CN111886150A - 通过电动机/发电机控制来减轻动力传动系与附件的扭转振荡 - Google Patents

通过电动机/发电机控制来减轻动力传动系与附件的扭转振荡 Download PDF

Info

Publication number
CN111886150A
CN111886150A CN201980015314.XA CN201980015314A CN111886150A CN 111886150 A CN111886150 A CN 111886150A CN 201980015314 A CN201980015314 A CN 201980015314A CN 111886150 A CN111886150 A CN 111886150A
Authority
CN
China
Prior art keywords
engine
torque
motor
generator
crankshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980015314.XA
Other languages
English (en)
Inventor
约翰·W·帕塞勒斯
马修·A·央金斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tula Technology Inc
Original Assignee
Tula Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tula Technology Inc filed Critical Tula Technology Inc
Publication of CN111886150A publication Critical patent/CN111886150A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/10Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley
    • F16H7/12Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/206Reducing vibrations in the driveline related or induced by the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/068Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0685Engine crank angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/12Catalyst or filter state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0605Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0863Finally actuated members, e.g. constructional details thereof
    • F16H2007/0865Pulleys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

描述了用于通过电动机/发电机控制来减轻动力传动系与附件的扭转振荡的各种方法和布置。在一方面,在启动发动机之前确定工作室空气充量和曲柄位置。在发动机启动时段期间,电动机/发电机供应平滑扭矩以至少部分地抵消发动机扭矩变化。

Description

通过电动机/发电机控制来减轻动力传动系与附件的扭转 振荡
相关申请的交叉引用
本申请要求于2018年2月27日提交的标题为“通过电动机/发电机控制来减轻动力传动系与附件的扭转振荡”的美国临时申请号62/635,656的优先权,该美国临时申请出于所有目的通过援引以其全文并入本文。
技术领域
本发明涉及控制具有混合动力传动系的内燃发动机。更具体地,本发明涉及在发动机停止/启动循环期间通过电动机/发电机控制来减轻动力传动系与附件的扭转振荡。
背景技术
正在进行各种努力来改善内燃发动机的燃料效率。一种方法涉及启动/停止特征,在越来越多的车辆中实施了该启动/停止特征。在常规车辆中,当车辆即将停车(例如,在交通灯或停车标志处)时,内燃发动机继续以空转速度运转,这消耗燃料。在配备有启动/停止特征的车辆中,当车辆即将停车并且满足其他选定条件时,内燃发动机自动关闭以节省燃料。当驾驶员释放制动踏板和/或激活加速器踏板时,发动机重新启动。可能存在可以触发发动机重新启动的其他选定条件。
一些具有启动/停止特征的车辆利用了电动机/发电机。也就是说,电动机/发电机能够从发动机中扣减扭矩来通过将发动机的机械能转换为电能而对电池充电。电动机/发电机还能够将电池电能转换为机械能,该机械能可以用于帮助在启动/停止系统中重新启动发动机。电动机/发电机典型地与曲轴整合或者经由皮带、链条或齿轮驱动系统与曲轴的旋转机械地联接。具有电动机/发电机的皮带交流发电机起动机系统是这种系统的一个示例。
除了使用启动/停止系统之外,还使用了其他动力传动系设计和控制方法来提高内燃发动机的燃料效率。一种技术是具有较少数量的发动机工作室,例如少至2、3或4个气缸。提高燃料效率的另一种技术是改变有效发动机排量。这允许在需要时可获得最大扭矩,还可以在不需要最大扭矩时通过使用较小排量来显著减少泵送损失并改进热效率。现今实施可变排量发动机的最常见方法是基本上同时停用一组气缸。在此方法中,当希望跳过燃烧事件时,与所停用的气缸相关联的进气门和排气门保持关闭并且没有燃料喷射。例如,8缸可变排量发动机可以停用这些气缸中的一半(即,4个气缸),使得它仅使用剩余的4个气缸运行。现今可获得的可商购的可变排量发动机典型地仅支持两种或至多三种排量。
改变发动机的有效排量的另一种发动机控制方法被称为“跳过-点火”发动机控制。一般来说,跳过-点火发动机控制预期在所选的点火时机期间选择性地跳过某些气缸的点火。因此,特定气缸可以在一个发动机循环期间被点火、然后可以在下一个发动机循环期间被跳过,并且然后在下一个发动机循环期间被选择性地跳过或点火。从发动机循环的角度来看,这意味着顺序的发动机循环可能具有不同的跳过和点火气缸的模式。以此方式,对有效发动机排量的更精细控制是可能的。例如,对4缸发动机中的每隔两个气缸进行点火将提供最大发动机排量的1/3的有效排量,这是通过简单地停用一组气缸所不能获得的分式排量。
低缸数发动机、可变排量发动机或跳过点火控制发动机的问题在于燃烧事件的频率低于连续点火的高缸数发动机。因此,发动机扭矩输出不那么平滑,并且所产生的NVH(噪声、振动和声振粗糙度)对于车辆乘员来说可能是不可接受的。这些NVH问题可以通过各种手段解决。减少NVH的一种方法是在动力传动系中结合一个或多个减振元件,诸如双质量飞轮、弹簧质量减振器和/或离心摆式减振器。适用于具有混合动力传动系的车辆的另一种方法是从电动机/发电机施加减轻扭矩或平滑扭矩,而不是抵消或部分地抵消发动机产生的扭矩振荡。这种方法在美国专利号9,512,794和10,060,368中进行了描述,这些专利通过援引并入本文。
在启动/停止系统中出现的问题是,在发动机停止的时段期间,发动机进气歧管和发动机气缸内的压力与大气压力平衡。因此,气缸空气充量较大,并且由气缸燃烧产生的结果扭矩脉冲可能较大,这可能导致启动循环的高NVH是不可接受的。这些NVH问题在具有较少数量气缸的发动机或以减小的排量运行的发动机中尤其明显。另外,为降低NVH而安装的动力传动系元件可能会在低发动机速度以及与启动相关联的潜在高扭矩脉冲的情况下过度振荡并“触底”或“锤击”。这些较大的扭矩脉冲可以通过以较低的效率运行发动机(诸如通过延迟火花正时)来减轻;然而,这样的措施降低了燃料经济性。需要改善混合动力传动系在启动/停止运行期间的燃料经济性和NVH特性。
发明内容
描述了用于在混合动力传动系中实施启动/停止特征的各种方法和布置。在一方面,该启动/停止特征的实施涉及在选定情形下自动关掉内燃发动机。确定该发动机是否应被重新启动。在发动机启动时段期间,电动机/发电机供应将发动机加速至空转速度所需的大部分或全部扭矩。电动机/发电机与内燃发动机一起工作,以向动力传动系递送平滑的扭矩曲线,从而实现迅速重新启动以及可接受的NVH。
当发动机由于启动/停止特征的实施而被关掉时,进气歧管压力趋向于与大气压力相等。因此,当发动机重新启动时,一个或多个工作室的点火可能产生扭矩激增,从而导致车辆乘员可注意到的不可接受的NVH。通过从电动机/发电机施加平滑扭矩来平滑或至少部分地抵消发动机引发的扭矩激增。
在一些实施例中,描述了一种用于在混合动力车辆动力传动系中实施启动/停止特征的方法和控制系统。混合动力车辆动力传动系包括具有多个工作室的内燃发动机以及与曲轴连接的电动机/发电机。通过在驱动循环期间在选定情形下自动关掉该发动机来实施停止/启动特征。确定重新启动该发动机,并且在发动机重新启动之前确定曲轴旋转角度。估计每个工作室的空气充量。基于该曲轴旋转角度和空气充量,确定每个工作室的扭矩曲线。对每个工作室的扭矩曲线求和,以确定发动机扭矩曲线。使用该电动机/发电机旋转地加速该曲轴并向该曲轴施加平滑扭矩,其中,该平滑扭矩被布置用于至少部分地抵消该发动机扭矩曲线的变化,由此减少否则会由该发动机生成的NVH。当曲轴旋转速度达到适合发动机正常运行的水平时,终止该发动机重新启动。
在其他实施例中,一种用于车辆的混合动力传动系统包括:内燃发动机,该内燃发动机具有连接到曲轴的多个工作室;以及电动机/发电机,该电动机/发电机利用皮带机械地连接到该曲轴,使得该内燃发动机与该电动机/发电机一起旋转。减振器连接到该曲轴并与该曲轴一起旋转。重新启动协调器在发动机重新启动期间控制该内燃发动机和该电动机/发电机,使得在该发动机重新启动期间的曲轴旋转轨迹足够平滑,从而不会导致对减振器的锤击。
各种实施方式包括被布置用于执行以上一些或所有操作的混合动力传动系控制器、软件或系统。
附图说明
参考结合附图进行的以下说明可以最佳地理解本发明及其优点,在附图中:
图1是根据本发明的实施例的混合动力传动系的框图。
图2是根据本发明的实施例的通过皮带机械地连接到曲轴的电动机/发电机的示意图。
图3是根据本发明的实施例的混合动力传动系的示意图。
图4是根据本发明的实施例的具有气缸停用能力的混合动力传动系的示意图。
图5是示出了根据本发明的实施例的与不同类型的工作室运行相关联的代表性扭矩曲线的曲线图。
图6是示出了根据本发明的实施例的在发动机重新启动至空转期间的示例性发动机速度轨迹和曲轴旋转角度相对于时间的曲线图。
图7是示出了根据本发明的实施例的在激烈的发动机重新启动期间的示例性发动机速度轨迹和曲轴旋转角度相对于时间的曲线图。
图8示出了根据本发明的实施例的在激烈的发动机重新启动期间的示例性发动机扭矩曲线。
图9示出了根据本发明的实施例的在激烈的发动机重新启动期间的示例性电动机/发电机扭矩曲线。
图10是示出了根据本发明的实施例的用于在混合动力传动系中实施停止/启动系统的方法的流程图。
在附图中,相同的附图标记有时用于指定相同的结构元件。还应了解,附图中的描绘是图解的而不是按比例的。
具体实施方式
启动/停止系统在汽车和其他类型的车辆中变得越来越普遍。启动/停止系统涉及在驱动循环期间在满足了选定条件时自动关掉发动机。驱动循环是用钥匙的动作开始的并且用钥匙的动作终止。在驱动循环内,发动机可以自动停止和重新启动许多次。例如,在驱动循环的中期当车辆即将在红灯或停车标志处停下时,发动机可以自动关掉。接着典型地当驾驶员通过压下加速器踏板、释放制动踏板、和/或改变变速器挡位(即,从向前到向后,或反之亦然)来请求扭矩时,发动机重新启动。非驾驶员激活的触发器、不够充足的制动器真空助力或不充足的电池电量可以重新启动发动机。在不需要时关掉发动机相对于常规发动机提高了燃料效率,常规发动机甚至在不需要时也继续运转、例如在车辆停车期间空转时。另外,在某些情况下,内燃发动机可以在车辆处于运动中时被停止和重新启动。
当发动机重新启动时,启动/停止系统中涉及的一项挑战出现。在发动机被关掉时,封闭的气缸体积内的压力和进气歧管压力趋于与大气压力相等。因此,当发动机重新启动时,大量的空气或者已经在一个或多个气缸中,或者随着发动机旋转而被递送到气缸中。在每个发动机循环期间将其所有工作室点火的常规发动机中,这可能导致可以被车辆乘员感知为不可接受的NVH的、不希望的发动机速度和/或扭矩“激增”。这些与气缸点火相关联的扭矩激增可能导致对位于动力传动系中的减振器的锤击。在火花点火发动机中减小这种扭矩激增的一种已知方法是延迟火花正时。虽然这维持了燃烧稳定性并减小了扭矩激增,但浪费了燃料,因为燃烧能量低效地生成扭矩。
停止/启动系统中的另一个挑战是使发动机迅速达到空转速度。理想地,驾驶员或车辆乘员应该感觉不到发动机的启动。因此,在驾驶员从制动踏板上移开他/她的脚并开始压下加速器踏板所用的时间内,发动机应达到600rpm至800rpm的空转速度。驾驶员完成该运动所用的代表性时间可以约为0.5秒。
本发明使用对混合动力传动系中的电动机/发电机的控制来帮助减小或消除发动机速度激增,从而允许更平滑的启动/停止转变。通常,电动机/发电机可以供应发动机从停止转变到空转速度所需的全部或大部分电力。可以施加抵消或部分地抵消发动机产生的扭矩波动的平滑扭矩。控制扭矩曲线以提供可接受的NVH特性。特别地,由所施加的扭矩引起的曲轴旋转轨迹不会“触底”或“锤击”动力传动系中的任何减振元件。在一些实施例中,内燃发动机可以使用跳过点火控制,从而使得在发动机在停止/启动循环期间旋转时,一些气缸可以被停用。
首先参考图1,将描述根据本发明的实施例的混合动力传动系统300。混合动力传动系统300提供原动力来为车辆提供动力。混合动力传动系统300包括混合动力传动系控制器306、内燃发动机304、电动机/发电机302、电力转换器307、能量储存系统308、曲轴310、变速器312、以及车轮314。发动机304和/或电动机/发电机302被布置用于向曲轴310施加扭矩,该曲轴通过变速器312驱动车轮314。混合动力传动系控制器306被布置用于对发动机304和电动机/发电机302的运行进行协调。图1所示的各种元件中的一些可以可选地包括集成控制器(在图1中未示出)。
内燃发动机304可以是四冲程火花点火汽油燃料发动机。发动机304可以具有多个工作室,诸如2、3、4、6、8、10或12个工作室。在此,工作室总体上是指燃烧室,这可以是气缸或围绕燃烧区域的某个其他的封闭体积。当描述本发明时,术语工作室和气缸将可互换使用。空气通过一个或多个进气门从进气歧管被引入到气缸。可以通过打开和关闭节气门来控制进入进气歧管的空气流。进气门的打开和关闭可以通过凸轮在凸轮轴上旋转来控制。可以使用凸轮相位器来控制相对于曲轴的进气门打开和关闭正时。燃料通过端口或优选地直接燃料喷射被引入到气缸。燃料的燃烧导致封闭的气缸体积中的压力增大,这会驱动活塞从而使曲轴旋转。燃烧排气通过一个或多个排气门从气缸中排出。排气门还可以由凸轮控制并且可以具有凸轮相位器以控制排气门升程的正时。排气被排入排气系统。排气系统通常将具有带有3效催化剂的催化转换器,该3效催化剂会氧化并减少排气中的污染物。为了有效,必须将催化剂保持在高温下,并且泵送通过催化剂的气体必须具有很少或没有过量的氧气,使得可以在催化剂中维持氧化/还原平衡。通过以燃料与空气的理想计量配比运行发动机可以满足该条件,使得完全燃烧会消耗所有燃料和氧气。
发动机304可以具有气门停用能力,使得一个或多个气缸可以使其(多个)进气门和/或(多个)排气门停用,使得在气缸停用时没有空气被泵送通过气缸。根据发动机设计,所有气缸都能够停用,或者可以仅配置有限数量气缸的停用。在使用3效催化剂的排气系统中,气门停用是跳过点火控制的重要部分。如果没有气门停用,过量的氧气会从停用的气缸流过催化剂,并使催化剂饱和,从而使催化剂失去减少排气中的污染物的能力。可以通过控制可折叠气门挺杆中的油压来停用气门。当该挺杆处于其可折叠状态时,不会将凸轮从动件的运动传输到气门,并且气缸被停用。在该挺杆处于刚性状态的情况下,将凸轮曲线传输到气门,这使该气门打开和关闭,从而激活气缸。通过使用辅助油泵在低发动机速度下维持油压,停用系统可以在低速下起作用。另外,可以使用储油器来使辅助油泵的运行持续时间最小化。可替代地,这些气门可以使得它们被正常停用并且需要油压来激活。可以使用其他类型的气门激活和停用系统,诸如但不限于两步滚柱指轮从动件、滑动凸轮或电磁阀。还可以使用可变升程气门控制系统来停用气缸。
电动机/发电机302取代了常规起动机并且能够快速地重新启动已经由于启动/停止系统的实施而被关闭的发动机。在图1的所展示的实施例中,电动机/发电机302是与曲轴整合的电动机/发电机。也就是说,电动机/发电机302连接到曲轴并且位于变速器312与IC发动机304之间。在动力传动系中位于发动机304与电动机/发电机302之间的可以是减振器316。减振器316可以采用许多形式,诸如但不限于双质量飞轮、弹簧质量减振器、可变弹簧减振器和/或离心摆式减振器。图1中未示出的各种离合器元件可以允许电动机/发电机302独立于发动机304旋转。图1中所描绘的架构通常被称为P2配置;然而,本发明不限于这种类型的混合动力架构。还可以使用任何合适的电动机/发电机,诸如皮带交流发电机类型的电动机/发电机。在图2中示意性地展示了这种皮带传动系统。
皮带传动的电动机/发电机可以作为如图2所示的前端附件驱动(FEAD)系统的一部分并入。该混合动力架构通常被称为P0架构。曲轴210与皮带212接合。皮带212又与附件驱动器214、电动机/发电机216以及张紧器218a和218b接合。皮带212在这些旋转元件与曲轴210之间传递扭矩。附件驱动器214可以用于给诸如空调等附件供电。张紧器218a和218b可以是弹簧加载的,并且收紧皮带212中的松弛,使得皮带212在经过曲轴210、附件驱动器214和电动机/发电机216时不会滑动。皮带212必须被张紧,使得电动机/发电机216既可以递送也可以接受来自曲轴210的扭矩。曲轴210可以具有一个或多个减振元件,诸如双质量飞轮、弹簧质量减振器、可变弹簧减振器和/或离心摆式减振器(在图2中未示出)。图2所示的混合动力架构的一个问题是皮带212的弹性可能导致重新启动期间不希望的扭转振荡。这可能会导致重新启动期间不可接受的NVH。在替代性实施例中,皮带212可以由链条代替,或者附件可以是齿轮传动的。
张紧器218a和218b可以各自通过弹簧安装到刚性表面,诸如发动机或者车架的一部分。弹簧在皮带212上提供张力,这有助于防止皮带在曲轴210、附件驱动器214和电动机/发电机216上滑动。可替代地,张紧器218a和218b中的至少一个可以通过确实地控制的安装机构安装到刚性表面,该安装机构根据运行条件提供可变的皮带张力。可变的皮带张力可以通过液压装置、气动装置或机电装置施加。使用确实地控制的张紧器218a或218b可以降低皮带212上的、可能导致皮带过早损坏的过大应力的风险。
返回图1,电动机/发电机302经由电力转换器307和曲轴310与能量储存系统308联接。能量储存系统308可以包括电池、电容器或并行运行的电池和电容器的组合。有利地,该系统可以在小于60伏的电压下运行,这允许使用较便宜的电绝缘。例如,能量存储系统可以是48V电池。电动机/发电机302被布置用于在以电动机驱动模式运行时将能量储存系统308放电并使用电力来向动力传动系施加扭矩。电动机/发电机的规格可以被设置成提供15kW的最大稳态功率。虽然平均稳态功率可以限制为15kW,但瞬时功率可以是平均值的2倍或3倍。电力转换器307将DC能量存储系统输出转换为适合于运行电动机/发电机302的电压输出。根据所使用的电动机/发电机的类型,这可以是AC电压或DC电压。在各种实施例中,电力转换器307可以是DC到DC转换器、电力逆变器、电力整流器或其他适当类型的电力转换器。所施加的扭矩使发动机旋转并且在发动机启动阶段期间使发动机速度加速到希望的水平。电动机/发电机302还被布置用于在以发电模式运行时从该动力传动系中扣减扭矩来对能量储存系统308充电,这是通过将发动机产生的(或从车辆的动能获取的)机械能转换为用于对能量储存系统308充电的电能实现的。电力转换器307有助于将由电动机/发电机302供应的电力转换成能量储存系统308所需的DC供应。电动机/发电机302可以迅速地从生成扭矩切换到吸收扭矩,并且可以迅速地改变扭矩生成/吸收的速率。根据电动机/发电机302和电力转换器307的类型,从扭矩吸收到扭矩生成(反之亦然)的转变可以在50毫秒、10毫秒、5毫秒或2毫秒或更短的时间内发生。这些快速的切换时间比用于车辆推进系统的当前可商购的电力转换器和电动机/发电机系统的切换时间快。
电动机/发电机302可以采取许多形式。例如,电动机/发电机可以是内部永磁无刷DC电动机/发电机、表面永磁无刷DC电动机/发电机、AC感应电动机/发电机、外部激励无刷DC电动机/发电机、开关磁阻电动机/发电机或一些其他类型的电动机/发电机。所有电动机/发电机类型在将机械能转换为电能方面非常高效,并且反之亦然。转换效率通常高于80%。有利地,内部永磁无刷DC电动机提供非常高效的操作,通常在92%至95%的范围内。选择电动机/发电机的另一个考虑因素是其运行速度范围。有利地,开关磁阻电动机/发电机可以在比一些其他电动机/发电机类型更宽的速度范围内运行。这在发动机和电动机/发电机以相同速度旋转的P0架构中特别有利。
参考图3,将描述实施了启动/停止特征的示例混合动力传动系统100。混合动力传动系统包括混合动力传动系控制器102、动力传动系参数调整模块116、点火控制单元140、电动机/发电机124、电动机/发电机控制器125以及内燃发动机150。内燃发动机150驱动曲轴128。电动机/发电机124经由皮带126机械地连接到曲轴128。所展示的动力传动系统100可以另外地包括允许发动机150以跳过点火的方式运行的特征;然而,这样的特征在本发明的一些实施例中不是必需的,并且在其他地方进行了描述。
混合动力传动系控制器102被布置用于在驱动循环期间实施用于混合动力传动系的启动/停止特征。混合动力传动系控制器102根据该启动/停止系统来确定发动机是否应自动关掉或重新启动。这样的关掉一般仅在选定的条件下发生,例如当车辆即将完全停车时、当车辆处于低速(例如,<5km/hr)且预期完全停车时、当环境的和发动机的温度条件适合时、当车辆操作者已经压下制动踏板并释放了加速器踏板时等等。该发动机启动/停止管理单元接收为了作出上述关掉确定而必须的任何输入。这些输入是从多种来源获得的,这些来源包括但不限于制动踏板行程(BPT)传感器165、制动踏板压力(BPP)传感器167、车辆速度传感器(VSS)169、加速器踏板位置(APP)传感器163等等。加速器踏板位置传感器163可以生成被引导到混合动力传动系控制器102的扭矩请求信号111。尽管在图3中未示出,但是扭矩请求信号111可以具有除了从加速器踏板位置传感器163获得的处理或输入以外的其他处理或输入,例如,附件扭矩需求。
在所展示的实施例中,混合动力传动系控制器102接收指示各种运行参数的附加输入,这些运行参数包括但不限于凸轮相位166、计时器168、曲轴角度170、歧管绝对压力(MAP)172、大气压力178、发动机速度176、冷却剂温度和/或油温度174。基于这些输入,混合动力传动系控制器102确定在重新启动期间发动机应如何运行。更具体地,混合动力传动系控制器102被布置用于确定用于停止和重新启动发动机的合适条件。在一些实施方式中,重新启动协调器103被作为混合动力传动系控制器102的一部分而包括在内。重新启动协调器103可以连接到电动机/发电机控制器125。连接127可以通过在汽车工业中广泛使用的CAN(控制器局域网)总线来实现。电动机/发电机控制器125控制电动机/发电机124的运行。电动机/发电机124可以通过皮带126机械地连接到曲轴128。重新启动协调器103确定重新启动期间的发动机扭矩波动,并且可以控制电动机/发电机124以使这些扭矩波动平滑,从而导致曲轴128的净振动以及任何元件(诸如机械地连接到曲轴的减振器)的振荡运动较小。
图4示出了示例混合动力传动系统400,该混合动力传动系统实施了包括气缸停用能力的启动/停止特征。动力传动系统400可以具有跳过点火控制能力,使得可以基于点火决策来做出点火/零点火决策。可选地,系统400可以包括在低发动机速度下停用气缸的能力。在整个工作循环中,停用的气缸的(多个)进气门或(多个)排气门中的任一者或两者被关闭,使得当气缸活塞在气缸中来回移动时,基本上没有空气被泵送通过气缸。除了图3所示的元件之外,系统400还包括点火分数计算器112和点火时间确定模块120。与图3中的类似元件相比,点火控制单元180和动力传动系参数调整模块186具有附加功能,因为它们现在控制进气门和/或排气门的激活/停用。
扭矩请求111被输入到混合动力传动系控制器202。基于扭矩请求111,点火分数计算器112、电力参数调整模块186和电动机/发电机控制器125一起工作以确定提供所需扭矩的运行条件。点火分数计算器112确定应适合于在选定的发动机操作中递送所希望的输出的跳过点火式点火分数。该点火分数指示了在当前(或指定的)运行条件下为了递送所希望的输出而要求的点火分数或百分比。在一些优选的实施例中,点火分数可以基于递送驾驶员所请求的发动机扭矩(例如,当这些气缸在针对燃料效率进行实质性优化的运行点点火时)所需的优化点火的百分比。然而,在其他实例中,可以使用不同水平的参考点火、针对非燃料效率的因素进行了优化的点火、当前发动机设置等来确定适当的点火分数。可以控制由电动机/发电机126和发动机150供应的所请求扭矩111的量以优化燃料效率,同时提供可接受的NVH性能。在确定总体燃料效率时,应考虑与在发动机中生成能量、存储该能量并且然后释放该能量相关联的损失。
一旦生成了合适的点火分数,点火分数计算器将它们作为所命令的点火分数119传输到点火正时确定模块120。点火正时确定模块120被布置用于发出点火命令序列(例如,驱动脉冲信号113)以致使发动机150递送由所命令的点火分数119指定的点火百分比。在一些实施方式中,例如,点火正时确定模块120生成比特流,其中每个0指示跳过而每个1指示针对当前气缸点火时机点火。
工作室的停用可以以多种方式进行。例如,工作室可以被停用以形成低压排气弹簧(LPES)。在此情况下,在工作循环期间空气不允许穿过进气门并且不允许经排气门逸出,这在该工作室内产生真空。工作室的停用还可以涉及高压排气弹簧(HPES)。在此情况下,来自工作室点火的排气不会在随后排气冲程中从该室中释放,即在点火之后排气门不打开。在一些情况下,停用的工作室可以作为空气弹簧(AS)运行,其中最初处于大气压力的空气被捕获,并随着活塞在气缸内移动而膨胀和压缩。
图5展示了针对不同类型的气缸操作的代表性扭矩曲线。在该图中,水平轴线是曲柄角,并且竖直轴线是瞬时扭矩。所示的720度曲柄角可以分为4个连续的冲程,每个冲程持续180度。这些连续冲程通常表示为进气、压缩、动力和排气。工作室在排气冲程上点火和排气生成“点火”曲线85。具有燃烧事件的工作循环(诸如曲线85)具有与燃烧相关联的较大扭矩尖峰89。如果点火气缸未排气,则排气冲程具有表示为曲线86中的“HPES”的扭矩曲线。如果气缸未被点火并且在排气冲程之后关闭,则“LPES”曲线87表示扭矩曲线。如果气缸未被点火并且在进气冲程之后该气缸被关闭,则“AS”曲线88表示扭矩曲线。这有利地减小了由停用的工作室引起的扭矩波动。这些工作室扭矩曲线以及其他没有在此明确提及的工作室扭矩曲线中的任一种都可以在混合动力传动系统400的背景下使用。
图5所示的各种扭矩曲线仅是代表性的,并且将根据发动机运行参数而变化。点火曲线85中的扭矩尖峰幅度和正时将受到火花正时以及空气充量和燃料充量的影响。尽管通常希望以理想计量配比的燃料与空气比运行以避免催化剂饱和,但是在一些情况下,可能希望以稀薄的燃料与空气比运行工作室,以减小与燃烧相关联的扭矩尖峰的幅度。如果节气门关闭或基本上关闭,则进气冲程期间的扭矩下降的幅度将因通过节气门吸入空气所需的力而变大。对于在发动机重新启动期间发动机能够停用一个或多个工作室的情况,节气门可以保持打开或基本上打开,例如,打开80%或更多。这将导致进气歧管保持在例如大气压力的80%处或附近。
在发动机停止期间,混合动力传动系控制器102可以以减速燃料切断(DFCO)模式运行该发动机。在DFCO中,燃料从发动机被切断,因此没有发生燃烧,并且因此也没有发生净扭矩生成。由于摩擦损失和通过发动机的空气泵送,发动机将逐渐减速至停止。如果发动机能够停用气门,则可以使用减速气缸切断(DCCO)模式。在此情况下,没有空气被泵送通过气缸,并且发动机由于摩擦损失而减速至停止。在DCCO中运行是有利的,因为没有氧气被泵送通过排气系统中的催化转换器,因此催化剂中的氧化/还原平衡不会改变。DCCO运行的另一个优点是消除了泵送损失。同样,曲轴上的扭矩波动在DCCO中低于在DFCO中的情况,从而使运行更平滑。在配备有凸轮相位调整的发动机中,凸轮相位器可以返回到适合发动机重新启动的相位角。该相位角可以对应于将最小量的空气引入到激活的气缸中的相位角。混合动力传动系控制器102获得关于停止的发动机的曲轴旋转角度170的信息。对于通常在汽车应用中使用的四冲程发动机,曲轴旋转角度可以在0到720之间变化。典型地,曲轴旋转角度以6度为增量进行测量。除了曲轴旋转角度170之外,混合动力传动系控制器102还可以估计在每个气缸中可能捕获的空气充量。关于曲轴旋转角度170、凸轮相位(或更一般而言,进气门和排气门升程曲线)166、歧管绝对压力172和温度174的信息可以用于确定在发动机停止时每个气缸中的空气充量。
在停止时段期间,由于穿过节气门的空气泄漏,MAP将朝向大气压力漂移。同样地,由于穿过进气门、排气门和活塞环的空气泄漏,气缸压力将朝向大气压力漂移。由于缺少生成热量的燃烧,发动机温度也会变冷。混合动力传动系控制器102可以通过使用进入进气歧管和气缸的空气泄露的模型来跟踪在关闭时段期间进气歧管压力和气缸空气充量的变化。空气泄露模型可以利用计时器输入168,该计时器输入跟踪发动机150已经停止的时间。
初始地参考图3,将描述实施发动机重新启动特征的示例混合动力传动系统100。重新启动协调器103可以将关于重新启动的信息发送到动力传动系参数调整模块116和电动机/发电机控制器125。可获得的发动机扭矩生成曲线将取决于发动机已经停止的时间和停止的曲轴旋转角度。可以控制关于何时以及向每个气缸中喷射多少燃料的决策,以使在发动机启动期间的扭矩扰动最小化。另外,电动机/发电机124可以用于从动力传动系增加或减少扭矩,以使可能由发动机150引起的扭矩变化减轻或平滑。
重新启动协调器103可以确定合适的重新启动轨迹,这将有助于防止在发动机重新启动期间出现不可接受的NVH。重新启动轨迹通常会迅速增大发动机速度,使得驾驶员在发动机响应性方面不会感觉到可感知的延迟,重新启动轨迹可能取决于重新启动的性质。例如,重新启动可能由驱动附件负载(诸如空调)的需求触发。在这样的情况下,发动机仅需要返回到空转速度。如果驾驶员将他/她的脚从制动踏板上移开但不压下加速器踏板,则这种重新启动轨迹也可以是可接受的。
将要空转的代表性重新启动轨迹510在图6中示出。在此示例中,发动机空转速度为750rpm,并且达到空转速度的时间所希望的时间为0.5秒。轨迹510描绘了相对于时间的以rpm(每分钟转数)为单位的发动机旋转速度。图6所示的轨迹510是有利的,因为发动机速度是逐渐变化的,从而使引起对任何动力传动系减振器的锤击的可能性最小化。如果假设曲轴的惯性矩为4缸发动机的代表值0.4kg*m2,则产生轨迹510所需的最大瞬时功率约为25kW。可以由15kW稳态额定功率的电动机/发电机产生此功率水平。应当理解,轨迹510是理想化的,并且发动机速度中的一些更高频率波动是可接受的。
图6还示出了发动机曲轴旋转角度520相对于时间的变化。对于轨迹510,发动机曲轴旋转角度的总变化约为1140°。这对应于略大于发动机三转。四缸四冲程发动机在发动机三转中具有六个潜在的吸入事件和燃烧事件。是否发生吸入取决于气缸是否可以被停用,并且如果可以停用,则取决于停用策略。如果气缸不能被停用,则是否发生燃烧以及产生何种水平的扭矩取决于动力传动系参数,尤其取决于气缸是否被加燃料和点火正时。如果在启动时段期间发生了燃烧事件,则电动机/发电机可能需要简单地从电动机驱动(向动力传动系添加扭矩)切换为发电(从动力传动系吸收扭矩)。以此方式,电动机/发电机可以吸收一些与燃烧事件相关联的扭矩尖峰89,从而使重新启动轨迹510变得平滑。电动机/发电机可以在小于100毫秒的时间内从施加扭矩转变到吸收扭矩、再到恢复扭矩施加。
虽然一些发动机重新启动可以被设计成在发动机空转速度时终止,但是其他发动机重新启动可以具有不同的终止标准。例如,如果驾驶员将她/他的脚从制动踏板上移开并适度地压下或踩踏加速器踏板,则可以使用与图6所描绘的重新启动轨迹不同的重新启动轨迹。这种重新启动通常可以被称为激烈的重新启动。图7是示出了在激烈的发动机重新启动期间的示例性发动机速度轨迹720和曲轴旋转角度730相对于时间的绘图。在此理想的重新启动轨迹中,该轨迹的前250毫秒与图6中所示的轨迹相同。然而,在此情况下,发动机加速率在250毫秒之后不会降低,而是通过重新启动的平衡以相同的水平继续。因此,在0.5秒之后,与图6中所示的重新启动轨迹中描绘的700rpm的发动机速度相比,发动机速度明显更高(大于1100rpm)。因此,用于激烈的重新启动的发动机重新启动可能会在比重新启动至空转的情况更高的曲轴旋转速度处终止。
如前所述,所描述的由内燃发动机产生的扭矩与由电动机/发电机产生的并且可能由其吸收的扭矩的某种组合用于在重新启动期间使发动机加速。图8示出了针对图7所示的重新启动轨迹的示例性发动机扭矩曲线810,并且图9示出了针对该重新启动轨迹的示例性电动机/发电机扭矩曲线910。在图8中,将跳过前两个可能的点火时机,并且然后所有后续点火时机被点火。在气缸点火之前,发动机将通常具有与气缸的压缩冲程相关联的负扭矩尖峰820。如图8所示,对气缸进行点火可能产生较大的扭矩尖峰830。在重新启动期间扭矩尖峰820和830可能会产生不可接受的振动。可以通过从电动机/发电机施加平滑扭矩来减轻扭矩尖峰。在一些情况下,诸如图9所描绘的,电动机/发电机可能需要例如在谷912处吸收扭矩,而不是在重新启动期间生成扭矩。在其他情况下,即使电动机/发电机始终向动力传动系供应扭矩,发动机扭矩也可以是足够平滑的。在此情况下,电动机/发电机施加的扭矩将在重新启动期间振荡,但是始终保持正值。图9还示出了由发动机和电动机/发电机两者施加到动力传动系的总扭矩920。总施加扭矩920可以在重新启动期间逐渐升高并趋于平稳,如图9所描绘的。应当理解,图9示出了总扭矩920的理想化表示,并且总扭矩920中可能仍然会存在一定程度的扭矩振荡。扭矩振荡不需要完全抵消,只需减小至使得重新启动期间的NVH特性是可接受的即可。
根据加速器踏板压下的程度和可能的其他因素(诸如后处理元件的温度),重新启动期间的点火和跳过的序列可能会变化。通常,加速器踏板的较大压下将导致在重新启动期间更早且更频繁地发生点火。如果后处理的温度低于其运行范围,则可以通过在重新启动期间停用气缸来使被泵送到排气系统中的未燃烧空气的量最小化。
图6和图7中描绘的平滑启动发动机速度轨迹可以以多种不同的方式来实现,这取决于可用的发动机控制。对于不具有气门停用能力或不能在低发动机速度下停用气门的发动机,每个气缸工作循环将空气泵送通过发动机进入排气系统。由于将空气泵送通过排气系统倾向于使催化剂氧饱和,因此希望给每个工作循环加燃料以使任何随后的催化剂再平衡最小化。为了使燃料效率最大化,希望燃烧燃料/空气混合物以优化扭矩生成。这可以通过使用火花正时启动燃烧来实现,该火花正时使制动比燃料消耗(bsfc)最小化。尽管通常希望使燃料效率最大化,但是在一些情况下,可以调整火花正时以减少扭矩输出并改变为点火气缸的扭矩曲线。根据空气充量、喷射的燃料质量和火花正时,可以确定每个气缸的扭矩曲线。可以在适当定相(phasing)的情况下对这些单独的气缸扭矩曲线求和,以确定总发动机扭矩曲线。在没有来自电动机/发电机124的扭矩减轻的情况下,发动机扭矩曲线可能导致对减振器的锤击或一些其他不希望的NVH特性。通过将电动机/发电机124用作发电机,一些与燃烧有关的扭矩尖峰可以被电动机/发电机吸收,从而减小减振元件上的加速度和/或旋转速度的其他时间导数并且消除锤击。
对于具有可以在低发动机速度下停用的气门的发动机,可以在发动机重新启动期间使用此能力。在此情况下,发动机气缸可能会在启动期间被停用。这避免了将任何空气泵送通过催化剂,并且减少了曲轴上的扭矩波动。电动机/发电机可以供应将发动机速度从停止增大到空转所需的所有扭矩。即使没有燃烧发生,发动机也可以由于气缸中捕获的气体的压缩和/或膨胀而产生扭矩波动。同样,凸轮轴的旋转在曲轴上生成取决于凸轮轴旋转角度的扭矩需求。这些波动可以由电动机/发电机124减轻,以避免不希望的NVH。一旦发动机达到适当的速度(诸如发动机空转速度),进气门和排气门就可以被激活,使得可以恢复燃烧。气门打开可以是定时的,使得气门在气缸的进气冲程开始时或附近开始打开。并非所有气缸都需要被激活,并且发动机可以以跳过点火模式运行,在该模式下,一些气缸被激活,并且一些气缸保持停用。如果发动机负载较轻(诸如空转运行),则低点火频率可能可以递送所需的扭矩以维持发动机速度。与对气缸进行点火相关联的扭矩尖峰可以由电动机/发电机吸收或部分地吸收,以维持可接受的NVH水平。
可以调整控制进气门的打开正时和关闭正时的凸轮相位器,使得在每个激活的工作循环期间将最小量的空气引入到气缸中。这将有助于减小与对气缸进行点火相关联的扭矩尖峰的幅度。为了提高燃料效率,可以使控制进入进气歧管的空气流的节气门保持打开或几乎打开,以使泵送损失最小化。在空转或低发动机负载下运行的无法停用气缸的发动机需要部分地或完全关闭节气门以减少空气引入。在具有混合动力传动系的跳过点火控制的发动机中,可以使用低点火频率获得空转和低负载运行,以减少空气引入。在这种操作中发生的较大且不频繁的、燃烧生成的扭矩尖峰会产生非常不均匀的发动机扭矩曲线,该发动机扭矩曲线在混合动力传动系中可以通过电动机/发电机进行平滑。
图6所示的发动机速度轨迹510不是限制性的,并且可以使用不会导致不可接受的NVH的任何平滑轨迹。特别地,不会导致对动力传动系中的减振器的锤击的任何轨迹510都可以是可接受的。轨迹510可以以优化燃料效率的方式基于NVH约束。例如,如果在从停止的发动机到空转速度的转变中有六个点火时机,则可以选择每个燃烧时机的扭矩曲线,以使燃料效率最大化,同时产生可接受的NVH特性。
应当理解,图6所示的曲轴角度度位置520从零度开始,但这不是限制性的。实际上,发动机可以在任何曲柄角处停止,对于4-冲程发动机,该曲柄角在0到720度之间变化。根据发动机重新启动开始时曲轴角度的初始位置,重新启动期间的点火模式可能会不同。例如,在4缸发动机中,有4个动力冲程,每个动力冲程持续180°。动力冲程标称地开始于0°、180°、360°、540°的曲轴取向。如果发动机恰好停在这些取向之一处或附近,则点火气缸产生的扭矩尖峰的定相将与发动机停在90°、700°、450°、630°处或附近时不同。因此,根据发动机重新启动开始时的初始曲轴取向,用于启动发动机的点火序列可能不同。其他因素(包括但不限于发动机温度、环境温度、发动机润滑剂温度和大气压力)可能会影响重新启动点火序列。
对于跳过点火控制的发动机,可以使用低点火分数和高MAP来维持空转速度。这与常规的发动机控制形成对比,在常规的发动机控制中,发动机被严重节流以限制进入发动机的空气流,从而导致发动机运行效率低下。在跳过点火运行中,节气门可以被完全打开或基本上打开以减少泵送损失,例如,MAP可以在大气压力的20%以内。通过从电动机/发电机施加平滑扭矩,至少部分地抵消了与燃烧相关联的扭矩尖峰。
图10是示出了根据本发明的实施例的用于在混合动力传动系中实施停止/启动系统的方法的流程图700。初始地,在步骤702,实施启动/停止特征。总体上,启动/停止特征涉及在车辆驱动循环期间在选定的条件下自动关掉发动机以节省燃料。在实施该启动/停止特征时可以使用任何已知的启动/停止相关的技术或技能。在根据启动/停止特征确定发动机应当关掉之后,混合动力传动系控制器接着确定发动机应被重新启动(步骤704)。可以使用任何已知的技术或条件来确定何时应当进行重新启动。在各种实施例中,例如,重新启动至少部分地是对制动踏板释放和/或加速器踏板压下的响应。
当在步骤706处重新启动发动机时,确定曲轴旋转角度。基于曲轴旋转角度和其他变量,可以在步骤708中估计每个工作室的空气充量。在步骤710中,可以至少部分地基于空气充量和其他动力传动系参数来确定每个工作室的扭矩曲线。对于跳过点火控制的发动机,在确定扭矩曲线时使用有关是否停用工作室的信息。在步骤712中,在适当定相的情况下对与所有发动机气缸相关联的单独的扭矩曲线求和,以产生总的发动机扭矩曲线。在步骤714中,电动机/发电机用于使发动机加速,并且用于施加平滑扭矩以至少部分地抵消发动机扭矩曲线中的扭矩变化。在步骤716中,当发动机已经达到空转速度或适合发动机正常运行的某个其他速度时,终止发动机重新启动。
应当理解,如果驾驶员在发动机达到空转速度之前开始压下加速器踏板,或者停止/启动控制器接收到指示扭矩请求增大的某种其他信号,则发动机速度轨迹可能不会趋于平稳,因为该发动机速度轨迹接近空转速度,但可以继续增大以满足扭矩需求。在跳过点火控制的发动机中,点火频率可以相应地增大以满足扭矩需求。在固定排量的发动机中,可以打开节气门以允许更多的空气流进入发动机,从而增大扭矩输出。
先前描述的混合动力传动系启动/停止系统不仅仅适用于停止的车辆。发动机停止和重新启动可以在车辆处于运动中时发生。在这样的情况中,重新启动的目标可以是在当前齿轮比和车辆速度下使发动机速度阈值与传动系统转速同步。这样的重新启动可以称为滚动式发动机重新启动并且在该重新启动期间可以使用跳过点火控制。在这些工作室中的至少一个开始点火时的发动机速度阈值是可调整的并且不需要是在发动机空转速度下。而且在一些情况下,可以在跳过至少一个工作室时实现所希望的发动机速度,即,在达到发动机速度阈值之后点火分数可以小于一。在从停止发动机到完成发动机重新启动的整个序列期间,车辆保持运动。
在发动机启动时停用一个或多个气缸的另一优点是改善了发动机排气系统中的(多个)后处理元件的温度稳定性。现代内燃发动机典型地在发动机排气系统中使用一个或多个后处理元件,以减少有害污染物的排放,例如未燃烧的碳氢化合物、一氧化碳、氮氧化物和烟灰。这些后处理元件通常需要在高温下运行才能有效。通过在启动期间将未燃烧的空气泵送通过发动机气缸,(多个)后处理元件被冷却(这取决于后处理元件在发动机重新启动之前的启动温度),可能会使后处理元件去除有害污染物的效率降低。在一些实施例中,根据后处理元件的温度,可以在发动机启动时使用不同的点火序列。后处理元件的温度可以被直接测量,或者可以从其他参数(诸如发动机关闭的时间长度)推断得出。
本发明主要是在控制适用于机动车辆中的4-冲程活塞发动机的点火的背景下进行描述的。然而,应当理解,所描述的跳过点火方法非常适合于在各种各样的内燃发动机中使用。这些内燃发动机包括用于以下各项的发动机:几乎任何类型的车辆——包括汽车、卡车、船、建筑设备、航空器、摩托车、轻便摩托车等;以及涉及对工作室的点火并且利用内燃发动机的几乎任何其他应用。各种所描述的方法与在各种各样的不同热力学循环下运行的发动机一起工作,这些发动机包括:几乎任何类型的两冲程活塞发动机、柴油发动机、奥托循环发动机(Otto cycle engine)、双循环发动机、米勒循环发动机(Miller cycleengine)、阿特金森循环发动机(Atkinson cycle engine)、汪克尔发动机(Wankel engine)以及其他类型的转子发动机、混合循环发动机(诸如双奥托发动机和柴油发动机)、星形发动机等。还相信所描述的方法将适用于新开发的内燃发动机,无论它们是利用当前已知的还是后来开发的热力循环进行操作。
在一些优选实施例中,其中发动机被跳过点火控制,点火正时确定模块利用Σ-Δ转换。虽然据信Σ-Δ转换器非常适合于在此应用中使用,但应当理解,这些转换器可以采用各种各样的调制方案。例如,可以使用脉宽调制、脉冲高度调制、CDMA定向调制或其他调制方案来递送驱动脉冲信号。所描述的实施例中的一些实施例利用一阶转换器。然而,在其他实施例中,可以使用更高阶转换器或预定点火序列库。在具有跳过点火控制的一些实施例中,可以基于点火时机来决定点火还是跳过任何给定的点火时机。可以至少部分地使用根据与曲轴旋转速度有关的信号的前馈控制、自适应滤波器前馈控制和/或反馈控制来确定点火决策。
应当了解,在本申请中考虑到的这些发动机/混合动力传动系控制器的设计和配置不限于图1至图4所示的具体布置。可以将所展示模块中的一个或多个集成在一起。可替代地,特定模块的特征反而可以分布于多个模块中。该控制器还可以包括基于其他共同转让的专利申请的附加特征、模块或操作,包括美国专利号7,577,511;7,849,835;7,886,715;7,954,474;8,099,224;8,131,445;8,131,447;8,616,181;8,701,628;8,880,258;9,086,020;9,120,478;9,200,587;9,239,037;9,267,454;9,273,643;9,291,106;9,328,672;9,399,964;9,512794;9,650,971;9,664,130;9,945,313;10,060,368和10,167,799;以及美国专利申请号15/918,284;其中的每一个出于所有目的通过援引以其全文并入本文。在以上专利文献中描述的任何特征、模块和操作都可以被添加到所展示的混合动力传动系统100、300和400。在各种替代性实施方式中,可以使用微处理器、ECU(发动机控制单元)或其他计算设备,使用模拟部件或数字部件,使用可编程逻辑,使用前述各项的组合和/或以任何其他合适的方式在算法上实现这些功能块。各种实施方式包括被布置用于执行以上一些或所有操作的混合动力传动系控制器、软件或系统。
应了解的是,上述部件和特征可以被集成到多种混合动力传动系架构中,包括串联式混合动力系统,其中发动机不能直接驱动车轮。所描述的这些技术也可以应用于轻度混合动力系统或全混合动力系统。轻度混合动力系统涉及以下混合动力传动系统:其中的电动机/发电机不能独立地向车轮供应足够电力来推进车轮,但这样的系统能够向动力传动系以及发动机添加扭矩。在全混合动力系统中,可以仅使用电动机/发电机来直接对车轮提供动力。
尽管已经在驾驶员控制的车辆方面描述了本发明,但是本发明还适用于自主控制的车辆。在此情况下,扭矩请求信号111由自主控制单元而不是驾驶员生成。本发明还可以应用于发动机的冷启动,即发动机在驱动循环开始时启动。

Claims (21)

1.一种用于在混合动力传动系中实施启动/停止特征的方法,该混合动力传动系包括具有曲轴和多个工作室的内燃发动机以及连接到该曲轴的电动机/发电机,该方法包括:
实施停止/启动特征,该停止/启动特征涉及在驱动循环期间在选定情形下自动关掉该发动机;
确定被关掉的发动机应被重新启动;
确定曲轴旋转角度;
估计每个工作室的空气充量;
确定与每个工作室相关联的扭矩曲线;
对与每个工作室相关联的扭矩曲线求和,以确定发动机扭矩曲线;
使用该电动机/发电机旋转地加速该曲轴并向该曲轴施加平滑扭矩,其中,该平滑扭矩被布置用于至少部分地抵消该发动机扭矩曲线的变化,由此减少否则会由该发动机生成的NVH;以及
当曲轴旋转速度达到适合发动机正常运行的水平时,终止该发动机重新启动。
2.如权利要求1所述的方法,其中,在该发动机重新启动期间,该多个工作室中的至少一个能够被停用。
3.如权利要求2所述的方法,其中,与该多个工作室中的能够被停用的该至少一个工作室相关联的扭矩曲线基于对该多个工作室中的该至少一个工作室的停用。
4.如权利要求2或权利要求3所述的方法,其中,所有工作室都能够被停用。
5.如权利要求2至4中任一项所述的方法,其中,在该发动机重新启动期间,一些工作室被点火,并且一些工作室被停用。
6.如权利要求5所述的方法,其中,被点火和被停用的工作室的序列至少部分地基于后处理元件的温度。
7.如权利要求5或权利要求6所述的方法,其中,被点火和被停用的工作室的序列至少部分地基于加速器踏板的压下程度。
8.如权利要求1至7中任一项所述的方法,其中,与每个工作室相关联的扭矩曲线基于工作室的点火以使扭矩生成最大化。
9.如权利要求1至7中任一项所述的方法,其中,该电动机/发电机从向该曲轴施加扭矩转变到从该曲轴吸收扭矩。
10.如权利要求9所述的方法,其中,施加扭矩、吸收扭矩和恢复扭矩施加之间的转变时间段少于100毫秒。
11.如权利要求1至10中任一项所述的方法,其中,空气通过节气门从进气歧管被引入到这些工作室。
12.如权利要求11所述的方法,其中,在该发动机重新启动期间,该节气门保持打开或基本上打开。
13.如权利要求1至12中任一项所述的方法,其中,控制曲轴旋转轨迹,以避免对与该曲轴一起旋转的减振器的锤击。
14.如权利要求13所述的方法,其中,该减振器选自由以下各项组成的组:双质量飞轮、可变弹簧减振器、弹簧质量减振器以及离心摆式减振器。
15.如权利要求1至14中任一项所述的方法,其中,该电动机/发电机选自由以下各项组成的组:内部永磁无刷DC电动机/发电机、表面永磁无刷DC电动机/发电机、AC感应电动机/发电机、外部激励无刷DC电动机/发电机以及开关磁阻电动机/发电机。
16.一种用于车辆的混合动力传动系控制器,该混合动力传动系控制器被布置用于在混合动力传动系控制系统中实施启动/停止特征,该混合动力传动系控制系统包括具有多个工作室的内燃发动机以及电动机/发电机,该混合动力传动系控制器包括:
重新启动协调器,该重新启动协调器被布置用于帮助在该混合动力传动系控制系统中实施启动/停止特征,该启动/停止特征涉及在车辆驱动循环期间在选定情形下自动关掉该发动机;其中,该重新启动协调器确定在重新启动期间与每个工作室相关联的扭矩曲线,对在该重新启动期间与各个工作室相关联的扭矩曲线求和以确定发动机扭矩曲线,并且控制该电动机/发电机,使得该电动机/发电机旋转地加速该曲轴并向该曲轴施加平滑扭矩。
17.如权利要求16所述的混合动力传动系控制器,其中,该平滑扭矩被布置用于至少部分地抵消由该发动机生成的扭矩的变化,由此减少否则会由该发动机生成的NVH。
18.一种用于车辆的混合动力传动系统,该混合动力传动系统包括具有连接到曲轴的多个工作室的内燃发动机以及电动机/发电机,该混合动力传动系统包括:
皮带,该皮带将该内燃发动机机械地连接到该电动机/发电机,使得它们一起旋转;
减振器,该减振器与该曲轴一起旋转;
重新启动协调器,该重新启动协调器在发动机重新启动期间控制该内燃发动机和该电动机/发电机,使得该电动机/发电机向该曲轴递送平滑扭矩,该平滑扭矩至少部分地抵消由该发动机生成的扭矩的变化,由此减少否则会由该发动机生成的NVH。
19.如权利要求18所述的混合动力传动系统,其中,该重新启动协调器控制该内燃发动机和该电动机/发电机,使得在该发动机重新启动期间的曲轴旋转轨迹足够平滑,从而不会导致对该减振器的锤击。
20.如权利要求18或权利要求19所述的混合动力传动系统,其中,至少一个张紧器与该皮带接触,以减少该皮带在该曲轴和电动机/发电机上的滑动。
21.如权利要求20所述的混合动力传动系统,其中,确实地控制该至少一个张紧器施加在该皮带上的力,以减小在该发动机重新启动期间该皮带上的应力。
CN201980015314.XA 2018-02-27 2019-02-22 通过电动机/发电机控制来减轻动力传动系与附件的扭转振荡 Pending CN111886150A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862635656P 2018-02-27 2018-02-27
US62/635,656 2018-02-27
PCT/US2019/019106 WO2019168748A1 (en) 2018-02-27 2019-02-22 Mitigation of powertrain and accessory torsional oscillation through electric motor/generator control

Publications (1)

Publication Number Publication Date
CN111886150A true CN111886150A (zh) 2020-11-03

Family

ID=67685542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980015314.XA Pending CN111886150A (zh) 2018-02-27 2019-02-22 通过电动机/发电机控制来减轻动力传动系与附件的扭转振荡

Country Status (4)

Country Link
US (1) US20190263382A1 (zh)
EP (1) EP3717290A4 (zh)
CN (1) CN111886150A (zh)
WO (1) WO2019168748A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195884A (zh) * 2019-01-16 2021-07-30 舍弗勒技术股份两合公司 用于在启动内燃发动机时主动地衰减扭转减振器的启动共振的方法
CN115013218A (zh) * 2021-03-03 2022-09-06 通用汽车环球科技运作有限责任公司 改进的发动机点火策略

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110067663B (zh) 2015-01-12 2021-11-02 图拉技术公司 用于操作混合动力传动系的方法及动力传动系控制器
US10954877B2 (en) 2017-03-13 2021-03-23 Tula Technology, Inc. Adaptive torque mitigation by micro-hybrid system
JP2020041481A (ja) * 2018-09-11 2020-03-19 川崎重工業株式会社 発電システム及びそれを備える推進装置
US11508808B2 (en) * 2018-10-11 2022-11-22 Actron Technology Corporation Rectifier device, rectifier, generator device, and powertrain for vehicle
US11555461B2 (en) 2020-10-20 2023-01-17 Tula Technology, Inc. Noise, vibration and harshness reduction in a skip fire engine control system
CN112525539B (zh) * 2020-11-26 2023-09-05 湖南行必达网联科技有限公司 一种汽车发动机扭矩检测方法、装置及汽车环境仓
CN113353055B (zh) * 2021-07-27 2022-10-25 哈尔滨东安汽车发动机制造有限公司 一种具备发动机起停控制功能的电机控制器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555555B2 (ja) * 2000-06-09 2004-08-18 日産自動車株式会社 アイドルストップ車両
DE10210246A1 (de) * 2001-03-09 2002-09-19 Denso Corp Mit Motorgenerator ausgestattetes Maschinenstartersystem für Fahrzeuge
DE102004032173B4 (de) * 2004-07-02 2015-07-30 Volkswagen Ag Verfahren zum Betreiben eines Hybrid-Kraftfahrzeuges
KR100992769B1 (ko) * 2007-10-17 2010-11-05 기아자동차주식회사 하이브리드 전기 자동차의 연비 향상을 위한 제어 방법
JP5880067B2 (ja) * 2012-01-19 2016-03-08 いすゞ自動車株式会社 内燃機関とその制御方法
US10060368B2 (en) 2015-01-12 2018-08-28 Tula Technology, Inc. Engine torque smoothing
US10196995B2 (en) * 2015-01-12 2019-02-05 Tula Technology, Inc. Engine torque smoothing
CN110067663B (zh) 2015-01-12 2021-11-02 图拉技术公司 用于操作混合动力传动系的方法及动力传动系控制器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195884A (zh) * 2019-01-16 2021-07-30 舍弗勒技术股份两合公司 用于在启动内燃发动机时主动地衰减扭转减振器的启动共振的方法
US11519377B2 (en) 2019-01-16 2022-12-06 Schaeffler Technologies AG & Co. KG Method for actively dampening a start-up resonance of a torsional damper when starting an internal combustion engine
CN115013218A (zh) * 2021-03-03 2022-09-06 通用汽车环球科技运作有限责任公司 改进的发动机点火策略

Also Published As

Publication number Publication date
EP3717290A4 (en) 2022-04-06
WO2019168748A1 (en) 2019-09-06
EP3717290A1 (en) 2020-10-07
US20190263382A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
CN111886150A (zh) 通过电动机/发电机控制来减轻动力传动系与附件的扭转振荡
US9725082B2 (en) Implementing skip fire with start/stop feature
US8036817B2 (en) Method of starting spark ignition engine without using starter motor
EP1288491B1 (en) Automatic stop and start control system for internal combustion engine
US9328672B2 (en) Engine braking controller
US8326519B2 (en) Oxygen flow reduction during engine start/stop operation
JP5632882B2 (ja) ハイブリッド車両の触媒暖機制御装置
WO2006062250A1 (en) Internal combustion engine system and internal combustion engine control method
US11555461B2 (en) Noise, vibration and harshness reduction in a skip fire engine control system
JP4453536B2 (ja) 駆動装置およびこれを搭載する自動車並びに駆動装置の制御方法
RU2701632C2 (ru) Способ запуска двигателя гибридного транспортного средства (варианты)
RU2712536C2 (ru) Способ (варианты) и система для управления нагнетателем
JP4069737B2 (ja) 内燃機関の停止制御装置
JP6167888B2 (ja) エンジンの制御装置
JP4341478B2 (ja) エンジンの始動装置
US20210189980A1 (en) Mitigation of powertrain and accessory torsional oscillation through electric motor/generator control
JP3722083B2 (ja) パワートレインの制御装置
JP4296989B2 (ja) エンジンの始動装置
JP4293075B2 (ja) 4サイクル多気筒エンジンの始動装置
JP3729147B2 (ja) パワートレインの制御装置
WO2022163410A1 (ja) 駆動制御装置及び駆動制御方法
JP2017008891A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201103

WD01 Invention patent application deemed withdrawn after publication