CN111905715A - 一种等离子体诱导Bi2MoO6光催化剂的制备方法 - Google Patents

一种等离子体诱导Bi2MoO6光催化剂的制备方法 Download PDF

Info

Publication number
CN111905715A
CN111905715A CN202010571426.8A CN202010571426A CN111905715A CN 111905715 A CN111905715 A CN 111905715A CN 202010571426 A CN202010571426 A CN 202010571426A CN 111905715 A CN111905715 A CN 111905715A
Authority
CN
China
Prior art keywords
moo
plasma
photocatalyst
cluster
cluster structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010571426.8A
Other languages
English (en)
Inventor
许晖
杨磊
冯子奕
朱兴旺
李启笛
李华明
纪红兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Zhongjiang Materials Technology Research Institute Co ltd
Original Assignee
Jiangsu Zhongjiang Materials Technology Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Zhongjiang Materials Technology Research Institute Co ltd filed Critical Jiangsu Zhongjiang Materials Technology Research Institute Co ltd
Priority to CN202010571426.8A priority Critical patent/CN111905715A/zh
Publication of CN111905715A publication Critical patent/CN111905715A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种等离子体诱导Bi2MoO6光催化剂的制备方法。该光催化剂微观形貌为纳米片组装而成的团簇结构,团簇结构直径800 nm–1000 nm;其制备步骤如下:1.将五水合硝酸铋(Bi(NO3)3·5H2O)、十六烷基三甲基溴化铵(CTAB)与二水合钼酸钠(Na2MoO4·2H2O)搅拌混合成混合液;2.将混合液转入水热釜反应,水洗醇洗烘干后,得到团簇结构的Bi2MoO6材料;3.将团簇结构的Bi2MoO6放入乙醇中,机械搅拌至均匀分散,并在石英片上烘干固定后放入Ar/H2混合气氛围中进行等离子体处理,得到含BiO2‑x 纳米粒子的Bi2MoO6团簇结构材料。所制备的材料扩大了光催化剂光吸收的范围、促进了光生载流子的分离、提高了催化剂的稳定性,因此得到更广泛的利用。

Description

一种等离子体诱导Bi2MoO6光催化剂的制备方法
技术领域
本发明涉及光催化剂,特指一种可控的等离子体诱导Bi2MoO6光催化剂及其制备方法,属于光催化材料的制备方法技术领域。
背景技术
Bi2MoO6作为一种Aurivillius相氧化物半导体材料,不仅具有合适的禁带宽度来有效利用可见光,而且具有优异的物理化学性质,如:较好的化学和热稳定性、优异的光电性能等。因此,Bi2MoO6被广泛应用于固氮、光催化CO2还原及可见光下降解有机污染物领域。然而,对于普通的Bi2MoO6存在与CO2之间的亲和力较弱、电子–空穴分离效率低等缺点,这严重限制了其在光催化领域的应用。因此需要设计合理的能带结构、电子结构适宜,且具有较大的比表面积和光吸收范围来提升其吸附CO2能力、选择性和催化效率。现有的光催化剂改性方法主要有形貌调控、缺陷调控、贵金属沉积和半导体复合等。近年来出现的利用等离子体对光催化剂进行表面缺陷调控可以大大提高催化剂催化性能。
等离子体指部分或完全电离的气体,且自由电子和离子所带正、负电荷的总和完全抵消,宏观上呈现电中性。根据等离子体的温度可以划分成高温等离子体(热核聚变等离子)和低温等离子体。低温等离子体又包括热等离子体(等离子体弧、等离子体炬等)和冷等离子体(低气压交直流、射频、微波等离子体以及高气压介质阻挡放电、电晕放电、RF放电等)。低温冷等离子体中存在着大量的活性粒子,能够和所接触的材料表面发生反应,因此它们被用来对材料表面进行改性处理.。
介质阻挡放电(DBD)是有绝缘介质插入放电空间的一种非平衡态气体放电又称介质阻挡电晕放电或无声放电。介质阻挡放电能够在高气压和很宽的频率范围内工作,通常能够在常压下产生等离子体,电源频率可从50 Hz至1M Hz。介质阻挡放电等离子体处理光催化剂具有处理条件温和、反应时间短、能耗低等特点。
发明内容
本发明的目的在于提供一种可控的等离子体诱导Bi2MoO6光催化剂的制备方法,并用于CO2光催化还原研究。该方法首先通过水热的方法得到形貌规整的纳米片团簇,再通过等离子体诱导得到这种形貌很好的Bi2MoO6纳米团簇。利用Bi2MoO6纳米团簇结构本身的特性,解决现有光催化剂对可见光利用率不高、载流子分离效率低等问题。
为实现上述目的,本发明采用如下技术方案:
一种等离子体诱导Bi2MoO6光催化剂的制备方法,先通过水热的方法得到形貌规整的Bi2MoO6纳米片团簇,再通过等离子体诱导得到Bi2MoO6纳米团簇。
在上述的制备方法中,具体包括如下步骤:
(1)称取Bi(NO3)3·5H2O和CTAB超声溶于去离子水和乙二醇混合溶液中,然后再加入Na2MoO4·2H2O搅拌;
(2)将混合溶液转移进高压反应釜中,接着将高压釜放进烘箱中,并加热反应;将所得到的产物收集并用去离子水和无水乙醇洗涤数次,在真空干燥后得到Bi2MoO6纳米片组成的簇状物;
(3)称取Bi2MoO6纳米片簇状物,放入乙醇机械搅拌均匀分散,并在石英片上烘干固定,然后将石英片放入放电反应器中,采用介质阻挡放电(DBD)的形式产生等离子体处理Bi2MoO6
作为优选的,在上述制备方法中:所述步骤(1)的Bi(NO3)3·5H2O、CTAB和Na2MoO4·2H2O的摩尔比为1~2 : 0. 137~0. 274 : 0. 5~1;去离子水和乙二醇的体积比1~2 : 0.32~0.64;所述的搅拌的时间为40~80 min。
作为优选的,在上述制备方法中:所述步骤(2)的加热温度为100~140℃,反应时间为20~26 h;真空干燥温度为70℃,真空干燥的时间为12 h。
作为优选的,在上述制备方法中:所述步骤(3)的等离子处理的功率为50~200 W;处理时间为5–15 min,气流速为200 mL min-1,气体为Ar/H2(v/v,95%/5%)混合气。
本发明所得到的等离子体诱导Bi2MoO6光催化剂的团簇结构不仅由纳米片构成,团簇的表面还均匀分布了BiO2-x 纳米粒子。团簇结构的直径为800 nm–1000 nm,BiO2-x 纳米粒子的大小为5 nm–10 nm。通过等离子体不同处理时间调节该材料生成BiO2-x 纳米粒子的含量,随着等离子体处理时间的延长,其CO2还原性能也随之发生改变。
与现有技术相比,本发明具有如下有益效果:本发明制备的等离子体诱导后的Bi2MoO6与普通的Bi2MoO6相比,具有很高的量子效率及低的电子复合率,并具有更高的光催化降解效率。其次本发明的可控的等离子体诱导Bi2MoO6的制备方法简单易行、产量高、操作简单、重复性好、可控性强、合成条件温和以及材料性状稳定。
附图说明
图1为本发明制备的可控的等离子体诱导Bi2MoO6的XRD图谱;
图2为本发明制备的可控的等离子体诱导Bi2MoO6的SEM、HRTEM图;
图3为本发明制备的可控的等离子体诱导Bi2MoO6的UV–vis图谱;
图4为本发明制备的可控的等离子体诱导Bi2MoO6的PL图谱;
图5为本发明制备的可控的等离子体诱导Bi2MoO6光催化剂不同等离子体处理时间下光催化还原CO2活性对比图。
具体实施方式
下面结合附图对本发明作进一步详细地阐述,而不是限制本发明。
下述实施例中使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1:
制备Bi2MoO6纳米片团簇:将2 mmol的Bi(NO3)3·5H2O和0.1 g的CTAB加入40 mL去离子水和40 mL乙二醇混合溶液中,然后再加入1 mmol的Na2MoO4·2H2O,常温磁力搅拌分散,得到混合分散液。在搅拌60 min后,将混合溶液转移进100 mL的聚四氟乙烯内衬的高压反应釜中,待反应釜自然冷却至室温,并静置后12000 r/min下离心3 min,然后将所得到的产物收集并用去离子水和乙醇各洗涤三次,在60℃下真空干燥后得到Bi2MoO6纳米片团簇。
将50 mg Bi2MoO6超薄纳米片簇状物放入乙醇机械搅拌均匀分散,并在石英片上烘干固定,然后将石英片放入放电反应器中,采用介质阻挡放电(DBD)的形式产生等离子体处理Bi2MoO6。开始放电前,需要先将石英反应器抽真空,然后充入Ar/H2(v/v,95%/5%)混合气作为反应气体,气流速保持在200 mL min-1。整个等离子体处理过程在室温下进行,放电装置维持50 W的输入功率,处理时间为5 min,即得到1–Bi2MoO6
实施例2:
制备Bi2MoO6纳米片团簇:将2 mmol的Bi(NO3)3·5H2O和0.1 g的CTAB加入40 mL去离子水和40 mL乙二醇混合溶液中,然后再加入1 mmol的Na2MoO4·2H2O,常温磁力搅拌分散,得到混合分散液。在搅拌60 min后,将混合溶液转移进100 mL的聚四氟乙烯内衬的高压反应釜中,待反应釜自然冷却至室温,并静置后12000 r/min下离心3 min,然后将所得到的产物收集并用去离子水和乙醇各洗涤三次,在60℃下真空干燥后得到Bi2MoO6纳米片团簇。
将50 mg Bi2MoO6超薄纳米片簇状物放入乙醇机械搅拌均匀分散,并在石英片上烘干固定,然后将石英片放入放电反应器中,采用介质阻挡放电(DBD)的形式产生等离子体处理Bi2MoO6。开始放电前,需要先将石英反应器抽真空,然后充入Ar/H2(v/v,95%/5%)混合气作为反应气体,气流速保持在200 mL min-1。整个等离子体处理过程在室温下进行,放电装置维持50 W的输入功率,处理时间为10 min,即得到2–Bi2MoO6
实施例3:
制备Bi2MoO6纳米片团簇:将2 mmol的Bi(NO3)3·5H2O和0.1 g的CTAB加入40 mL去离子水和40 mL乙二醇混合溶液中,然后再加入1 mmol的Na2MoO4·2H2O,常温磁力搅拌分散,得到混合分散液。在搅拌60 min后,将混合溶液转移进100 mL的聚四氟乙烯内衬的高压反应釜中,待反应釜自然冷却至室温,并静置后12000 r/min下离心3 min,然后将所得到的产物收集并用去离子水和乙醇各洗涤三次,在60℃下真空干燥后得到Bi2MoO6纳米片团簇。
将50 mg Bi2MoO6超薄纳米片簇状物放入乙醇机械搅拌均匀分散,并在石英片上烘干固定,然后将石英片放入放电反应器中,采用介质阻挡放电(DBD)的形式产生等离子体处理Bi2MoO6。开始放电前,需要先将石英反应器抽真空,然后充入Ar/H2(v/v,95%/5%)混合气作为反应气体,气流速保持在200 mL min-1。整个等离子体处理过程在室温下进行,放电装置维持50 W的输入功率,处理时间为15 min,即得到3–Bi2MoO6
通过上述实施例分析,我们对相同质量的Bi2MoO6超薄纳米片簇状物,以相同的电功率在氩氢混合气氛下进行不同时间的等离子体处理,发现对催化剂进行10 min等离子体处理(实施例2),其催化效果最佳。
制备的Bi2MoO6的结构测试是在Bruker D8 AdvanceX射线衍射仪上进行的(Cu–Kα射线,λ=1.5418 Å,范围是10°–80°,扫描速度为7°min-1),通过X射线晶体衍射(XRD)表征所制备的光催化剂的相结构。由图1可知,原始Bi2MoO6的XRD衍射图谱中的衍射峰,分别对应于Bi2MoO6的标准卡片(JDPS:77–1246)中的晶面,说明了经过水热法合成的光催化剂为Bi2MoO6。同时,经Ar/H2等离子体处理后的2–Bi2MoO6的衍射峰没有出现Bi2MoO6的标准衍射峰外的其他峰,说明Ar/H2等离子体处理未能对Bi2MoO6光催化剂结构产生影响,但同时也未能显现出BiO2-x 的衍射峰,这可能是由于BiO2-x 的含量低于XRD的检出限,同时Bi2MoO6的衍射峰和BiO2-x 比较接近,掩盖了衍射峰。
使用JEOL JEM–2010型透射电镜(电压为10 kV,Japan)与FEI Tecnai–F20型透射电镜(电压为200 kV,USA)进行光催化剂形貌和尺寸的测定。图2为本实施例所制备出的可控的等离子体诱导Bi2MoO6光催化剂的扫描电镜和高倍透射电镜图片。从图2可以清晰的看出,所制备出的样品的确是一种簇团结构以及BiO2-x 纳米粒子在团簇结构上的均匀分布。另外,簇团结构的直径大约为800 nm–1000 nm。
使用紫外可见分光光度计(Shimadzu UV–2450,Japan)获得光催化剂的紫外–可见光吸收光谱(UV–vis)图。由图3可以看出,Ar/H2等离子体处理对于增加Bi2MoO6在可见光段的吸收有着显著的作用。
使用QuantaMaster和TimeMaster光谱荧光计获得了光致发光(PL)光谱图。由图4可知,等离子体处理后的Bi2MoO6光生电子–空穴的分离效率明显提高。
光催化活性测试:在光反应系统(Labsolar–6A,PerfectLight,Beijing)上进行合成样品的光催化CO2还原的实验。
实施例4:称取10 mg催化剂置于配好的溶液中(6 mL乙腈,4 mL去离子水,2 mL三乙醇胺),超声3 min使其溶解充分,进而在温度为10°C,压强为0.75 MPa的CO2气氛环境中,以300 W氙灯(PLS–SXE 300C(BF),Perfectlight)下照射进行光催化CO2反应
图5为本实施例所制备出的可控的等离子体诱导Bi2MoO6光催化剂在不同等离子体处理时间下光催化还原CO2活性图。由图5可知,Ar/H2等离子体处理有效提升了Bi2MoO6光催化还原CO2产CO的性能,其中,最高活性的光催化剂是经过Ar/H2等离子体处理10 min后所得到的。
以上所揭露的仅为本发明的较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属于本发明所涵盖的范围。

Claims (5)

1.一种等离子体诱导Bi2MoO6光催化剂的制备方法,其特征在于:先通过水热的方法得到形貌规整的Bi2MoO6纳米片团簇,再通过等离子体诱导得到Bi2MoO6纳米团簇。
2.如权利要求1所述的制备方法,其特征在于:包括如下步骤:
(1)称取Bi(NO3)3·5H2O和CTAB超声溶于去离子水和乙二醇混合溶液中,然后再加入Na2MoO4·2H2O搅拌;
(2)将混合溶液转移进高压反应釜中,接着将高压釜放进烘箱中,并加热反应;将所得到的产物收集并用去离子水和无水乙醇洗涤数次,在真空干燥后得到Bi2MoO6纳米片组成的簇状物;
(3)称取Bi2MoO6纳米片簇状物,放入乙醇机械搅拌均匀分散,并在石英片上烘干固定,然后将石英片放入放电反应器中,采用介质阻挡放电的形式产生等离子体处理Bi2MoO6
3.如权利要求2所述的制备方法,其特征在于:所述步骤(1)的Bi(NO3)3·5H2O、CTAB和Na2MoO4·2H2O的摩尔比为1~2 : 0. 137~0. 274 : 0. 5~1;去离子水和乙二醇的体积比1~2 : 0.32~0.64;所述搅拌的时间为40~80 min。
4.如权利要求2所述的制备方法,其特征在于:所述步骤(2)的加热温度为100~140℃,反应时间为20~26 h;真空干燥温度为70℃,真空干燥的时间为12 h。
5.如权利要求2所述的制备方法,其特征在于:所述步骤(3)的等离子处理的功率为50~200 W;处理时间为5–15 min,气流速为200 mL min-1,气体为Ar/H2混合气。
CN202010571426.8A 2020-06-22 2020-06-22 一种等离子体诱导Bi2MoO6光催化剂的制备方法 Pending CN111905715A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010571426.8A CN111905715A (zh) 2020-06-22 2020-06-22 一种等离子体诱导Bi2MoO6光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010571426.8A CN111905715A (zh) 2020-06-22 2020-06-22 一种等离子体诱导Bi2MoO6光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN111905715A true CN111905715A (zh) 2020-11-10

Family

ID=73226091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010571426.8A Pending CN111905715A (zh) 2020-06-22 2020-06-22 一种等离子体诱导Bi2MoO6光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN111905715A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559842A (zh) * 2021-07-29 2021-10-29 辽宁大学 一种钛酸锶/钼酸铋异质结纳米纤维光催化剂及其制备方法和应用
CN113967475A (zh) * 2021-09-15 2022-01-25 江苏大学 一种等离子体诱导的层状镍钴双金属氢氧化物光催化材料的制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103848484A (zh) * 2014-03-07 2014-06-11 南京大学 一种低温等离子体协同钼酸铋催化剂降解抗生素废水的装置及方法
US20160376716A1 (en) * 2015-06-29 2016-12-29 Korea Advanced Institute Of Science And Technology Method for improving solar energy conversion efficiency of semiconductor metal oxide photocatalysis using h2/n2 mixed gas plasma treatment
CN107376900A (zh) * 2017-07-26 2017-11-24 福州大学 钼酸铋超薄纳米片光催化材料的制备方法及其应用
CN109569735A (zh) * 2018-11-29 2019-04-05 南昌航空大学 一种铋系光催化剂及其制备方法和应用
CN110624535A (zh) * 2019-09-17 2019-12-31 江苏大学 一种黑色钨酸铋光催化剂及制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103848484A (zh) * 2014-03-07 2014-06-11 南京大学 一种低温等离子体协同钼酸铋催化剂降解抗生素废水的装置及方法
US20160376716A1 (en) * 2015-06-29 2016-12-29 Korea Advanced Institute Of Science And Technology Method for improving solar energy conversion efficiency of semiconductor metal oxide photocatalysis using h2/n2 mixed gas plasma treatment
CN107376900A (zh) * 2017-07-26 2017-11-24 福州大学 钼酸铋超薄纳米片光催化材料的制备方法及其应用
CN109569735A (zh) * 2018-11-29 2019-04-05 南昌航空大学 一种铋系光催化剂及其制备方法和应用
CN110624535A (zh) * 2019-09-17 2019-12-31 江苏大学 一种黑色钨酸铋光催化剂及制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QIDI LI ET AL.: ""Plasma treated Bi2MoO6 ultrathin nanosheets with oxygen vacancies for improved photocatalytic CO2 reduction"", 《INORG. CHEM. FRONT》 *
YONGCHAO HUANG ET AL.: ""Ultrathin Bi2MoO6 Nanosheets for Photocatalysis:Performance Enhancement by Atomic Interfacial Engineering"", 《CHEMISTRY SELECT》 *
丁永昌: "《钢与合金的特种熔炼[M].》", 武汉:中国地质大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559842A (zh) * 2021-07-29 2021-10-29 辽宁大学 一种钛酸锶/钼酸铋异质结纳米纤维光催化剂及其制备方法和应用
CN113967475A (zh) * 2021-09-15 2022-01-25 江苏大学 一种等离子体诱导的层状镍钴双金属氢氧化物光催化材料的制备方法和用途
CN113967475B (zh) * 2021-09-15 2023-09-22 江苏大学 一种等离子体诱导的层状镍钴双金属氢氧化物光催化材料的制备方法和用途

Similar Documents

Publication Publication Date Title
Peng et al. Ru-based multifunctional mesoporous catalyst for low-pressure and non-thermal plasma synthesis of ammonia
Li et al. Preparation of N-vacancy-doped g-C3N4 with outstanding photocatalytic H2O2 production ability by dielectric barrier discharge plasma treatment
Yu et al. In-situ decoration of metallic Bi on BiOBr with exposed (110) facets and surface oxygen vacancy for enhanced solar light photocatalytic degradation of gaseous n-hexane
GB2592516A (en) Black bismuth tungstate photocatalyst, preparation method, and application
Liu et al. Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation
Chen et al. S-scheme-enhanced PMS activation for rapidly degrading tetracycline using CuWO4− x/Bi12O17Cl2 heterostructures
CN108722384B (zh) 一种富氧空位二氧化钛纳米花及其制备方法
Shi et al. N-doping Ta2O5 nanoflowers with strong adsorption and visible light photocatalytic activity for efficient removal of methylene blue
CN101948107A (zh) 真空下微波辐射制备和纯化石墨烯的方法
CN110327962B (zh) 镍钴双金属氧化物@氮氧共掺杂碳材料/CdS光催化材料、制备方法及其应用
CN109847732A (zh) 一种基于等离子体处理制备二氧化钛纳米片的方法及应用
CN111167492A (zh) 铜修饰氮化碳及其制备方法和光催化甲烷转化的应用
CN111905715A (zh) 一种等离子体诱导Bi2MoO6光催化剂的制备方法
CN112705207A (zh) 一种可调控金属单原子掺杂多孔碳的制备方法及其在微波催化中的应用
Zhang et al. Synthesis of g-C3N4 microrods with superficial C, N dual vacancies for enhanced photocatalytic organic pollutant removal and H2O2 production
Xu et al. Insight into facet-dependent photocatalytic H 2 O 2 production on BiOCl nanosheets
CN110756203A (zh) 一种Ni2P/Mn0.3Cd0.7S光催化分解水复合催化剂及其制备方法与应用
CN114534783B (zh) 一种制备单原子Pt嵌入共价有机框架的光催化剂的方法及其应用
Hatami et al. CO2 conversion in a dielectric barrier discharge plasma by argon dilution over MgO/HKUST-1 catalyst using response surface methodology
CN108043440B (zh) 高活性多孔的g-C3N4光催化剂及其制备方法与应用
CN111774051A (zh) 光热催化醇类脱水制乙烯和有机产物的催化剂及制备方法
CN115010101B (zh) 一种具有宽光谱响应且高结晶度的氮化碳纳米片的制备方法及应用
CN113648993B (zh) 一种液相中大气压冷等离子体制备氧化石墨烯负载钯的方法
CN114394574B (zh) 一种低温等离子体催化二氧化碳与甲烷混合气制备液体产物的方法
Guan et al. An effect of crucible volume on the microstructure and Photocatalytic activity of the prepared g-C3N4

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201110