CN111883665B - Organic solar cell for constructing internal electric field by doping nano particles in charge transport layer and preparation method thereof - Google Patents
Organic solar cell for constructing internal electric field by doping nano particles in charge transport layer and preparation method thereof Download PDFInfo
- Publication number
- CN111883665B CN111883665B CN202010886535.9A CN202010886535A CN111883665B CN 111883665 B CN111883665 B CN 111883665B CN 202010886535 A CN202010886535 A CN 202010886535A CN 111883665 B CN111883665 B CN 111883665B
- Authority
- CN
- China
- Prior art keywords
- transport layer
- doped
- type semiconductor
- electric field
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 54
- 230000005684 electric field Effects 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 239000010410 layer Substances 0.000 claims abstract description 110
- 239000004065 semiconductor Substances 0.000 claims abstract description 35
- 230000005525 hole transport Effects 0.000 claims abstract description 27
- 239000002346 layers by function Substances 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 238000000137 annealing Methods 0.000 claims description 17
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 16
- 239000011521 glass Substances 0.000 claims description 13
- 238000004528 spin coating Methods 0.000 claims description 12
- 229910052709 silver Inorganic materials 0.000 claims description 10
- 239000004332 silver Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 9
- 239000002042 Silver nanowire Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- HQOWCDPFDSRYRO-CDKVKFQUSA-N CCCCCCc1ccc(cc1)C1(c2cc3-c4sc5cc(\C=C6/C(=O)c7ccccc7C6=C(C#N)C#N)sc5c4C(c3cc2-c2sc3cc(C=C4C(=O)c5ccccc5C4=C(C#N)C#N)sc3c12)(c1ccc(CCCCCC)cc1)c1ccc(CCCCCC)cc1)c1ccc(CCCCCC)cc1 Chemical compound CCCCCCc1ccc(cc1)C1(c2cc3-c4sc5cc(\C=C6/C(=O)c7ccccc7C6=C(C#N)C#N)sc5c4C(c3cc2-c2sc3cc(C=C4C(=O)c5ccccc5C4=C(C#N)C#N)sc3c12)(c1ccc(CCCCCC)cc1)c1ccc(CCCCCC)cc1)c1ccc(CCCCCC)cc1 HQOWCDPFDSRYRO-CDKVKFQUSA-N 0.000 claims description 5
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 claims description 5
- 229920001940 conductive polymer Polymers 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 238000007738 vacuum evaporation Methods 0.000 claims description 4
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 2
- 229920000144 PEDOT:PSS Polymers 0.000 claims description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 239000012298 atmosphere Substances 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical compound [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 claims description 2
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 239000011572 manganese Substances 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 claims description 2
- 229910010413 TiO 2 Inorganic materials 0.000 claims 3
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 239000000969 carrier Substances 0.000 abstract description 3
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 239000003574 free electron Substances 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 229910000473 manganese(VI) oxide Inorganic materials 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 3
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229910006854 SnOx Inorganic materials 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910015711 MoOx Inorganic materials 0.000 description 1
- 229910005855 NiOx Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
- H10K30/35—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/30—Doping active layers, e.g. electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/40—Thermal treatment, e.g. annealing in the presence of a solvent vapour
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于光电器件领域,尤其涉及一种通过在电荷传输层掺杂纳米粒子构建内部电场的有机太阳能电池及其制备方法。The invention belongs to the field of optoelectronic devices, and in particular relates to an organic solar cell capable of constructing an internal electric field by doping nano-particles in a charge transport layer and a preparation method thereof.
背景技术Background technique
有机太阳能电池由于具有成本低,可弯曲等特点,在众多资源节约,环境保护,能源利用,家居日用等方面具有广泛的应用。为了满足实际应用的要求,有机太阳能电池应该具有较高的光电转换效率和长时间的使用寿命以实现较高效率的能源使用。但由于有机太阳能电池机理复杂,且产生的激子较难分离,因此有机太阳能电池的在产生光生激子之后往往比较难以分离成自由的电子和空穴,进而导致光电转换效率也较低。因此,如何在保证产生较多的光生激子的同时,提高光生激子分离成自由电子和空穴减少激子复合产生的能量损失成为了有机太阳能电池研究的重点和难点。Organic solar cells have a wide range of applications in many aspects such as resource conservation, environmental protection, energy utilization, and household daily use due to their low cost and flexibility. In order to meet the requirements of practical applications, organic solar cells should have high photoelectric conversion efficiency and long service life to achieve high-efficiency energy use. However, due to the complex mechanism of organic solar cells and the difficult separation of generated excitons, organic solar cells are often difficult to separate into free electrons and holes after photogenerated excitons are generated, resulting in low photoelectric conversion efficiency. Therefore, how to improve the separation of photogenerated excitons into free electrons and holes and reduce the energy loss caused by exciton recombination while ensuring the production of more photogenerated excitons has become the focus and difficulty of organic solar cell research.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于:针对上述液有机太阳能电池产生的光生激子不易产生自由电子和空穴易复合产生的能量损失,载流子传输效率低导致器件性能较低的问题,本发明提供一种通过在电荷传输层掺杂纳米粒子构建内部电场的有机太阳能电池及其制备方法。The purpose of the present invention is: in view of the problem that the photo-generated excitons generated by the above-mentioned liquid organic solar cells are not easy to generate free electrons and holes and are easy to recombine and generate energy loss, and the low carrier transport efficiency leads to the problem of low device performance, the present invention provides a kind of An organic solar cell with an internal electric field constructed by doping nanoparticles in a charge transport layer and a preparation method thereof.
本发明采用的技术方案如下:The technical scheme adopted in the present invention is as follows:
一种通过在电荷传输层掺杂纳米粒子构建内部电场的有机太阳能电池,自下而上依次包括基板、电极层、电子传输层、有机功能层、空穴传输层及金属电极层,所述电子传输层掺杂有质量分数为0.5-3.5%的P型半导体纳米颗粒,所述空穴传输层掺杂有质量分数为0.5-3.5%的N型半导体纳米颗粒。An organic solar cell that constructs an internal electric field by doping nanoparticles in a charge transport layer, including a substrate, an electrode layer, an electron transport layer, an organic functional layer, a hole transport layer and a metal electrode layer in order from bottom to top. The transport layer is doped with P-type semiconductor nanoparticles with a mass fraction of 0.5-3.5%, and the hole transport layer is doped with N-type semiconductor nanoparticles with a mass fraction of 0.5-3.5%.
本发明通过在电荷传输层内部掺杂纳米粒子构建内部电场,提高载流子的传输和收集效率,具有提高光电转换效率的良好性能,且制备方法简单高效,适用于规模化生产。The invention constructs an internal electric field by doping nano-particles inside the charge transport layer, improves the transmission and collection efficiency of carriers, has good performance of improving the photoelectric conversion efficiency, and the preparation method is simple and efficient, and is suitable for large-scale production.
优选的,所述电子传输层的原料为PC61BM、ZnO、MoOx、NiOx、TiO2、SnOx,PFN,PEIE和PANIO中的任意一种或几种,其中x的取值为2或3,所述电子传输层掺杂的P型半导体纳米颗粒的材料为Cu1.8S、Cu2O、TiO2、铟、铝、硼、锰中的任意一种或几种。Preferably, the raw material of the electron transport layer is any one or more of PC61BM, ZnO, MoOx, NiOx, TiO2, SnOx, PFN, PEIE and PANIO, wherein x is 2 or 3, and the electron The material of the P-type semiconductor nanoparticles doped in the transport layer is any one or more of Cu1.8S, Cu2O, TiO2, indium, aluminum, boron, and manganese.
优选的,所述空穴传输层的原料为MnO3、PEDOT:PSS、CuSCN、CuI和NiOm、TiO2、SnOx中的任意一种或几种,其中x的取值为2或3,其中m的取值为2或4;所述空穴传输层掺杂的N型半导体纳米颗粒的材料为砷、磷、锑、Ta2O5、银中的任意一种或几种。Preferably, the raw material of the hole transport layer is any one or more of MnO3, PEDOT:PSS, CuSCN, CuI, NiOm, TiO2, SnOx, wherein x is 2 or 3, and m is The value is 2 or 4; the material of the N-type semiconductor nanoparticles doped in the hole transport layer is any one or more of arsenic, phosphorus, antimony, Ta2O5, and silver.
优选的,所述电极层的原料为氧化铟锡(ITO)、金、银、铝、铜、银纳米线、钙和导电高分子薄膜中电极、银纳米线和导电高分子薄膜中的任意一种,厚度为2~30nm。Preferably, the raw material of the electrode layer is any one of indium tin oxide (ITO), gold, silver, aluminum, copper, silver nanowires, calcium and conductive polymer film electrodes, silver nanowires and conductive polymer films species, with a thickness of 2 to 30 nm.
优选的,所述有机功能层为有机给受体材料体异质结PBDB-T:ITIC、PM6:Y6、PBDB-T:IT4F、PBTTT:PCBM、P3HT:PCBM、C60:CuPc中的任意一种,厚度为100nm-200nm。Preferably, the organic functional layer is any one of organic donor-acceptor material bulk heterojunction PBDB-T:ITIC, PM6:Y6, PBDB-T:IT4F, PBTTT:PCBM, P3HT:PCBM, C60:CuPc , the thickness is 100nm-200nm.
优选的,所述金属电极层的原料为氧化铟锡(ITO)、金、银、铜、铝、钙电极、银纳米线和导电高分子薄膜中的任意一种,厚度为50~150nm。Preferably, the raw material of the metal electrode layer is any one of indium tin oxide (ITO), gold, silver, copper, aluminum, calcium electrodes, silver nanowires and conductive polymer films, with a thickness of 50-150 nm.
一种通过在电荷传输层掺杂纳米粒子构建内部电场的有机太阳能电池的制备方法,包括以下步骤:A preparation method of an organic solar cell for constructing an internal electric field by doping nanoparticles in a charge transport layer, comprising the following steps:
(1)清洗带有ITO电极的玻璃基片,烘干后紫外线氧化处理;(1) Cleaning the glass substrate with ITO electrode, and drying it with ultraviolet oxidation treatment;
(2)在玻璃基片上旋涂掺杂了P型半导体纳米粒子的电子传输层,退火备用;(2) spin-coating an electron transport layer doped with P-type semiconductor nanoparticles on a glass substrate, and annealing for use;
(3)将有机给受体溶液旋涂于电子传输层上,形成有机功能层,退火备用;(3) spin-coating the organic donor-acceptor solution on the electron transport layer to form an organic functional layer, and annealing for use;
(4)在有机功能层上旋涂一层掺杂N型半导体的空穴传输层,退火备用;(4) spin-coating a hole transport layer doped with N-type semiconductor on the organic functional layer, and annealing for use;
(5)在空穴传输层上蒸镀银电极。(5) A silver electrode was vapor-deposited on the hole transport layer.
优选的,步骤(2)的具体的步骤为:大气条件下,将玻璃基片放置在旋涂仪上,滴40-60ul添加掺杂有质量分数为0.5-3.5%的P型半导体纳米颗粒的电子传输层原料的溶液,控制转速为4500-5500rpm,时间为50-70s,然后进行退火处理,退火温度控制在140-160℃,时间为10-20min。Preferably, the specific steps of step (2) are: under atmospheric conditions, place the glass substrate on a spin coater, drop 40-60 ul and add 0.5-3.5% of P-type semiconductor nanoparticles with a mass fraction of 0.5-3.5%. The solution of the raw material of the electron transport layer is controlled at a rotating speed of 4500-5500 rpm and a time of 50-70 s, and then annealed, and the annealing temperature is controlled at 140-160° C. and the time is 10-20 min.
优选的,步骤(3)的具体步骤为:将实验器件转移至手套箱中,在惰性氛围下在掺杂P型半导体纳米粒子的电子传输层上旋涂一层有机功能层,控制转速为3500-4500rpm、时间为15-25s,然后进行退火处理,退火温度控制在120-140℃,时间为10-20min。Preferably, the specific steps of step (3) are: transferring the experimental device to the glove box, spin-coating an organic functional layer on the electron transport layer doped with P-type semiconductor nanoparticles under an inert atmosphere, and controlling the rotational speed to be 3500 -4500rpm, the time is 15-25s, and then annealing treatment is carried out, the annealing temperature is controlled at 120-140 ℃, and the time is 10-20min.
优选的,步骤(4)的具体步骤为:将已经旋涂了有机功能层转移至真空蒸镀设备,在真空度小于(2-5)×10-3Pa的环境下蒸镀一层掺杂有质量分数为0.5-3.5%的N型半导体纳米颗粒空穴传输层的原料溶液,然后在真空环境下冷却20-30min。Preferably, the specific steps of step (4) are as follows: transfer the spin-coated organic functional layer to a vacuum evaporation device, and evaporate a layer doped with a The raw material solution of the N-type semiconductor nanoparticle hole transport layer with a mass fraction of 0.5-3.5% is cooled in a vacuum environment for 20-30 minutes.
相较于现有技术,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
(1)本发明在电子传输层中掺杂P型半导体纳米颗粒,在空穴传输层掺杂N型半导体纳米颗粒,可以在形成通路之后构建内部电场,使激子分离成自由电子空穴的能力增加,并且提升了电子和空穴的载流子迁移率,使得器件可以提高性能;(1) In the present invention, P-type semiconductor nanoparticles are doped in the electron transport layer, and N-type semiconductor nanoparticles are doped in the hole transport layer, so that an internal electric field can be constructed after the passage is formed, so that the excitons are separated into free electron holes. The ability is increased, and the carrier mobility of electrons and holes is improved, so that the device can improve the performance;
(2)本发明通过对电子传输层和空穴传输层的掺杂,改变了传输层的费米能级,可以通过控制掺杂浓度进而实现传输层与有机功能层之间的能级匹配,有利于载流子的收集;(2) The present invention changes the Fermi level of the transport layer by doping the electron transport layer and the hole transport layer, and can achieve energy level matching between the transport layer and the organic functional layer by controlling the doping concentration, Facilitate the collection of carriers;
(3)本发明中,利用传统的有机太阳能电池结构,通过结合简单高效的旋涂工艺,只是在电荷的传输层有少量的掺杂即可以得到更高的光电转换能力,性价比极高;对于有机太阳能电池以及其他领域的探测器的大规模工业制备具有指导意义。(3) In the present invention, using the traditional organic solar cell structure and combining a simple and efficient spin coating process, only a small amount of doping in the charge transport layer can obtain higher photoelectric conversion capability, and the cost performance is extremely high; The large-scale industrial fabrication of organic solar cells as well as detectors in other fields is instructive.
附图说明Description of drawings
图1为本发明的结构示意图;Fig. 1 is the structural representation of the present invention;
图2为在电荷传输层掺杂半导体纳米颗粒前后载流子传输和能级变化图;Fig. 2 is a graph of carrier transport and energy level changes before and after doping semiconductor nanoparticles in the charge transport layer;
图3为本发明所采用的电子给体材料PBDB-T、电子受体材料ITIC结构示意图;3 is a schematic structural diagram of the electron donor material PBDB-T and the electron acceptor material ITIC used in the present invention;
图4为实例一与实例二的JV曲线比较。FIG. 4 is a comparison of the JV curves of Example 1 and Example 2.
图中标记为:1-基板,2-电极层,3-电子传输层,4-有机功能层,5-空穴传输层,6-金属电极层。The figures are marked as: 1-substrate, 2-electrode layer, 3-electron transport layer, 4-organic functional layer, 5-hole transport layer, 6-metal electrode layer.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention, that is, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments.
本发明为了解决有机太阳能电池产生的光生激子不易产生自由电子和空穴易复合产生的能量损失,载流子传输效率低导致器件性能较低的问题。在电子传输层中掺杂低浓度的P型半导体纳米粒子,容易失去电子带正电,在空穴传输层中掺杂低浓度的N型半导体纳米粒子容易得到电子带负电,从而在活性层内部形成电场,对活性层产生的自由电子和空穴的有电场力的作用,有利于自由电子和空穴的传输和收集,降低活性层给受体界面的载流子浓度,促进激子分离。并且改变电子传输层和空穴传输层的能级,电荷传输层和活性层之间的能级结构更加匹配。(如图2所示)。The present invention solves the problems that the photo-generated excitons generated by the organic solar cell are not easy to generate free electrons and holes and are easy to recombine, resulting in energy loss, and low carrier transport efficiency leads to low device performance. Doping low-concentration P-type semiconductor nanoparticles in the electron transport layer is easy to lose positive electron charge, and doping low-concentration N-type semiconductor nanoparticles in the hole transport layer is easy to obtain negative electron charge, so that inside the active layer The formation of an electric field has the effect of electric field force on the free electrons and holes generated by the active layer, which is conducive to the transport and collection of free electrons and holes, reduces the carrier concentration of the active layer to the acceptor interface, and promotes the separation of excitons. And changing the energy levels of the electron transport layer and the hole transport layer, the energy level structure between the charge transport layer and the active layer is more matched. (as shown in picture 2).
实施例1Example 1
一种通过在电荷传输层掺杂纳米粒子构建内部电场的有机太阳能电池,如图1所示,包括基板,所述基板有电极层,电极层上镀有掺杂P型半导体纳米粒子的电子传输层,所述掺杂P型半导体纳米粒子的电子传输层自下而上依次旋涂有有机功能层、掺杂N型半导体纳米粒子的空穴传输层,所述掺杂N型半导体纳米粒子的空穴传输层上镀有金属电极层。An organic solar cell that constructs an internal electric field by doping nanoparticles in a charge transport layer, as shown in Figure 1, includes a substrate, the substrate has an electrode layer, and the electrode layer is plated with doped P-type semiconductor nanoparticles for electron transport. layer, the electron transport layer of the doped P-type semiconductor nanoparticles is spin-coated with an organic functional layer and a hole transport layer of the doped N-type semiconductor nanoparticles in turn from bottom to top, and the doped N-type semiconductor nanoparticles A metal electrode layer is plated on the hole transport layer.
其中,所述基板为玻璃基板。Wherein, the substrate is a glass substrate.
电极层采用玻璃基板上带有的ITO透明导电电极。The electrode layer adopts the ITO transparent conductive electrode on the glass substrate.
掺杂P型半导体纳米粒子的电子传输层采用厚度为10nm的掺杂2wt%Cu2O纳米颗粒的ZnO薄膜。The electron transport layer doped with P-type semiconductor nanoparticles adopts a ZnO film with a thickness of 10 nm doped with 2wt% Cu2O nanoparticles.
有机功能层5采用厚度为150nm的PBDB-T:ITIC(结构式见图3)体异质结。The organic
空穴传输层6采用厚度为10nm的掺杂2wt%砷纳米颗粒的MnO3薄膜。The hole transport layer 6 is a 10nm thick MnO3 thin film doped with 2wt% arsenic nanoparticles.
金属电极层7采用厚度为100nm的银电极。The metal electrode layer 7 is a silver electrode with a thickness of 100 nm.
一种通过在电荷传输层掺杂纳米粒子构建内部电场的有机太阳能电池的制备方法,包括以下制备步骤:A preparation method of an organic solar cell for constructing an internal electric field by doping nanoparticles in a charge transport layer, comprising the following preparation steps:
1.清洗基片:将带有导电电极2的玻璃基板依次放入洗涤剂、丙酮、去离子水、异丙醇中,每次超声清洗15min,然后通过惰性气体吹干,并且紫外线氧化15分钟。1. Cleaning the substrate: Put the glass substrate with the
2.旋涂掺杂P型半导体纳米粒子的电子传输层:在大气条件下,玻璃基板放置在旋涂仪上,滴50ul添加有2wt%Cu2O纳米颗粒的ZnO溶液,控制转速为5000rpm、时间为60s,然后进行退火处理,退火温度控制在150℃,时间为15min。2. Spin coating the electron transport layer of doped P-type semiconductor nanoparticles: under atmospheric conditions, the glass substrate is placed on the spin coater, and 50ul of ZnO solution added with 2wt% Cu2O nanoparticles is dropped, and the control speed is 5000rpm and the time is 5000rpm. 60s, and then annealed, the annealing temperature was controlled at 150°C, and the time was 15min.
3.旋涂有机功能层:此时将实验器件转移至手套箱中,在氮气氛围下在掺杂P型半导体纳米粒子的电子传输层上旋涂一层有机功能层,控制转速为4000rpm、时间为20s,然后进行退火处理,退火温度控制在130℃,时间为15min。3. Spin-coating the organic functional layer: At this time, the experimental device was transferred to the glove box, and an organic functional layer was spin-coated on the electron transport layer doped with P-type semiconductor nanoparticles under a nitrogen atmosphere, and the rotational speed was controlled at 4000 rpm and the time 20s, and then annealing treatment, the annealing temperature is controlled at 130 ° C, the time is 15min.
4.蒸镀掺杂N型半导体纳米颗粒空穴传输层:将已经旋涂了有机功能层转移至真空蒸镀设备,在真空度小于3×10-3Pa的环境下蒸镀一层掺杂有N型半导体纳米颗粒MnO3,然后在真空环境下冷却30min。4. Evaporation of doped N-type semiconductor nanoparticle hole transport layer: transfer the spin-coated organic functional layer to a vacuum evaporation equipment, and evaporate a layer of doped N-type semiconductor nanoparticle in an environment with a vacuum degree of less than 3×10-3Pa. The N-type semiconductor nanoparticle MnO3 was then cooled in a vacuum environment for 30 min.
5.蒸镀金属电极6:再在真空度小于3.0×10-3Pa的环境下蒸镀一层Ag电极。5. Evaporating metal electrode 6: Evaporating a layer of Ag electrode in an environment where the degree of vacuum is less than 3.0×10-3Pa.
在标准测试条件下(AM 1.5,100mW/cm2),测得器件的开路电压(VOC)=0.884577V,短路电流(JSC)=14.5886mA/cm2,填充因子(FF)=0.619375,能量转换效率(PCE)=7.99286%。Under standard test conditions (AM 1.5, 100mW/cm2), the measured open circuit voltage (VOC) of the device = 0.884577V, short circuit current (JSC) = 14.5886mA/cm2, fill factor (FF) = 0.619375, energy conversion efficiency ( PCE) = 7.99286%.
实施例2:对照例Example 2: Comparative Example
在实施例1的基础上,本实施例与实施例1的不同之处在于,将电子传输层和空穴传输层不做任何掺杂,不够建器件的内部电场,用传统的工艺来制作有机太阳能电池,与实例1构成对照组。On the basis of Example 1, the difference between this example and Example 1 is that the electron transport layer and the hole transport layer are not doped, which is not enough to build the internal electric field of the device. Solar cells, and Example 1 constitute a control group.
基板用玻璃基板,电极层用ITO电极,电子传输层用ZnO,有机功能层用PBDB-T:ITIC体异质结,空穴传输层用MnO3,电极层6用银电极。The substrate is glass substrate, the electrode layer is ITO electrode, the electron transport layer is ZnO, the organic functional layer is PBDB-T:ITIC bulk heterojunction, the hole transport layer is MnO3, and the electrode layer 6 is silver electrode.
具体制备方如下:The specific preparation method is as follows:
1.清洗基片:将带有导电电极2的玻璃基板依次放入洗涤剂、丙酮、去离子水、异丙醇中,每次超声清洗15min,然后通过惰性气体吹干,并且紫外线氧化15分钟。1. Cleaning the substrate: Put the glass substrate with the
2.旋涂电子传输层:在大气条件下,玻璃基板放置在旋涂仪上,滴50ul ZnO溶液,控制转速为5000rpm、时间为60s,然后进行退火处理,退火温度控制在150℃,时间为15min。2. Spin coating electron transport layer: under atmospheric conditions, place the glass substrate on the spin coater, drop 50ul ZnO solution, control the rotation speed to 5000rpm and the time for 60s, and then carry out annealing treatment, the annealing temperature is controlled at 150℃, and the time is 15min.
3.旋涂有机功能层:此时将实验器件转移至手套箱中,在氮气氛围下在电子传输层上旋涂一层有机功能层,控制转速为4000rpm、时间为20s,然后进行退火处理,退火温度控制在130℃,时间为15min。3. Spin-coating the organic functional layer: At this time, the experimental device was transferred to the glove box, and an organic functional layer was spin-coated on the electron transport layer in a nitrogen atmosphere. The annealing temperature was controlled at 130 °C and the time was 15 min.
4.蒸镀空穴传输层:将已经旋涂了有机功能层转移至真空蒸镀设备,在真空度小于3×10-3Pa的环境下蒸镀一层MnO3,然后在真空环境下冷却30min。4. Evaporation of hole transport layer: transfer the spin-coated organic functional layer to a vacuum evaporation equipment, evaporate a layer of MnO3 in an environment with a vacuum degree of less than 3×10-3Pa, and then cool it in a vacuum environment for 30min.
5.蒸镀金属电极6:再在真空度小于3.0×10-3Pa的环境下蒸镀一层Ag电极。5. Evaporating metal electrode 6: Evaporating a layer of Ag electrode in an environment where the degree of vacuum is less than 3.0×10-3Pa.
在标准测试条件下(AM 1.5,100mW/cm2),测得器件的开路电压(VOC)=0.868293V,短路电流(JSC)=13.9225mA/cm2,填充因子(FF)=0.582131,能量转换效率(PCE)=7.03727%。Under standard test conditions (AM 1.5, 100mW/cm2), the measured open circuit voltage (VOC) of the device = 0.868293V, short circuit current (JSC) = 13.9225mA/cm2, fill factor (FF) = 0.582131, energy conversion efficiency ( PCE) = 7.03727%.
以上所述实施例仅表达了本申请的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请技术方案构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。The above-mentioned embodiments only represent specific implementations of the present application, and the descriptions thereof are specific and detailed, but should not be construed as limiting the protection scope of the present application. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the technical solution of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010886535.9A CN111883665B (en) | 2020-08-28 | 2020-08-28 | Organic solar cell for constructing internal electric field by doping nano particles in charge transport layer and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010886535.9A CN111883665B (en) | 2020-08-28 | 2020-08-28 | Organic solar cell for constructing internal electric field by doping nano particles in charge transport layer and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111883665A CN111883665A (en) | 2020-11-03 |
CN111883665B true CN111883665B (en) | 2022-08-02 |
Family
ID=73199775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010886535.9A Expired - Fee Related CN111883665B (en) | 2020-08-28 | 2020-08-28 | Organic solar cell for constructing internal electric field by doping nano particles in charge transport layer and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111883665B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113161492B (en) * | 2021-02-20 | 2023-08-25 | 上海交通大学 | Preparation method based on micromolecular passivation perovskite solar cell |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10058578C2 (en) * | 2000-11-20 | 2002-11-28 | Univ Dresden Tech | Light-emitting component with organic layers |
JP2009277791A (en) * | 2008-05-13 | 2009-11-26 | Fuji Electric Holdings Co Ltd | Organic el element |
KR20100054110A (en) * | 2008-11-13 | 2010-05-24 | 주식회사 엘지화학 | Organic light emitting diode having low operating voltage and method for fabricating the same |
EP2367215A1 (en) * | 2010-03-15 | 2011-09-21 | Novaled AG | An organic photoactive device |
DE102011013897A1 (en) * | 2011-03-11 | 2012-09-13 | Technische Universität Dresden | Organic solar cell |
CN102790176B (en) * | 2012-08-30 | 2015-01-07 | 电子科技大学 | Organic solar battery with mixed type heterojunction serving as hole transporting layer and preparation method of organic solar battery |
CN102800811B (en) * | 2012-08-30 | 2015-05-13 | 电子科技大学 | Organic solar cell with ultra-thin layers mixed and heterojunction doped and preparation method thereof |
TWI493739B (en) * | 2013-06-05 | 2015-07-21 | Univ Nat Taiwan | Hot carrier photoelectric conversion device and method thereof |
CN103606627B (en) * | 2013-12-06 | 2016-01-27 | 电子科技大学 | Organic solar batteries of the nested heterojunction of wire netting and preparation method thereof |
CN103855306A (en) * | 2014-03-05 | 2014-06-11 | 宁波大学 | Organic solar cell and manufacturing method thereof |
CN105161626B (en) * | 2015-06-23 | 2017-05-24 | 广东茵坦斯能源科技有限公司 | Doped nano tin compound organic light emitting device |
CN109844973B (en) * | 2016-10-14 | 2024-03-05 | 伊努鲁有限公司 | Hybrid layer for induced doping of optoelectronic devices |
-
2020
- 2020-08-28 CN CN202010886535.9A patent/CN111883665B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN111883665A (en) | 2020-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140190550A1 (en) | Tandem solar cell with graphene interlayer and method of making | |
CN102983277B (en) | Inverted polymer solar cell of Ag nano particle compounded cavity transmission layer and fabrication method | |
CN101414663A (en) | Stacking polymer thin-film solar cell with parallel connection structure | |
CN111883662B (en) | A kind of organic solar cell based on spin annealing process and preparation method thereof | |
CN109802041A (en) | A kind of non-fullerene perovskite planar heterojunction solar battery and preparation method | |
CN109873081B (en) | Organic photovoltaic cell based on organic/inorganic gradient diffusion interface layer and preparation method thereof | |
CN102064281A (en) | Organic photovoltaic battery with cesium acetate as cathode modification layer and preparation method thereof | |
CN109103280B (en) | All-inorganic perovskite ferroelectric fiber composite structure solar cell and preparation method | |
CN102364715B (en) | Polymer solar cell with reverse structure and preparation method thereof | |
CN111883665B (en) | Organic solar cell for constructing internal electric field by doping nano particles in charge transport layer and preparation method thereof | |
CN107394044A (en) | A kind of perovskite solar cell of high-performance conductive electrode and electron transfer layer and preparation method thereof | |
CN114914365A (en) | A perovskite/perovskite tandem solar cell with an inverted structure | |
CN108023018A (en) | The preparation method of inversion perovskite solar cell based on the continuously adjustable control of band gap | |
CN108198939A (en) | A kind of organic solar batteries of zinc oxide composite film based on multi-layer doping magnalium as electron transfer layer | |
CN101572293A (en) | Polymer photoelectron film and preparation method and application thereof | |
CN108807696B (en) | Method for improving interface modification of organic solar cell | |
CN102769102A (en) | A kind of solution processable solar cell anode modification material and modification method thereof | |
CN110212096A (en) | Organic solar batteries and preparation method thereof based on the molybdenum trioxide hole transmission layer with light trapping structure | |
CN101877386A (en) | Universal solar cell based on mesoscopic optical structure | |
CN111326659B (en) | A kind of metal transparent electrode and organic solar cell | |
CN103296222A (en) | High-performance polymer solar cell cathode modifying material | |
CN115458684A (en) | Formal perovskite/quantum dot two-terminal tandem solar cell and its preparation method | |
CN104051627B (en) | A kind of preparation method of laminated organic solar cell in parallel | |
CN108206240A (en) | Efficient organic solar batteries and preparation method | |
CN108461635B (en) | A kind of method and application of boron compound surface modification perovskite thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220802 |
|
CF01 | Termination of patent right due to non-payment of annual fee |