CN111874863A - 一种太阳能光催化制氢燃料电池发电系统 - Google Patents

一种太阳能光催化制氢燃料电池发电系统 Download PDF

Info

Publication number
CN111874863A
CN111874863A CN202010793075.5A CN202010793075A CN111874863A CN 111874863 A CN111874863 A CN 111874863A CN 202010793075 A CN202010793075 A CN 202010793075A CN 111874863 A CN111874863 A CN 111874863A
Authority
CN
China
Prior art keywords
hydrogen
outlet
argon
tank
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010793075.5A
Other languages
English (en)
Other versions
CN111874863B (zh
Inventor
王亚瑟
冉鹏
陈宇彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202010793075.5A priority Critical patent/CN111874863B/zh
Publication of CN111874863A publication Critical patent/CN111874863A/zh
Application granted granted Critical
Publication of CN111874863B publication Critical patent/CN111874863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0078Noble gases
    • C01B2210/0082Argon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

一种太阳能制氢发电技术,特别涉及一种太阳能光催化制氢燃料电池发电系统,属于可再生能源发电技术领域。其特征在于将大量氩气通入光催化制氢反应器中,降低生成物中氢气的浓度,在接下来的加热和分离过程中有效防止氢气爆炸,提高系统安全性;使用燃气轮机排气余热利用装置加热全氟化碳基液体渗透膜,将其维持在90℃左右以保持良好的选择性和渗透性;系统内生成的高纯度的氢气、氧气作为燃料电池的燃料与氧化剂,实现氢能的化学能至电能的直接转化,燃料电池的排气余热进一步通过燃气轮机利用,实现氢能的存储与综合再利用。本系统具有安全性高、绿色环保等优点。

Description

一种太阳能光催化制氢燃料电池发电系统
技术领域
本发明涉及太阳能制氢发电技术,特别涉及一种太阳能光催化制氢燃料电池发电系统,属于可再生能源发电技术领域。
背景技术
随着全球环境污染和温室效应的加剧,氢能作为具有较高热值且燃烧产物清洁的能源受到关注。大量的制氢技术被研究和开发,其中光催化制氢技术由于可以储存和利用太阳能,开始受到广泛关注。
太阳能光催化制氢技术是一种可以实现氢能的无污染生产技术,应用范围广泛,是目前热门的太阳能制氢技术。燃料电池是一种直接将化学能转化为电能的装置,具有功率密度大,能量转换率高、无污染、噪音低、能适应不同功率要求等特点。太阳能催化制氢技术与燃料电池的有机耦合集成,可有效提高可再生能源利用率,实现可再生能源的高效利用。
发明内容
本发明结合太阳能光催化制氢技术与燃料电池的各自优势,设计了一种太阳能光催化制氢燃料电池发电系统。本发明所述系统在新生成的氢气、氧气混合气体中,掺入惰性气体氩气作为保护气,使氢气的浓度远离爆炸极限,而后依次安全地分离混合气体,再利用燃料电池及燃气轮机系统发电,不仅改善了光催化制氢系统的安全性,还实现了太阳能的高效利用,安全高效,绿色环保。
为实现上述目的,本发明提供了如下技术方案。
一种太阳能光催化制氢燃料电池发电系统,所述系统包括水箱、循环泵、光催化制氢反应器、燃气轮机排气余热利用装置、干燥装置、分子膜式气体分离器、带加热装置的液态选择性渗透膜式气体分离器、压缩泵、氩气罐、氢气罐、氧气罐、槽型抛物面聚光器、燃料电池、燃烧室、燃气轮机发电系统与相关连接管道与阀门。
其中,水箱出口与循环泵及光催化制氢反应器底部入口通过管道及阀门连接,光催化制氢反应器的氩气入口与氩气罐出口通过管道及阀门连接。槽型抛物面聚光器吸收并反射太阳光至光催化制氢反应器的受光表面。光催化制氢反应器出口与干燥装置入口通过管道及阀门连接。干燥装置出口与分子膜式气体分离器入口通过管道及阀门连接,分子膜式气体分离器的上端出口与氢气压缩泵及氢气罐入口通过管道及阀门连接,下端出口与带加热装置的液态选择性渗透膜式气体分离器的气体入口通过管道及阀门连接。带加热装置的液态选择性渗透膜式气体分离器的气体上端出口与氩气压缩泵及氩气罐入口通过管道连接,带加热装置的液态选择性渗透膜式气体分离器的下端出口与氧气压缩泵及氧气罐入口通过管道及阀门连接。氢气罐出口通过阀门及管道与燃料电池阳极进口连接,氧气罐出口通过阀门及管道与燃料电池阴极进口连接;燃料电池的阳极出口、阴极出口分别与燃烧室的燃料入口、氧化剂入口通过管道连接;燃烧室的燃气出口与燃气轮机发电系统的燃气入口通过管道连接;燃气轮机发电系统的燃气排气口与燃气轮机排气余热利用装置的燃气进口通过管道连接。
优选的,通过打开氩气罐出口阀门,释放氩气并将氩气直接充入到光催化制氢反应器,使得光催化制氢反应器的内部空间充满氩气,从而降低光催化制氢反应器的内部空间的氢气、氧气浓度,在接下来的加热与分离过程中有效防止氢气爆炸,提高系统安全性。
优选的,燃气轮机排气余热利用装置与带加热装置的液态选择性渗透膜式气体分离器的加热器通过管道连接,利用燃气轮机排气余热加热全氟化碳基液体渗透膜,将其维持在90℃左右以保持良好的渗透速率。并利用带加热装置的液态选择性渗透膜式气体分离器将氩气分离,实现氩气的循环利用。
优选的,太阳能光催化制氢燃料电池发电系统分离出的氢气、氧气分别存储于氢气罐、氧气罐,高纯度的氢气、氧气作为燃料电池的燃料与氧化剂,实现氢能的化学能到电能的直接转化,燃料电池的排气进一步通过燃气轮机利用,实现氢能的存储与综合再利用。
本发明具有的优点及突出性的技术效果:①将氩气直接充入到光催化制氢反应器,使生成的氢气与氧气的混合气体中掺入大量氩气,维持分离前氢气浓度在4%以下,有效防止爆炸,提高系统安全性;②利用燃气轮机排气余热利用装置以加热液态选择性渗透膜,避免使用电加热器等高耗能装置,提高系统效率;③分离并循环利用氩气,系统完整性高,有效提高经济性;④太阳能光催化制氢燃料电池发电系统具备一体化氢气生产、存储、发电功能,具备多功能、高效等特点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种太阳能光催化制氢燃料电池发电系统的示意图。
图2为燃气轮机排气余热利用装置的示意图。
图3为带加热装置的液态选择性渗透膜式气体分离器的结构示意图。
图中各标号清单为:1-水箱;2-循环泵;3-光催化制氢反应器;4-燃气轮机排气余热利用装置;4a-燃气轮机排气余热利用装置的换热器;4b-燃气轮机排气余热利用装置的蓄热水箱;5-干燥装置;6-分子膜式气体分离器;6a-分子膜式气体分离器下端出口;6b-分子膜式气体分离器上端出口;7-带加热装置的液态选择性渗透膜式气体分离器;7a-带加热装置的液态选择性渗透膜式气体分离器下端出口;7b-带加热装置的液态选择性渗透膜式气体分离器上端出口;7c-带加热装置的液态选择性渗透膜式气体分离器的加热器;8-氩气压缩泵;9-氩气罐;10-氧气压缩泵;11-氧气罐;12-氢气压缩泵;13-氢气罐;14-槽型抛物面聚光器;15-燃料电池;16-燃烧室;17-燃气轮机发电系统。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,本发明所述系统包括水箱1、循环泵2、光催化制氢反应器3、燃气轮机排气余热利用装置4、干燥装置5、分子膜式气体分离器6、带加热装置的液态选择性渗透膜式气体分离器7、氩气压缩泵8、氩气罐9、氧气压缩泵10、氧气罐11、氢气压缩泵12、氢气罐13、槽型抛物面聚光器14、燃料电池15、燃烧室16、燃气轮机发电系统17与相应连接管道与阀门。
如图1所示,所述分子膜式气体分离器6包含下端出口6a和上端出口6b,其内部布置有分子筛膜,分子筛膜可根据氢气分子、氧气分子及氩气分子大小的差别以筛选提纯氢气。
如图2所示,所述燃气轮机排气余热利用装置4包含燃气轮机排气余热利用装置的换热器4a、燃气轮机排气余热利用装置的蓄热水箱4b。
如图3所示,所述带加热装置的液态选择性渗透膜式气体分离器7包含下端出口7a、上端出口7b、加热器7c,其内部布置有全氟化碳基液体渗透膜对氧气和氩气进行分离。
如图1所示,本发明所述系统的连接方式如下。
水箱1出口通过管道、阀门与循环泵2进水口连接,循环泵2出口与光催化制氢反应器3的底部入口通过管道及阀门连接,光催化制氢反应器3的氩气入口与氩气罐9出口通过管道及阀门连接;槽型抛物面聚光器14反射太阳光至光催化制氢反应器3的受光面,光催化制氢反应器3出口与干燥装置5入口通过管道及阀门连接;干燥装置5出口与分子膜式气体分离器6入口通过管道及阀门连接;分子膜式气体分离器上端出口6b与氢气压缩泵12入口通过管道及阀门连接;氢气压缩泵12出口与氢气罐13入口通过管道及阀门连接;分子膜式气体分离器下端出口6a与带加热装置的液态选择性渗透膜式气体分离器7的气体入口通过管道及阀门连接。带加热装置的液态选择性渗透膜式气体分离器上端出口7b与氩气压缩泵8入口通过管道及阀门连接;燃气轮机排气余热利用装置4与带加热装置的液态选择性渗透膜式气体分离器的加热器7c通过管道及阀门连接。氩气压缩泵8出口与氩气罐9入口通过管道及阀门连接。带加热装置的液态选择性渗透膜式气体分离器气体下端出口7a与氧气压缩泵10入口通过管道连接,氧气压缩泵10出口与氧气罐11入口通过管道及阀门连接。氢气罐13出口通过阀门及管道与燃料电池15阳极进口连接,氧气罐11出口通过阀门及管道与燃料电池15阴极进口连接;燃料电池15的阳极出口、阴极出口分别与燃烧室16的燃料入口、氧化剂入口通过管道连接;燃烧室16的燃气出口与燃气轮机发电系统17的燃气入口通过管道连接;燃气轮机发电系统17的燃气排气口与燃气轮机排气余热利用装置4的燃气进口通过管道连接。
所述系统的运行方式如下。
如图1所示,水箱1中的水经过循环泵2驱动进入光催化制氢反应器3,槽型抛物面聚光器14维持整个光催化制氢反应器3的温度在50℃左右;光催化制氢反应器3中的水吸收对应波长的太阳光,并由催化剂激发水生成氢气、氧气的混合物;同时,开启氩气罐9出口阀门,氩气罐9中的氩气进入光催化制氢反应器3,使光催化制氢反应器3中混合气体中的氢气含量降低到4%以下;光催化制氢反应器3中的氩气、氢气、氧气及水蒸气混合气体经过管道输送至干燥装置5,除去混合气体中的水蒸气;干燥后的混合气体进入分子膜式气体分离器6,经过分子膜式气体分离器6的分子筛膜分离出氢气,并从分子膜式气体分离器上端出口6b排出,排出的氢气经过氢气压缩泵12压缩进入氢气罐13存储;分子膜式气体分离器6的分子筛膜的另外一侧分离出氩气、氧气的混合气体,经过分子膜式气体分离器下端出口6a排出;氧气、氩气的混合气体随后进入带加热装置的液态选择性渗透膜式气体分离器7。为保证液态选择性渗透膜式气体分离器7的渗透效率,液态选择性渗透膜式气体分离器7内部的氟碳基液体渗透膜需要维持在90℃左右,其能量来自于燃气轮机排气余热利用装置4;而后,氧气、氩气的混合气体在液态选择性渗透膜式气体分离器7中的氟碳基液体渗透膜的作用下分离,分离出的氧气从带加热装置的液态选择性渗透膜式气体分离器下端出口7a排出,并经过氧气压缩泵10进入氧气罐11中存储;带加热装置的液态选择性渗透膜式气体分离器上端出口7b分离出的氩气,经过氩气压缩泵8后回到氩气罐9。
如图1所示,在有电能需求时,分别打开氢气罐13出口阀门、氧气罐11出口阀门,使氢气与氧气分别进入燃料电池15的阳极、阴极,燃料电池15消耗部分氢气、氧气产生直流电;燃料电池15排出的尾气仍含有部分氢气与氧气,随后进入燃烧室16充分燃烧,燃烧后产生的高温烟气进入燃气轮机发电系统17,驱动燃气轮机发电系统17做功产生交流电;燃气轮机发电系统17的排气进入燃气轮机排气余热利用装置4换热后排入大气。
如图2所示,所述燃气轮机排气余热利用装置的换热器4a吸收燃气轮机发电系统17的排气余热,加热循环水至90-100℃并存入燃气轮机排气余热利用装置的蓄热水箱4b,随后将燃气轮机排气余热利用装置的蓄热水箱4b中蓄存的热水通入至带加热装置的液态选择性渗透膜式气体分离器的加热器7c中,从而保证液态选择性渗透膜式气体分离器7高效运行。所述分子膜式气体分离器6的分子筛膜具有较强的吸湿性,为避免影响膜的分离性能,在混合气体通入分离器前先利用干燥装置以干燥气体中的水汽和水蒸气。
所述分子膜式气体分离器6可以采用SOD分子筛膜等对氢气具有良好分离性能的分子筛膜。
所述干燥装置可采用氧化钙、无水氯化钙等干燥剂。
所述燃料电池可采用固体氧化物燃料电池或质子膜燃料电池。
一种太阳能光催化制氢燃料电池发电系统,其特征在于,所述光催化制氢反应器3氩气入口与氩气罐9入口通过管道连接,将大量氩气直接掺入氢气、氧气混合气体中,使氢气的浓度降低到4%以下,在接下来的加热和分离过程中有效防止氢气爆炸,提高系统安全性。
一种太阳能光催化制氢燃料电池发电系统,其特征在于,燃气轮机排气余热利用装置4与带加热装置的液态选择性渗透膜式气体分离器的加热器7c通过管道及阀门连接,加热全氟化碳基液体渗透膜,将其维持在90℃左右以保持良好的选择性和渗透性。充分利用太阳能及系统内产生的余热,避免使用电加热器等高耗能设备,提高系统效率。
一种太阳能光催化制氢燃料电池发系统,其特征在于,太阳能光催化制氢燃料电池发电系统可实现氢气、氧气高纯度分离,并分别存储于氢气罐、氧气罐,高纯度的氢气、氧气作为燃料电池的燃料与氧化剂,实现氢能的化学能至电能的直接转化,燃料电池的排气进一步通过燃气轮机利用,实现氢能的存储与综合再利用。
最后说明的是,以上实施例只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方案及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (4)

1.一种太阳能光催化制氢燃料电池发电系统,其特征在于包括以下设备:水箱(1)、循环泵(2)、光催化制氢反应器(3)、太阳能热利用装置(4)、干燥装置(5)、分子膜式气体分离器(6)、带加热装置的液态选择性渗透膜式气体分离器(7)、氩气压缩泵(8)、氩气罐(9)、氧气压缩泵(10)、氧气罐(11)、氢气压缩泵(12)、氢气罐(13)、槽型抛物面聚光器(14)、燃料电池(15)、燃烧室(16)、燃气轮机发电系统(17)与相应连接管道与阀门;
所述水箱(1)出口通过管道、阀门与循环泵(2)进水口连接,循环泵(2)出口与光催化制氢反应器(3)的底部入口通过管道及阀门连接,光催化制氢反应器(3)的氩气入口与氩气罐(9)出口通过管道连接;槽型抛物面聚光器(14)反射太阳光至光催化制氢反应器(3)的受光面,光催化制氢反应器(3)出口与干燥装置(5)入口通过管道及阀门连接;干燥装置(5)出口与分子膜式气体分离器(6)入口通过管道及阀门连接;分子膜式气体分离器上端出口(6b)与氢气压缩泵(12)入口通过管道及阀门连接;氢气压缩泵(12)出口与氢气罐(13)入口通过管道及阀门连接;分子膜式气体分离器下端出口(6a)与带加热装置的液态选择性渗透膜式气体分离器(7)的气体入口通过管道及阀门连接;带加热装置的液态选择性渗透膜式气体分离器上端出口(7b)与氩气压缩泵(8)入口通过管道及阀门连接;燃气轮机排气余热利用装置(4)与带加热装置的液态选择性渗透膜式气体分离器的加热器(7c)通过管道及阀门连接;氩气压缩泵(8)出口与氩气罐(9)入口通过管道及阀门连接;带加热装置的液态选择性渗透膜式气体分离器气体下端出口(7a)与氧气压缩泵(10)入口通过管道连接,氧气压缩泵(10)出口与氧气罐(11)入口通过管道及阀门连接;氢气罐(13)出口通过阀门及管道与燃料电池(15)阳极进口连接,氧气罐(11)出口通过阀门及管道与燃料电池(15)阴极进口连接;燃料电池(15)的阳极出口、阴极出口分别与燃烧室(16)的燃料入口、氧化剂入口通过管道连接;燃烧室(16)的燃气出口与燃气轮机发电系统(17)的燃气入口通过管道连接;燃气轮机发电系统(17)的燃气排气口与燃气轮机排气余热利用装置(4)的燃气进口通过管道连接。
2.根据权利要求1所述的一种太阳能光催化制氢燃料电池发电系统,其特征在于运行方式如下:水箱(1)中的水经过循环泵(2)驱动进入光催化制氢反应器(3),槽型抛物面聚光器(14)维持整个光催化制氢反应器(3)的温度在50℃左右;光催化制氢反应器(3)中的水吸收对应波长的太阳光,并由催化剂激发水生成氢气、氧气的混合物;同时,开启氩气罐(9)出口阀门,氩气罐(9)中的氩气进入光催化制氢反应器(3),使光催化制氢反应器(3)中混合气体中的氢气含量降低到4%以下;光催化制氢反应器(3)中的氩气、氢气、氧气及水蒸气混合气体经过管道输送至干燥装置(5),除去混合气体中的水蒸气;干燥后的混合气体先进入分子膜式气体分离器(6),经过分子膜式气体分离器(6)的分子筛膜分离出氢气,并从分子膜式气体分离器上端出口(6b)排出,排出的氢气经过氢气压缩泵(12)压缩进入氢气罐(13)存储;分子膜式气体分离器(6)的分子筛膜的另外一侧分离出氩气、氧气的混合气体,经过分子膜式气体分离器下端出口(6a)排出;氧气、氩气的混合气体随后进入带加热装置的液态选择性渗透膜式气体分离器(7);为保证液态选择性渗透膜式气体分离器(7)的渗透效率,液态选择性渗透膜式气体分离器(7)内部的氟碳基液体渗透膜需维持在90℃左右,其能量来自于燃气轮机排气余热利用装置(4);而后,氧气、氩气的混合气体在液态选择性渗透膜式气体分离器(7)中的氟碳基液体渗透膜的作用下分离,分离出的氧气从带加热装置的液态选择性渗透膜式气体分离器下端出口(7a)排出,并经过氧气压缩泵(10)进入氧气罐(11)中存储;带加热装置的液态选择性渗透膜式气体分离器上端出口(7b)分离出的氩气经过氩气压缩泵(8)压缩后回到氩气罐(9);
在有电能需求时,分别打开氢气罐(13)出口阀门、氧气罐(11)出口阀门,使氢气与氧气分别进入燃料电池(15)的阳极、阴极,燃料电池(15)消耗部分氢气、氧气产生直流电;燃料电池(15)排出的尾气仍含有部分氢气与氧气,随后进入燃烧室(16)充分燃烧,燃烧后产生的高温烟气进入燃气轮机发电系统(17),驱动燃气轮机发电系统(17)做功产生交流电;燃气轮机发电系统(17)的排气进入燃气轮机排气余热利用装置(4)换热后排入大气;
所述燃气轮机排气余热利用装置的换热器(4a)吸收燃气轮机发电系统(17)的排气余热,加热循环水至90-100℃并存入燃气轮机排气余热利用装置的蓄热水箱(4b),随后将燃气轮机排气余热利用装置的蓄热水箱(4b)中蓄存的热水通入至带加热装置的液态选择性渗透膜式气体分离器的加热器(7c)中,从而保证液态选择性渗透膜式气体分离器(7)高效运行;所述分子膜式气体分离器(6)的分子筛膜具有较强的吸湿性,为避免影响膜的分离性能,在混合气体通入分离器前先利用干燥装置以干燥气体中的水汽和水蒸气。
3.根据权利要求2所述的一种安全分离氢气的太阳能光催化制氢系统,其特征在于:光催化制氢反应器(3)的入口与氩气罐(9)出口通过管道连接,将大量氩气直接掺入氢气、氧气混合气体中,使氢气的浓度降低到4%以下,在接下来的氢气生成、加热和分离过程中有效防止氢气爆炸,提高系统安全性;太阳能光催化制氢燃料电池发电系统可实现氢气、氧气高纯度安全分离,并分别存储与氢气罐、氧气罐;利用带加热装置的液态选择性渗透膜式气体分离器(7)将氩气分离,并储存于氩气罐(9),从而实现氩气的循环利用。
4.根据权利要求2所述的一种安全分离氢气的太阳能光催化制氢系统,其特征在于:所述太阳能热利用装置(4)与带加热装置的液态选择性渗透膜式气体分离器(7)的加热器通过管道连接,利用太阳能加热全氟化碳基液体渗透膜,将其维持在90℃左右以保持良好的渗透速率,上述过程充分使用太阳能,避免使用电加热器等高耗能设备,提高系统效率。
CN202010793075.5A 2020-08-07 2020-08-07 一种太阳能光催化制氢燃料电池发电系统 Active CN111874863B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010793075.5A CN111874863B (zh) 2020-08-07 2020-08-07 一种太阳能光催化制氢燃料电池发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010793075.5A CN111874863B (zh) 2020-08-07 2020-08-07 一种太阳能光催化制氢燃料电池发电系统

Publications (2)

Publication Number Publication Date
CN111874863A true CN111874863A (zh) 2020-11-03
CN111874863B CN111874863B (zh) 2023-05-30

Family

ID=73211349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010793075.5A Active CN111874863B (zh) 2020-08-07 2020-08-07 一种太阳能光催化制氢燃料电池发电系统

Country Status (1)

Country Link
CN (1) CN111874863B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566687A (zh) * 2021-12-27 2022-05-31 徐州华清京昆能源有限公司 一种固体氧化物燃料电池的发电系统
JP7236200B1 (ja) 2022-03-31 2023-03-09 三菱重工業株式会社 水素生成システムおよび水素生成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223500A1 (en) * 2008-11-18 2011-09-15 Tokyo Gas Co., Ltd. Mcfc power generation system and method for operating same
CN106283101A (zh) * 2016-08-29 2017-01-04 山东泓达生物科技有限公司 一种超纯氢的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223500A1 (en) * 2008-11-18 2011-09-15 Tokyo Gas Co., Ltd. Mcfc power generation system and method for operating same
CN106283101A (zh) * 2016-08-29 2017-01-04 山东泓达生物科技有限公司 一种超纯氢的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566687A (zh) * 2021-12-27 2022-05-31 徐州华清京昆能源有限公司 一种固体氧化物燃料电池的发电系统
CN114566687B (zh) * 2021-12-27 2024-01-23 徐州华清京昆能源有限公司 一种固体氧化物燃料电池的发电系统
JP7236200B1 (ja) 2022-03-31 2023-03-09 三菱重工業株式会社 水素生成システムおよび水素生成方法
WO2023188709A1 (ja) * 2022-03-31 2023-10-05 三菱重工業株式会社 水素生成システムおよび水素生成方法
JP2023150541A (ja) * 2022-03-31 2023-10-16 三菱重工業株式会社 水素生成システムおよび水素生成方法

Also Published As

Publication number Publication date
CN111874863B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
KR101142472B1 (ko) 탄화수소발생장치를 포함하는 용융탄산염연료전지시스템
CN105084311A (zh) 一种零碳排放的甲醇水重整制氢系统及其应用和制氢方法
CN205222680U (zh) 一种零碳排放的甲醇水重整制氢系统及其燃料电池汽车
WO2010120652A1 (en) Thermochemical energy storage system
CN111874863B (zh) 一种太阳能光催化制氢燃料电池发电系统
CN114142791B (zh) 一种多能互补的船舶用全天候淡-热-电联供系统
CN110739471B (zh) 基于重整制氢装置与燃料电池的热电联供系统
CN113889648B (zh) 一种mw级热电联供燃料电池电站
CN112448413A (zh) 一种近零碳排放的分布式能源供给系统及方法
CN111874864B (zh) 一种安全分离氢气的太阳能光催化制氢系统
CN103373705B (zh) 中低温太阳热能品位提升与co2一体化分离的方法和装置
WO2022253256A1 (zh) 一种利用二氧化碳和水合成甲醇的装置及方法
CN109473702A (zh) 一种固体氧化物燃料电池尾气处理系统以及处理方法
JP7351708B2 (ja) エネルギーマネージメントシステム
CN116344883A (zh) 一种sofc-soec多能源联储联供系统及方法
CN213341659U (zh) 一种近零碳排放的分布式能源供给系统
CN110835094A (zh) 甲醇水蒸气与氢混合气一体式超高压制氢系统及其方法
CN214411263U (zh) 一种零碳排放的分布式供能系统
CN105797541B (zh) 一种太阳能光伏驱动的水合物法碳捕集系统
CN215713422U (zh) 一种废气利用的自动化二氧化碳还原设备
CN109638331B (zh) 一种基于甲醇的燃料电池混合发电系统
CN211998804U (zh) 甲醇水蒸气与氢混合气一体式超高压制氢系统
CN210941327U (zh) 一种燃料电池与汽缸发动机的混合动力系统
CN215479717U (zh) 一种船用甲醇水重整制氢质子交换膜燃料电池系统
CN110817799A (zh) 重整、分离一体式超高压制氢系统及其制氢方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant