系统中的用途 |
CN107407171A (zh) * | 2015-03-19 | 2017-11-28 | 庄信万丰股份有限公司 | 具有挥发的铂的捕获面的用于压缩点火发动机的排气系统 |
CN108889301A (zh) * | 2018-08-07 | 2018-11-27 | 太原理工大学 | 一种尖晶石型催化剂及其制备方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19546484A1 (de) * | 1995-12-13 | 1997-07-10 | Daimler Benz Ag | Verfahren zum Betreiben einer Reinigungsanlage für Gase sowie eine Reinigungsanlage für Gase |
DE19724545A1 (de) * | 1997-06-11 | 1998-12-24 | Basf Ag | Speicherkatalysator |
JP4820575B2 (ja) * | 2005-05-09 | 2011-11-24 | 東洋紡績株式会社 | オゾン分解剤 |
JP2007160168A (ja) * | 2005-12-12 | 2007-06-28 | Toyota Motor Corp | 排ガス浄化装置 |
CN102665899B (zh) * | 2009-11-06 | 2015-08-12 | 巴斯夫欧洲公司 | 含铁和铜的多相催化剂和通过用氢气转化一氧化碳制备烯烃的方法 |
GB2492175B (en) * | 2011-06-21 | 2018-06-27 | Johnson Matthey Plc | Exhaust system for internal combustion engine comprising catalysed filter substrate |
US20160167023A1 (en) * | 2014-12-11 | 2016-06-16 | Clean Diesel Technologies, Inc. | ZPGM Catalyst Including Co-Mn-Fe and Cu-Mn-Fe Materials for TWC Applications |
CN107617440B (zh) | 2016-07-15 | 2019-10-18 | 高雄应用科技大学 | 铜铁氧磁体作为汽车引擎废气处理三效催化剂的用途 |
US10143966B1 (en) * | 2017-05-25 | 2018-12-04 | Toyota Motor Engineering & Manufacturing North America, Inc. | Potassium dispersed on spinel oxides as catalysts for direct NOx decomposition |
US10239047B1 (en) * | 2017-09-12 | 2019-03-26 | Toyota Motor Engineering & Manufacturing North America, Inc. | Direct NOx decomposition catalyst with improved activity and selectivity |
-
2019
- 2019-05-08 US US16/406,353 patent/US10596519B1/en active Active
-
2020
- 2020-04-28 JP JP2020078868A patent/JP6810819B2/ja active Active
- 2020-05-07 CN CN202010375925.XA patent/CN111905742B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103180558A (zh) * | 2010-08-30 | 2013-06-26 | 丰田自动车株式会社 | 内燃机的排气净化装置 |
CN103140275A (zh) * | 2011-08-08 | 2013-06-05 | 雅盖隆大学 | 用于氧化氮直接分解的催化剂以及生产该催化剂的方法 |
CN105792914A (zh) * | 2013-12-06 | 2016-07-20 | 庄信万丰股份有限公司 | 冷启动催化剂和其在排气系统中的用途 |
CN107407171A (zh) * | 2015-03-19 | 2017-11-28 | 庄信万丰股份有限公司 | 具有挥发的铂的捕获面的用于压缩点火发动机的排气系统 |
CN108889301A (zh) * | 2018-08-07 | 2018-11-27 | 太原理工大学 | 一种尖晶石型催化剂及其制备方法 |
Non-Patent Citations (1)
Title |
---|
Structural, Optical and EXAFS Studies of Nickel Substituted Copper Ferrites Nano-Particle by Sol-Gel Auto Combustion Method;Ashutosh Mishra 等;《Journal of Physics》;20161231;第755卷;第2页第2节,第5页第4节 * |
Also Published As
Publication number | Publication date |
---|---|
JP2020182938A (ja) | 2020-11-12 |
JP6810819B2 (ja) | 2021-01-06 |
US10596519B1 (en) | 2020-03-24 |
CN111905742A (zh) | 2020-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kumar et al. | Catalytic N2O decomposition on Pr0. 8Ba0. 2MnO3 type perovskite catalyst for industrial emission control | |
US8956992B2 (en) | SCR catalysts preparation methods | |
Hu et al. | Effects of zirconia crystal phases on the catalytic decomposition of N2O over Co3O4/ZrO2 catalysts | |
Xu et al. | Highly efficient Pd-doped aluminate spinel catalysts with different divalent cations for the selective catalytic reduction of NO with H2 at low temperature | |
US10434471B2 (en) | Copper oxides supported on spinel oxides as catalysts for low temperature direct NOx decomposition | |
US8461073B2 (en) | Catalyst support and method of producing same | |
Pan et al. | Enhanced low-temperature CO-SCR denitration performance and mechanism of two-dimensional CuCoAl layered double oxide | |
Du et al. | Investigation on NO reduction by CO and H2 over metal oxide catalysts Cu2M9CeOx | |
Song et al. | Lean NO x reduction by CO at low temperature over bimetallic IrRu/Al 2 O 3 catalysts with different Ir: Ru ratios | |
He et al. | Interfacial effects promote the catalytic performance of CuCoO2-CeO2 metal oxides for the selective reduction of NO by CO | |
Xu et al. | Three-dimensionally ordered macroporous LaMnAl11O19-supported Pd nanocatalysts highly active for methane combustion | |
Lu et al. | Support morphology-dependent catalytic activity of the Co/CeO 2 catalyst for the aqueous-phase hydrogenation of phenol | |
Fan et al. | Nonprecious mixed oxide catalysts Co3AlO and Co2NiAlO derived from nanoflowerlike cobalt-based hydrotalcites for highly efficient oxidation of nitric oxide | |
Wang et al. | Amino acid-deep eutectic solvents/LaCoO3 mutualism system: Forming La-Co-CO hybrid for low temperature methane catalytic oxidation | |
Jiang et al. | Unveiling mechanism and the roles of distinct active sites over Cu/Beta@ CeO2 with strong core-shell interface interaction for simultaneous removal of NO and toluene | |
CN111905742B (zh) | 用于no直接分解的改性铁氧体催化剂及制造和使用催化剂的方法 | |
US11471873B2 (en) | Microwave synthesis of iron oxide catalysts for cold start NOx removal | |
US10071367B1 (en) | CeO2-NiO mixed oxide catalysts for direct NOx decomposition | |
Shangguan et al. | Simultaneous catalytic removal of diesel soot and NOx | |
US11208928B2 (en) | Passive NOx adsorption and decomposition | |
Neha et al. | Simultaneous catalytic oxidation of a lean mixture of CO-CH4over spinel type cobalt based oxides | |
LI et al. | Effect of alkaline earth metal doping on the catalytic performance of cobalt-based spinel composite metal oxides in N2O decomposition | |
KR20230025622A (ko) | 알루미나 상에 담지된 나노-세리아의 구조 변형을 통한 황 피독 저항성 개선방법 | |
Prajitno et al. | Effects of Zn loading on ZnxCo1− xCo2O4 spinel catalysts for low-temperature catalytic decomposition of N2O in the presence of inhibitors | |
Bian et al. | Preparation and characterization of CeO 2–Fe 2 O 3 catalysts for the selective catalytic reduction of NO with CO |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220218 Address after: Aichi Prefecture, Japan Patentee after: Toyota Motor Corp. Address before: Texas, USA Patentee before: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, Inc. |