CN111869103A - 用于形成氮化铝层的方法 - Google Patents

用于形成氮化铝层的方法 Download PDF

Info

Publication number
CN111869103A
CN111869103A CN201980016437.5A CN201980016437A CN111869103A CN 111869103 A CN111869103 A CN 111869103A CN 201980016437 A CN201980016437 A CN 201980016437A CN 111869103 A CN111869103 A CN 111869103A
Authority
CN
China
Prior art keywords
layer
substrate
metal
nitride layer
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980016437.5A
Other languages
English (en)
Inventor
M·希克
C·赛兰斯克
G·沙因巴谢尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RF360 Singapore Pte Ltd
Original Assignee
RF360 Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RF360 Europe GmbH filed Critical RF360 Europe GmbH
Publication of CN111869103A publication Critical patent/CN111869103A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • H03H9/02031Characteristics of piezoelectric layers, e.g. cutting angles consisting of ceramic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02102Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/08Holders with means for regulating temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/175Acoustic mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/176Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of ceramic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/025Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks comprising an acoustic mirror
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0407Temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0542Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a lateral arrangement
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种用于形成氮化铝层(310,320)的方法包括:提供衬底(100),并且形成经图案化的金属氮化物层(110)。在衬底的经暴露的部分(101)上形成底部电极金属层(210)。在衬底(100)的经暴露的部分(101)上方生长的氮化铝层部分(320)展现出压电性质。在经图案化的金属氮化物层(110)上方生长的氮化铝层部分(310)没有展现出压电性质(310)。两个氮化铝层部分(320,310)同时生长。

Description

用于形成氮化铝层的方法
技术领域
本公开涉及一种用于形成氮化铝层的方法。具体地,本公开涉及在衬底上形成氮化铝层,其中氮化铝层的不同部分的性质不同。
背景技术
氮化铝是广泛用于电子部件领域的材料。部件的功能常常基于氮化铝(AlN)层的压电性质。在许多情况下,同一芯片上包括可能使用氮化铝实现其压电性质以外的性质的其他部件或功能。这就要求氮化铝沉积在衬底上,具有压电性质和非压电性质。
氮化铝通常用于体声波(BAW)谐振器,其中电信号在夹置(sandwiched)于两个电性电极之间的压电氮化铝层中引起声学谐振波。可能需要在同一衬底上包括使用氮化铝的其他部件,这些其他部件会利用AlN的机械性质而不是压电性质。例如,AlN可以用作用于片上电容器的电介质层。此外,AlN可以用作导热体,以将在声学谐振器中生成的热量传送到散热器(heat sink)。在这些情况下,优选采用没有压电性质的氮化铝,使得不会影响部件的电声功能。
需要在同一衬底上生长具有压电性质和具有非压电性质的氮化铝。还需要在同一衬底上同时生长具有压电性质和具有非压电性质的氮化铝。
本公开的目的是提供一种用于在同一衬底上生长具有压电性质和非压电性质的氮化铝的方法。
发明内容
根据一个实施例,一种用于形成氮化铝的方法包括:提供衬底;在衬底上形成金属氮化物层;对金属氮化物层进行图案化以形成残余金属氮化物层并且暴露衬底的一部分;在衬底的经暴露的部分上形成金属层;在金属层上和金属氮化物层上方形成氮化铝。
压电AlN展现出规则结构,其具有沿着C轴的很强的取向。换句话说,压电AlN具有柱状取向,其中柱基本上沿着一个主方向延伸,该主方向是晶体的C轴或压缩轴。压电AlN具有展现出柱状、C轴取向的晶体态。取向轴基本上垂直于在其上生长氮化铝的衬底的主表面。
非压电AlN没有这种晶体取向或柱状取向或C轴取向。相反,非压电AlN是无定形的或可以是多晶的。由于这种多晶AlN层或无定形AlN层中实际上没有主取向,所以这样的AlN层没有或至少没有可利用的压电性质。
根据实施例,该方法包括以下步骤:在衬底上形成金属氮化物层。金属氮化物层提供了取向禁止功能,使得在金属氮化物层的区域上方生长的AlN基本上没有晶体取向并且以多晶形式或无定形形式生长,而直接在衬底上生长的、没有底层(underlying)金属氮化物的AlN在其在衬底上生长期间执行相对良好取向的成核。
根据实施例,对沉积在衬底上的金属氮化物层进行图案化以形成残余金属氮化物层的一个或多个部分,并且除去金属氮化物层的其余部分,从而暴露衬底的表面的一部分。
然后,在衬底的经暴露的部分上至少形成用于底部电极的金属层。在另一实施例中,在残余金属氮化物层上和在衬底的经暴露的部分上形成金属层。在一个沉积步骤中,在残余金属氮化物层上和衬底的经暴露的部分上可以同时形成底部电极的金属层。所沉积的金属层延续了底层的结构,要么是基本上没有主取向(因为它是取向扰乱)的底层金属氮化物层的结构,要么是来自使得能够生长C轴取向的AlN层的底层衬底的结构。
然后,在经暴露的衬底的区域中的先前沉积的金属层上和残余金属氮化物层上方形成氮化铝。金属层还可以覆盖残余金属氮化物层,因此覆盖工件的所有表面,其包括衬底的经暴露的部分和残余金属氮化物层,使得在底部电极水平的所沉积的金属层上形成氮化铝。该氮化铝延续了该金属层或金属氮化物层所提供的表面结构。在取向扰乱金属氮化物层上方沉积的AlN基本上没有取向,并且是无定形或多晶的,因此它没有压电性质。在该区域中,AlN可以用作例如用于电容器的电介质层或导热体。在没有底层金属氮化物的区域中,AlN以柱状C轴晶体取向生长,使得其展现出压电性质。如何为AlN的沉积设置合适操作参数使得其以柱状C轴晶体取向生长在本领域中是众所周知的。
一般而言,应当指出,AlN具有良好的导热率,该导热率基本上高于其他电介质材料的导热率。例如,AlN的导热率系数在约180W/Km的范围中。部件中所生成的热量可以有效地被引导到散热器,以使得减少或避免部件参数的温度漂移。
根据本发明,利用对底层取向扰乱或取向禁止的金属氮化物层进行结构化,可以在工件上同时生长压电AlN和非压电AlN。该优点对于诸如BAW谐振器之类的电声部件可能是有用的,该电声部件可能在同一芯片上具有附加的部件或特征,或需要稳定的温度行为。
对金属氮化物层进行图案化可以通过常规光刻来实现。光刻过程在本领域中众所周知的是实现经图案化的金属氮化物结构的良好受控结果。光刻包括利用光致抗蚀剂层涂覆金属氮化物层。光致抗蚀剂层被暴露到例如可见光、UV光或曝光工具中波长较低的辐射的辐射图案,其中通过辐射源照射掩模图案。然后,对经曝光的光致抗蚀剂层进行显影,使得从工件中移除曝光部分或未曝光部分。该过程实现了在经曝光的金属氮化物层上清晰的掩模图案,以及金属氮化物层的被覆盖的受保护部分。然后,在干法蚀刻过程中对金属氮化物层的经暴露的不受保护部分进行蚀刻,使得在移除金属氮化物层时,底层衬底被暴露。湿法蚀刻工艺也是可能的。在移除或剥离残余光致抗蚀剂层部分之后,金属氮化物层的被覆盖的受保护部分被保留。
结果,工件展现出经暴露的衬底部分的清晰的图案,其中通过蚀刻移除了金属氮化物,以及由光致抗蚀剂掩模所覆盖的金属氮化物层的残余部分。因为光刻是一个受到良好控制并且被良好理解的过程,所以图案可以被生成具有几乎任何期望的结构,并且以受控和可靠的准确性生成。因为金属氮化物层的微观结构基本上没有主固有取向方向,残余金属氮化物部分具有取向扰乱功能。
下一步,沉积底部电极金属层。金属层延续了由相应底层所给出的取向,根据上述光刻过程所生成的图案,该底层要么是经暴露的衬底表面,要么是残余金属氮化物层。
下一步,AlN根据常规方法沉积在工件上。在衬底的经暴露的表面部分上生长的那些部分以良好C轴取向或柱状取向生长,或生长为具有C轴取向的晶体。在取向扰乱金属氮化物层的区中生长的那些部分将以无定形形式或多晶形式生长。用于生长这种AlN的工艺参数在本领域中是众所周知的。可以在反应性氮气气氛中使用铝靶通过物理气相沉积(PVD)来沉积氮化铝。还可以使用其他AlN沉积过程。在相同的沉积参数下,AlN在经暴露的衬底的区中生长为具有压电性质,而同时在取向扰乱金属氮化物层的区中生长为没有压电性质。因而,依据取向扰乱金属氮化物层的底层图案,一种单一沉积过程用于同时且并发生长以压电形式和非压电形式的AlN。制备衬底,使得可以以受控方式以良好C轴取向和不良C轴取向来生长氮化铝,其中对种子层进行图案化,以邻近地生长具有压电性质的AlN薄膜和没有压电性质的AlN薄膜。本公开利用AlN在底层结构上执行自取向生长的倾向性。诸如金属层之类的底层结构受到诸如金属氮化物之类的底层取向扰乱层的存在与否的影响。
根据本实施例,氮化钛被证明是合适的金属氮化物,其对于随后执行的AlN的生长具有取向扰乱性质。通过理论解释,认为氮化钛基本上没有限定的晶体结构,并且基本上包括具有不同取向的多种晶粒的混合物。另外,认为氮化钛层的表面具有高粗糙度。结果,沉积在氮化钛层的顶部上的底部电极金属层延续了氮化钛层的没有取向,使得上述沉积的AlN层也可以以没有取向的形式生长。因而,氮化钛是一种优选材料,其用作取向扰乱层,作为在其上生长AlN层的基础。
待形成电子部件的底部电极的金属层延续了一方面由金属氮化物的基底取向扰乱层引起的结构和另一方面由经暴露的衬底引起的结构。金属层可以包括金属层夹层。底部铝层展现出良好的传导性。铝层可以包括形成Al-Cu合金的少量铜。该铝层上设置的顶部钨层具有较低的传导性,但是对于稍后待沉积AlN层具有良好的粘附性质。备选地,底部电极的金属层可以包括钼、钌、铱和铂中的一种或多种的组合物,其可以具有基本上均质的形式。
在本公开的应用领域中,金属层具有诸如体声波(BAW)谐振器之类的声学谐振器的底部电极的功能。在经暴露的衬底上方的金属层上形成的AlN具有压电性质,使得它是BAW谐振器的一部分。取向扰乱金属氮化物层上方的金属层是用于沉积没有取向的非压电AlN的种子层,没有取向的非压电AlN可以用作导热体,以将BAW谐振器中生成的热量从谐振器中向外转移,使得谐振器维持严格的操作规格。在另一示例中,在取向扰乱金属氮化物层上方的金属层上形成的AlN可以是电容器的电介质,该电容器的底部电极是谐振器的延伸底部电极。BAW谐振器可以用于移动通信器件中的RF滤波器中,例如,用于带通滤波器中。本公开的其他应用领域包括压电传感器和压电致动器。
其上生长有上述结构的衬底可以具有电介质材料的顶层。电介质层可以是声学反射镜的一部分,声学反射镜诸如BAW谐振器的布拉格反射镜布置。布拉格反射镜结构包括交替布置的高声学阻抗材料层和低声学阻抗材料层的堆叠。在一个实施例中,高声学阻抗的材料是钨,而低声学阻抗的材料是电介质,诸如二氧化硅(SiO2)。在设置有声学活动谐振器部分的底部电极的表面上的布拉格反射镜布置的顶部层由二氧化硅制成。
例如通过PVD形成氮化铝的常规方法需要无氧表面,以使得所生长的氮化铝实现与底层结构的良好粘附,并且延续底层的晶体结构。在生长氮化铝之前,必须从底层金属底部电极层移除所有氧。在一个实施例中,可以在氢等离子体气氛中执行对底部电极的氧清除,以使得所沉积的AlN层可以接近底部电极的表面上的成核的点。
应当理解,前面的一般描述和下面的详细描述都仅仅是示例性的,并且旨在提供概述或框架以理解权利要求的性质和特性。把附图包括在内以提供其他理解,这些附图并入本说明书中且构成其一部分。附图图示了一个或多个实施例,并且与说明书一起用于解释各种实施例的原理和操作。附图中不同图中的相同元件由相同的附图标记表示。
附图说明
在附图中:
图1示出了根据第一处理步骤的工件,该工件包括经图案化的金属氮化物层和经暴露的衬底部分;
图2示出了具有沉积用于底部电极的金属层的工件的另一处理步骤;
图3示出了具有沉积有具有压电性质的段和没有压电性质的段的氮化铝的工件的又一处理步骤;
图4示出了图3的工件的俯视图;
图5示出了不同材料层上生长的AlN薄膜的摇摆曲线测量;以及
图6示出了BAW谐振器,其中压电AlN由用于导热体的无定形AlN包围。
具体实施方式
现在,下文中将参考示出了本公开的实施例的附图对本公开进行更全面的描述。然而,本公开可以以许多不同的形式体现,不应被解释为局限于本文中所阐述的实施例。相反,提供这些实施例是为了使本公开将本公开的范围完全传达给本领域技术人员。附图不一定按比例绘制,而是被配置为对本公开进行清楚地说明。附图中不同图中的相同元件由相同的附图标记表示。
图1至图3示出了在氮化铝(AlN)层的形成过程中所处理的工件的连续步骤的横截面视图。现在,转到图1,示出了其上形成下述结构的衬底100。衬底可以是电介质层,该电介质层是更复杂的层布置的顶部层。在所描述的实施例中,衬底100由二氧化硅(SiO2)制成,其是体声波(BAW)谐振器的一部分,如结合图6所更详细地描述的。
沉积诸如氮化钛(TiN)之类的取向扰乱材料层或取向禁止材料层。根据光刻过程对TiN层进行结构化,以获得残余TiN层110。结构化包括利用光致抗蚀剂涂覆TiN层、利用辐射图案暴露光致抗蚀剂、对经暴露的光致抗蚀剂进行显影、除去经显影的光致抗蚀剂或未显影的光致抗蚀剂的部分。相对于其余光致抗蚀剂掩模部分,对TiN层的经暴露的部分进行干法蚀刻。干法蚀刻过程可能涉及氯化学,诸如BCl3和Cl2。在其中移除了TiN层的区域中,衬底100的顶部表面101被暴露。残余TiN层110用作防止稍后待沉积AlN层的C轴取向生长的取向扰乱层。
图2示出了其上沉积有金属层210的工件。金属层110可以是电子器件的底部电极,电子器件诸如结合图6所描述的牢固安装的谐振器类型的BAW谐振器。金属层210包括包含少量铜的铝与钨的夹层,该夹层连续形成在残余TiN层110的表面和衬底100的经暴露的表面101上。金属层210包括设置在经图案化的TiN层110上的部分210a和设置在衬底100的经暴露的部分101上的部分210b。TiN层部分110基本上没有内部优选取向,并且可以包括多种大小和取向不同的晶粒的混合物。具体地,TiN层110没有晶体结构。金属层部分210a是基本没有取向的底部电极结构,其延续了TiN层部分110的非晶体多晶粒结构。因为金属层部分210b由于直接设置在衬底100上而没有底层取向扰乱层,所以金属层部分210b是具有良好取向的底部电极结构。
现在,转到图3,在底部电极金属层210的两个部分210a和210b上同时沉积氮化铝层。沉积参数使得在衬底100的经暴露的部分上的具有良好取向的底部电极210b上生长的AlN的部分320生长具有良好C轴取向,使得AlN部分320展现出良好的压电性质。对于制造BAW谐振器或任何其他电声部件,在诸如210b的底部电极结构上沉积AlN是众所周知的。在底部电极的没有取向的部分210a上同时生长AlN部分310。AlN部分310延续了由没有取向的底部电极部分210a引起的结构,使得该AlN部分310基本上没有内部取向。因为AlN部分310生长在取向扰乱TiN层110上方,所以它没有C轴取向或柱状取向或晶体结构。相反,AlN部分310展现出多晶结构或无定形结构。通过使用工件上设置的经图案化的氮化钛层110和底部电极210,可以在不改变沉积室的沉积参数的情况下同时生长压电层AlN部分320和非压电AlN部分310。底部电极层210a以阻碍压电层适当生长的方式沉积在TiN层110上,而在直接位于衬底100上的区域中压电AlN的良好生长被促进。衬底100的经暴露的表面101的顶部上的AlN膜延续了衬底100的取向,因此具有压电行为,其中该AlN膜生长在不是位于取向扰乱层110上的底部电极区上。
为了在底部电极210上实现AlN层的良好粘附并且允许在区域210b中形成C轴取向成核以及在区域210a中形成非取向生长,在沉积AlN之前立即从金属层210的表面移除氧以获得无氧表面是有用的。可以在氢等离子体中执行氧移除。
虽然压电层部分320可以用于制造利用层320的压电性质的电声部件,但是邻近沉积的无定形类型或多晶类型的AlN层310可以用于生产具有将AlN层部分310作为电介质的电容器。AlN层部分310还可以用作导热体,以将在压电部件中生成的热量向远处传送到散热器,使得电声部件的电气规格具有可忍受的温度漂移或基本上没有温度漂移。
应当指出,可以省略在残余TiN层部分110上方设置的金属层部分210a。在这种情况下,没有压电性质的AlN部分直接生长在残余TiN层部分110上。
图4示出了SEM图像,其是图3的横截面表示的俯视图。右下部分320示出了具有良好C轴取向的所沉积的AlN。可以在图像中单独标识独特的C轴柱。左上部分310没有C轴取向的所沉积的无定形AlN。如可以在部分320,310之间的边界处采集的,两个区域具有限定的过渡接触表面。压电部分320与非压电部分310之间存在相对尖锐的边界线。部分320由直接设置在衬底100的表面101上的底部电极210b生成。部分310由没有取向的底部电极210a引起,该没有取向的底部电极210a设置在取向扰乱TiN层部分110上,该取向扰乱TiN层部分110设置在衬底100上。因而,本公开实现了氮化铝薄膜以受控方式以良好C轴取向和不良C轴取向的生长,并且实现了邻近并且彼此靠近的具有压电性质的AlN的部分和没有压电性质的AlN的部分,这些部分具有公共边界表面。
图5示出了使用不同底层材料上生长的AlN膜的摇摆曲线测量的X射线分析。横轴表示执行摇摆曲线测量的X射线束的入射角(单位为度)。纵轴表示线性强度(单位为cps)。
曲线510由沉积在PVD生成的TiN层上的AlN层产生。曲线510是平坦的,这表明该表面没有主取向结构,因此它非常不规则,如图4的部分310所示。曲线520由在CVD生成的SiN(氮化硅)上生长的AlN层产生。曲线530由在CVD生成的SiO2上生长的AlN层产生。曲线540由在PVD生成的SiO2上生长的AlN层产生。曲线520,530,540包括最大值,该最大值指示该表面展现出优选取向并且具有规则结构,如图4的段320所示。
图6描绘了BAW谐振器的横截面。该结构可以在可以是硅晶片的衬底620上构建。布拉格反射镜布置610沉积在该硅晶片上,该布拉格反射镜布置610由诸如钨之类的声学阻抗高的材料612和诸如SiO2之类的声学阻抗低的材料611的交替序列组成。布拉格反射镜布置610的顶部层是SiO2层611。布拉格反射镜610的功能是限制声学谐振波传播到衬底中。
在SiO2布拉格反射镜顶部层611上设置TiN层630的图案。在该TiN层630上设置底部电极金属层640,该底部电极金属层640具有直接设置在SiO2层611上的部分640b和设置在经图案化的TiN层部分630上的部分640a。在该底部电极金属层640上设置AlN层,该AlN层具有经图案化的TiN层部分630上的部分650和部分660,部分660中底部电极层640b直接设置在SiO2层611上。取向扰乱TiN层630上方的AlN部分650没有展现出压电性质。直接设置在SiO2层611上的底部电极部分640b上设置的部分660具有很强的C轴取向,使得AlN层部分660具有压电性质。在AlN部分660的顶部上设置顶部电极金属层670。
牢固安装的谐振器类型的图6的BAW谐振器在压电层660内以及底部电极640b与顶部电极670之间建立了声学谐振波。声学谐振波生成大量热量,该热量必须传送出声学活动区域,以避免谐振器的电气参数的温度漂移。出于这个原因,AlN层部分650用作导热体,以将热量传送到散热器,诸如环境空气、布拉格反射镜610的体部分、或焊料凸块(图6中未示出)、或热连接到AlN层650的其他散热元件。作为使用取向扰乱TiN层630的优点,AlN部分650是无定形的并且没有压电性质,因此它不会扰乱或影响声学活动区域640b,660,670。因为谐振器外部的结构没有展现出谐振行为,不想要的谐振被避免。另一方面,AlN层部分650受益于AlN的良好导热率。因为可以在一种同时生成压电部分660和非压电部分650的共用过程中生长AlN层650,660,可以高效制造该结构。
在诸如图6所示的BAW谐振器之类的谐振器中,可以在声学活动区域640b,660,670周围提供特定结构。这样的结构被配置为展现出限定频率和速度分布(profile),其导致声波基本上局限于该活动区域。该结构被配置为引起声波的反射并且基本上避免从活动区域泄漏。就这点而言,应当指出,压电AlN和非压电AlN具有不同的声学阻抗和不同的声速特性。本领域技术人员可以使用压电AlN和非压电AlN来构想合适的层堆叠设计,其形成用于声波的横向能垒,使得基本上防止了声波从活动区域逃逸。可以通过使用本公开的取向扰乱金属氮化物层概念交替沉积压电AlN和非压电AlN来实现形成横向能垒的这些横向结构。从而增加了谐振器的品质因数。
对于本领域技术人员而言,显而易见的是,在不背离如所附权利要求书所规定的本公开的精神或范围的情况下,可以做出各种修改和变型。由于本领域技术人员可以想到包含本发明的精神和实质的所公开的实施例的修改、组合、子组合和变型,所以本公开应当被解释为包括所附权利要求书范围内的所有内容。

Claims (12)

1.一种用于形成氮化铝层的方法,包括以下步骤:
提供衬底(100);
在所述衬底(100)上形成金属氮化物层;
对所述金属氮化物层进行图案化以形成残余金属氮化物层(110)并暴露所述衬底的一部分(101);
在所述衬底的经暴露的所述部分(101)上形成金属层(210);
在所述金属层(210)上和所述金属氮化物层(110)上方形成氮化铝(310,320)。
2.根据权利要求1所述的方法,其中形成氮化铝的步骤包括:与在所述残余金属氮化物层(110)的区域中沉积具有较低水平的压电性质的氮化铝层相比,在所述衬底的经暴露的所述部分(101)的区域中沉积具有较高水平的压电性质的氮化铝层。
3.根据权利要求1或2所述的方法,其中形成氮化铝的步骤包括:在所述衬底的经暴露的所述部分(101)的区域中和所述残余金属氮化物层(110)的区域中同时沉积氮化铝。
4.根据权利要求1或3中任一项所述的方法,包括:在所述残余金属氮化物层(110)上和所述衬底的经暴露的所述部分(101)上形成所述金属层(210),并且然后在所述金属层(210)上形成氮化铝(310,320)。
5.根据权利要求1至4中任一项所述的方法,其中对所述金属氮化物层进行图案化的步骤包括:光刻过程,所述光刻过程包括以下各项中的一项或多项:利用光致抗蚀剂层涂覆所述金属氮化物层、利用辐射的图案暴露所述光致抗蚀剂层、对经暴露的所述光致抗蚀剂层进行显影、移除经显影的所述光致抗蚀剂层或未显影的所述光致抗蚀剂层的部分以暴露所述金属氮化物层的部分、对所述金属氮化物层的经暴露的所述部分进行蚀刻以及剥离残余光致抗蚀剂层。
6.根据权利要求1至5中任一项所述的方法,其中形成氮化铝的步骤包括:在所述衬底的经暴露的所述部分(101)的区域中沉积具有晶体性质和/或柱状性质和/或C轴取向的氮化铝,以及在所述残余金属氮化物层(110)的区域中沉积具有无定形性质或非晶体性质的氮化铝。
7.根据权利要求1至6中任一项所述的方法,其中金属氮化物层的形成包括:氮化钛层的形成。
8.根据权利要求1至7中任一项所述的方法,其中金属层的形成包括:铝和钨的夹层形成、或者铝铜合金和钨的夹层的形成、或者钼、钌、铱和铂中的一项或多项的组合物的形成。
9.根据权利要求1至8中任一项所述的方法,其中提供衬底的步骤包括:提供具有电介质材料的顶部层(620)的工件。
10.根据权利要求9所述的方法,其中提供衬底的步骤包括:提供具有二氧化硅的顶部层(620)的工件。
11.根据权利要求9所述的方法,其中提供衬底的步骤包括:提供包括布拉格反射镜布置(610,611,612)的工件,其中所述布拉格反射镜布置包括二氧化硅的顶部层(620)。
12.根据权利要求1至11中任一项所述的方法,在形成氮化铝的步骤之前,还包括:从所述金属层(210)移除氧。
CN201980016437.5A 2018-03-01 2019-02-19 用于形成氮化铝层的方法 Pending CN111869103A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102018104712.6A DE102018104712B4 (de) 2018-03-01 2018-03-01 Verfahren zum Ausbilden einer Aluminiumnitridschicht
DE102018104712.6 2018-03-01
PCT/EP2019/054111 WO2019166285A1 (en) 2018-03-01 2019-02-19 Method for forming an aluminum nitride layer

Publications (1)

Publication Number Publication Date
CN111869103A true CN111869103A (zh) 2020-10-30

Family

ID=65516616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980016437.5A Pending CN111869103A (zh) 2018-03-01 2019-02-19 用于形成氮化铝层的方法

Country Status (4)

Country Link
US (1) US12068734B2 (zh)
CN (1) CN111869103A (zh)
DE (1) DE102018104712B4 (zh)
WO (1) WO2019166285A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11736088B2 (en) 2016-11-15 2023-08-22 Global Communication Semiconductors, Llc Film bulk acoustic resonator with spurious resonance suppression
US11764750B2 (en) * 2018-07-20 2023-09-19 Global Communication Semiconductors, Llc Support structure for bulk acoustic wave resonator
US11817839B2 (en) 2019-03-28 2023-11-14 Global Communication Semiconductors, Llc Single-crystal bulk acoustic wave resonator and method of making thereof
US11909373B2 (en) 2019-10-15 2024-02-20 Global Communication Semiconductors, Llc Bulk acoustic resonator structures with improved edge frames
WO2021213670A1 (en) * 2020-04-24 2021-10-28 Huawei Technologies Co., Ltd. Bulk acoustic wave device with improved piezoelectric polarization uniformity
CN116410018A (zh) * 2021-12-31 2023-07-11 江苏博睿光电股份有限公司 一种基板、制备方法及应用
CN118756097A (zh) * 2024-09-05 2024-10-11 北京航空航天大学宁波创新研究院 一种高强韧氮化物薄膜及其制备方法和应用

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2031629A1 (en) * 1989-12-07 1991-06-08 David A. Dunn Continuous carbothermal reactor
CN1257940A (zh) * 1999-12-24 2000-06-28 中国科学院上海冶金研究所 一种在高声速材料衬底上生长氮化铝压电薄膜的方法
US20050088257A1 (en) * 2003-03-07 2005-04-28 Ruby Richard C. Manufacturing process for thin film bulk acoustic resonator (FBAR) filters
US20050237132A1 (en) * 2004-04-20 2005-10-27 Kabushiki Kaisha Toshiba Film bulk acoustic-wave resonator and method for manufacturing the same
JP2005333052A (ja) * 2004-05-21 2005-12-02 Sony Corp Simox基板及びその製造方法及びsimox基板を用いた半導体装置及びsimox基板を用いた電気光学表示装置の製造方法
US20060046319A1 (en) * 2004-08-31 2006-03-02 Canon Kabushiki Kaisha Ferroelectric member element structure, method for manufacturing ferroelectric member element structure and method for manufacturing liquid jet head
US20060133174A1 (en) * 2004-12-16 2006-06-22 Korea Institute Of Science And Technology Phase-change RAM containing AIN thermal dissipation layer and TiN electrode
JP2006345281A (ja) * 2005-06-09 2006-12-21 Matsushita Electric Ind Co Ltd 圧電体膜を用いた共振器及びその製造方法
JP2007288501A (ja) * 2006-04-17 2007-11-01 Alps Electric Co Ltd 弾性表面波素子の製造方法
JP2008091501A (ja) * 2006-09-29 2008-04-17 Fujitsu Ltd 半導体集積回路装置及びその製造方法
US20090053401A1 (en) * 2007-08-24 2009-02-26 Maxim Integrated Products, Inc. Piezoelectric deposition for BAW resonators
JP2009224586A (ja) * 2007-03-26 2009-10-01 Fujifilm Corp 無機膜とその製造方法、圧電素子、及び液体吐出装置
WO2009132011A2 (en) * 2008-04-24 2009-10-29 Skyworks Solutions, Inc. Bulk acoustic wave resonator
US8330325B1 (en) * 2011-06-16 2012-12-11 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising non-piezoelectric layer
US20120319534A1 (en) * 2011-06-16 2012-12-20 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising non-piezoelectric layer and bridge
CN105262456A (zh) * 2015-10-09 2016-01-20 锐迪科微电子(上海)有限公司 一种高性能薄膜体声波谐振器及其制造方法
CN106341095A (zh) * 2016-08-31 2017-01-18 中国科学院半导体研究所 金属上单晶氮化物薄膜制备方法及体声波谐振器
US10050142B2 (en) * 2014-08-29 2018-08-14 Renesas Electronics Corporation Semiconductor device and a method for manufacturing a semiconductor device
US20190190489A1 (en) * 2016-09-30 2019-06-20 Intel Corporation Film bulk acoustic resonator (fbar) devices for high frequency rf filters

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50202232D1 (de) * 2001-07-30 2005-03-17 Infineon Technologies Ag Piezoelektrische resonatorvorrichtung mit akustischem reflektor
US9450167B2 (en) * 2013-03-28 2016-09-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Temperature compensated acoustic resonator device having an interlayer
US9608192B2 (en) * 2013-03-28 2017-03-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Temperature compensated acoustic resonator device
US11411168B2 (en) * 2017-10-16 2022-08-09 Akoustis, Inc. Methods of forming group III piezoelectric thin films via sputtering
US20170288121A1 (en) * 2016-03-31 2017-10-05 Avago Technologies General Ip (Singapore) Pte. Ltd Acoustic resonator including composite polarity piezoelectric layer having opposite polarities
DE102016107658A1 (de) * 2016-04-25 2017-10-26 Infineon Technologies Ag Abstimmbares resonatorelement, filterschaltkreis und verfahren
WO2018063305A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Film bulk acoustic resonator (fbar) rf filter having epitaxial layers
US10439581B2 (en) * 2017-03-24 2019-10-08 Zhuhai Crystal Resonance Technologies Co., Ltd. Method for fabricating RF resonators and filters
DE102017129160B3 (de) * 2017-12-07 2019-01-31 RF360 Europe GmbH Elektroakustisches Resonatorbauelement und Verfahren zu dessen Herstellung
US10892730B2 (en) * 2018-05-30 2021-01-12 Vanguard International Semiconductor Singapore Pte. Ltd. Acoustic filter with packaging-defined boundary conditions and method for producing the same
CN116346067B (zh) * 2023-04-07 2024-06-25 中国科学院宁波材料技术与工程研究所 空腔型体声波谐振器及其制作方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2031629A1 (en) * 1989-12-07 1991-06-08 David A. Dunn Continuous carbothermal reactor
CN1257940A (zh) * 1999-12-24 2000-06-28 中国科学院上海冶金研究所 一种在高声速材料衬底上生长氮化铝压电薄膜的方法
US20050088257A1 (en) * 2003-03-07 2005-04-28 Ruby Richard C. Manufacturing process for thin film bulk acoustic resonator (FBAR) filters
US20050237132A1 (en) * 2004-04-20 2005-10-27 Kabushiki Kaisha Toshiba Film bulk acoustic-wave resonator and method for manufacturing the same
JP2005333052A (ja) * 2004-05-21 2005-12-02 Sony Corp Simox基板及びその製造方法及びsimox基板を用いた半導体装置及びsimox基板を用いた電気光学表示装置の製造方法
US20060046319A1 (en) * 2004-08-31 2006-03-02 Canon Kabushiki Kaisha Ferroelectric member element structure, method for manufacturing ferroelectric member element structure and method for manufacturing liquid jet head
US20060133174A1 (en) * 2004-12-16 2006-06-22 Korea Institute Of Science And Technology Phase-change RAM containing AIN thermal dissipation layer and TiN electrode
JP2006345281A (ja) * 2005-06-09 2006-12-21 Matsushita Electric Ind Co Ltd 圧電体膜を用いた共振器及びその製造方法
JP2007288501A (ja) * 2006-04-17 2007-11-01 Alps Electric Co Ltd 弾性表面波素子の製造方法
JP2008091501A (ja) * 2006-09-29 2008-04-17 Fujitsu Ltd 半導体集積回路装置及びその製造方法
JP2009224586A (ja) * 2007-03-26 2009-10-01 Fujifilm Corp 無機膜とその製造方法、圧電素子、及び液体吐出装置
US20090053401A1 (en) * 2007-08-24 2009-02-26 Maxim Integrated Products, Inc. Piezoelectric deposition for BAW resonators
WO2009132011A2 (en) * 2008-04-24 2009-10-29 Skyworks Solutions, Inc. Bulk acoustic wave resonator
US8330325B1 (en) * 2011-06-16 2012-12-11 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising non-piezoelectric layer
US20120319534A1 (en) * 2011-06-16 2012-12-20 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising non-piezoelectric layer and bridge
US10050142B2 (en) * 2014-08-29 2018-08-14 Renesas Electronics Corporation Semiconductor device and a method for manufacturing a semiconductor device
CN105262456A (zh) * 2015-10-09 2016-01-20 锐迪科微电子(上海)有限公司 一种高性能薄膜体声波谐振器及其制造方法
CN106341095A (zh) * 2016-08-31 2017-01-18 中国科学院半导体研究所 金属上单晶氮化物薄膜制备方法及体声波谐振器
US20190190489A1 (en) * 2016-09-30 2019-06-20 Intel Corporation Film bulk acoustic resonator (fbar) devices for high frequency rf filters

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
G. F. IRIARTE, J. BJURSTROM, J. WESTLINDER, F. ENGELMARK AND I. V. KATARDJIEV: "Synthesis of c-axis oriented AlN thin films on metal layers: Al, Mo, Ti, TiN and Ni", 2002 IEEE ULTRASONICS SYMPOSIUM, 31 December 2002 (2002-12-31) *
张亚非,陈达著: "薄膜体声波谐振器的原理、设计与应用", 31 January 2011, 上海交通大学出版社, pages: 79 *
祝斌: "脉冲激光沉积制备高取向AlN薄膜的研究", 知网, 15 June 2012 (2012-06-15) *

Also Published As

Publication number Publication date
US12068734B2 (en) 2024-08-20
WO2019166285A1 (en) 2019-09-06
DE102018104712B4 (de) 2020-03-12
DE102018104712A1 (de) 2019-09-05
US20210006220A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
CN111869103A (zh) 用于形成氮化铝层的方法
JP6300123B2 (ja) 音響共振器及びその製造方法
US8631547B2 (en) Method of isolation for acoustic resonator device
US20050035828A1 (en) Film bulk acoustic resonator (FBAR) device and method for producing the same
US7760049B2 (en) Film bulk acoustic resonator, filter, and fabrication method thereof
US20020166218A1 (en) Method for self alignment of patterned layers in thin film acoustic devices
JP2008072691A (ja) 共振器、それを備えた装置、および共振器の製造方法
US6657517B2 (en) Multi-frequency thin film resonators
JP3838359B2 (ja) 音響信号または熱信号と電圧変化とを互いに変換するための層配列を備えた半導体素子、および、その製造方法
KR102632355B1 (ko) 음향 공진기
US20050191792A1 (en) Component for fabricating an electronic device and method of fabricating an electronic device
US20210184652A1 (en) Manufacturing of c-axis textured sidewall aln films
Shih et al. Design and fabrication of nanoscale IDTs using electron beam technology for high‐frequency saw devices
US11575081B2 (en) MEMS structures and methods of forming MEMS structures
JPH04158612A (ja) 弾性表面波素子の製造方法
JP2009231615A (ja) 圧電素子の製造方法、圧電素子、電子機器
JP2005142902A (ja) 弾性表面波素子用基板
US20230087049A1 (en) Bulk acoustic resonator
CN114928348A (zh) 一种滤波器、通信设备及其制造方法
WO2024027920A1 (en) Method for producing a surface acoustic wave resonator
CN116318033A (zh) 通信器件、传感器件、表面声波谐振器及其制作方法
JPS61236207A (ja) 弾性表面波共振子の製造方法
Gevorgian et al. Fabrication Processes and Measurements
JPH0658261B2 (ja) 焦電型赤外線アレイセンサ及びその製造方法
JP2003173928A (ja) 薄膜コンデンサおよび薄膜コンデンサの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230728

Address after: Singapore, Singapore

Applicant after: RF360 Singapore Private Ltd.

Address before: Munich, Germany

Applicant before: Rf360 Europe LLC