CN111868007A - Cr:YAG烧结体 - Google Patents

Cr:YAG烧结体 Download PDF

Info

Publication number
CN111868007A
CN111868007A CN201980018765.9A CN201980018765A CN111868007A CN 111868007 A CN111868007 A CN 111868007A CN 201980018765 A CN201980018765 A CN 201980018765A CN 111868007 A CN111868007 A CN 111868007A
Authority
CN
China
Prior art keywords
sintered body
yag
light
yag sintered
atomic ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980018765.9A
Other languages
English (en)
Other versions
CN111868007B (zh
Inventor
三上充
山崎芳树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jks Metal Co ltd
Original Assignee
Jks Metal Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jks Metal Co ltd filed Critical Jks Metal Co ltd
Publication of CN111868007A publication Critical patent/CN111868007A/zh
Application granted granted Critical
Publication of CN111868007B publication Critical patent/CN111868007B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7706Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
    • H01S3/1673YVO4 [YVO]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Lasers (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种Cr:YAG烧结体,其特征在于,所述Cr:YAG烧结体含有Al、Y、Cr、Ca、Mg、Si和O,并且该烧结体中的成分含量满足下述1)~3)的条件式。其中,在条件式中,各元素符号表示成分含量(原子ppm)。1)|(Y+Ca)/(Al+Cr+Si+Mg)‑0.6|<0.001;2)0原子ppm≤(Ca+Mg)‑(Cr+Si)≤50原子ppm;3)50原子ppm≤Si≤500原子ppm。本发明的实施方式的课题在于提供一种透光性优异并且Cr4+转化率高的Cr:YAG烧结体及其制造方法。

Description

Cr:YAG烧结体
技术领域
本发明涉及Cr:YAG(钇铝石榴石)烧结体及其制造方法。
背景技术
YAG(钇铝石榴石)为包含钇和铝的复合氧化物(Y3AlsO12)的石榴石结构的晶体。以往已知:1)通过在YAG中添加稀土元素中的从原子序数57的Ce至原子序数70的Yb的元素而使构成YAG的“Y元素”进行置换固溶;或者2)通过在YAG中添加过渡金属中的从原子序数22的Ti至原子序数28的Ni的元素而使构成YAG的“Al元素”进行置换固溶,由此置换后的元素成为发光中心并且具有强荧光,并且使用其制作了荧光体、激光介质等。
作为经常使用的材料,有添加了Nd(钕)的Nd:YAG,其是以1064nm的波长发生激光振荡的材料。另外,有将Nd:YAG和添加了四价Cr原子(以下记载为Cr4+)的YAG组合而成的材料,虽然其吸收波长1064nm的光,但是通过调节浓度以使得以一定程度的光量吸收达到饱和(可饱和吸收体),最初,Cr4+:YAG吸收光,抑制Nd:YAG的激光振荡并蓄积激发量,在此期间,当Cr4+:YAG吸收达到饱和时,一下子产生从在Nd:YAG中所蓄积的激发状态的激光振荡,从而产生强脉冲激光,然后Cr4+:YAG中的吸收状态缓和并返回初始状态,通过反复进行这样的过程,能够形成周期性地产生强脉冲光的、被称为被动调Q振荡的状态。
像这样基于Nd:YAG与Cr:YAG的组合的激光器自动地产生强脉冲光,因此被用于各种用途(例如专利文献1)中。另外,近年来,使用与制作以往的陶瓷时同样的成型、烧结的方法来制作尽可能抑制了存在于晶界处的孔隙(空隙)的多晶YAG,已知该多晶YAG显示出略差于单晶但优异的透射特性。在此,作为涉及多晶YAG烧结体的发明,例如可以列举专利文献2、3。
现有技术文献
专利文献
专利文献1:日本特开2017-201662号公报
专利文献2:日本专利第4237707号
专利文献3:日本专利第5019380号
发明内容
发明所要解决的问题
本发明的实施方式的课题在于提供一种透光性优异并且Cr4+转化率高的Cr:YAG烧结体及其制造方法。
用于解决问题的手段
本发明的实施方式的Cr:YAG烧结体的主旨在于,所述Cr:YAG烧结体含有Al、Y、Cr、Ca、Mg、Si和O,并且该烧结体中的成分含量满足下述1)~3)的条件式。其中,在条件式中,各元素符号表示成分含量(原子ppm)。
1)|(Y+Ca)/(Al+Cr+Si+Mg)-0.6|<0.001
2)0原子ppm≤(Ca+Mg)-(Cr+Si)≤50原子ppm
3)50原子ppm≤Si≤500原子ppm
发明效果
根据本发明的实施方式,能够制造透光性优异并且Cr4+转化率高的Cr:YAG烧结体。
附图说明
图1为表示对于实施例1和Cr3+:YAG的K吸收边的XANES测定结果的图。
图2为表示将图1中的5990eV附近进一步放大后的图。
图3为用于确认被动调Q功能的激光装置的结构图。
图4为表示实施例1的被动调Q功能的确认结果的图。
具体实施方式
在Cr:YAG中,Cr原子进入YAG中置换了Al原子的位点,但由于Al为三价,因此容易形成同样三价的Cr原子(以下记载为Cr3+)。Cr4+的浓度不足时,难以发生被动调Q,因此期望提高Cr4+的比率。为了使Cr3+成为Cr4+,可以考虑添加二价的原子并利用该二价的原子置换三价的Y原子和三价的Al原子,从而进行价数补偿。但是,并非只要是二价的元素就全都能够实现该价数补偿,目前已知的仅为Ca和Mg。
但是,仅通过将Ca、Mg添加到YAG烧结体中无法得到足够的烧结性,增加添加量时,反而存在烧结性变差、无法得到透光性的问题。本发明人对能够显著提高烧结性的各种添加元素中的Si进行了研究,结果得到了如下发现:由于Si为四价,因此添加Si时,朝阻碍转化为Cr4+的方向起作用,但是通过适当调节Si的量,能够在不阻碍转化为Cr4+的情况下显著地提高烧结性。
鉴于上述发现,本发明的实施方式的Cr:YAG烧结体的特征在于,所述Cr:YAG烧结体含有Al、Y、Cr、Ca、Mg、Si和O,并且该烧结体中的成分含量满足下述1)~3)的条件式。其中,式中,各元素符号表示成分含量(原子ppm)。
1)|(Y+Ca)/(Al+Cr+Si+Mg)-0.6|<0.001
2)0原子ppm≤(Ca+Mg)-(Cr+Si)≤50原子ppm
3)50原子ppm≤Si≤500原子ppm
关于条件式1),YAG(组成式:Y3Al5O12)偏离Y:Al=3∶5的组成比时,有时Al2O3、YAlO3等其它结构的组织析出从而使透光性降低,在这样的情况下,在被动调Q中有时激光振荡停止。因此,要求包含与“Y原子”置换的Ca、与“Al原子”置换的Cr、Mg、Si在内的烧结体的组成比为(Y+Ca):(Al+Cr+Mg+Si)=3∶5,即使产生组成偏差,只要在|(Y+Ca)/(Al+Cr+Si+Mg)-0.6|<0.001的范围内,就能够得到足够的透光性。
本发明的实施方式的Cr:YAG烧结体基本上为四价的Cr置换YAG,并且为了Cr的价数补偿而包含二价的Ca和Mg,为了提高烧结性而还包含Si。Ca具有促进Cr4+转化的作用,但是有时使烧结性变差。另外,Mg也能够微弱地促进Cr4+转化,但是无法充分提高烧结性。此外,对于Si而言,通过添加Si能够提高烧结性,但是由于价数为四价,因此会阻碍Cr4+转化。
在考虑到上述各添加元素的作用和效果时,通过满足上述2)的条件式,能够在利用Ca和Mg促进Cr4+转化的同时,利用Si抑制由Ca引起的烧结性的降低,另外,能够在利用Si提高烧结性的同时,利用Ca、Mg抑制由Si引起的Cr4+转化的阻碍。另一方面,通过添加50原子ppm以上的Si,能够得到提高烧结性的效果,但是Si含量大于500原子ppm时,烧结性变差,因此Si含量如上述3)的条件式所示。
在本发明的实施方式中,Cr:YAG烧结体的波长1300nm的光的透射率优选为80%以上。透光性差时,有时激光被遮蔽从而激光振荡停止。烧结性与透光性存在相关性,在充分进行了烧结的情况下,残留在内部且使光散射的气孔(孔)变少,能够得到透射性优异的烧结体。需要说明的是,在透射率的测定中,透射率根据厚度而变化,因此将烧结体的厚度设定为1cm。
另外,在本发明的实施方式中,转化率Cr4+/(Cr3++Cr4+)优选为0.25以上。这是因为,Cr4+的浓度低时,不发生被动调Q,虽然发生激光振荡,但是不发生脉冲振荡。需要说明的是,如后述所详细说明的,从Cr3+到Cr4+的价数转变的评价可以使用X射线近边吸收光谱(XANES)通过与作为参考试样的Cr3+:YAG烧结体的比较来进行。
接着,对本发明的实施方式的多晶YAG烧结体的制造方法的一例进行说明。
(关于原料粉末)
准备Y2O3粉末、Al2O3粉末、Cr2O3粉末、MgO粉末和CaCO3粉末作为原料,以达到规定的摩尔比的方式进行称量。这些原料粉末优选使用平均粒径为0.3μm~10μm的原料粉末,另外,对于Y2O3粉末、Al2O3粉末而言,优选使用纯度4N以上的原料粉末,对于Cr2O3粉末、MgO粉末、CaCO3粉末而言,优选使用纯度2N以上的原料粉末。
(关于混合)
将上述Y2O3粉末、Al2O3粉末、Cr2O3粉末、MgO粉末和CaCO3粉末投入混合粉碎机中,利用以水为溶剂、以氧化铝为介质的球磨机进行4小时~6小时的湿式混合。此时,为了抑制由原料粉末的聚集而导致的混合不均,优选添加适量的分散剂。在混合后,向从混合粉碎机中取出的浆料中添加Si(OC2H5)4和乳酸铝并进行搅拌。通过该Si(OC2H5)4的添加量能够调节最终的YAG烧结体中的Si含量。
(关于造粒、成型)
接着,将搅拌后的浆料干燥,然后利用筛强制过筛,或者进行喷雾干燥而制作造粒粉,将其放入模具(例如,φ150mm×40mm)中,进行冷压,然后在150MPa~200MPa下进行CIP成型。
(关于预加热)
接着,在大气炉中,为了除去水分而将该成型体在100℃~300℃下加热4小时~6小时,然后为了除去有机成分等而将该成型体在800℃~1000℃下加热1小时~3小时。
(关于烧结、HIP)
接着,将该成型体在1700℃~1900℃下烧结10小时~20小时。此时,在含有氮气的气氛中进行烧结时,由于氮气残留在烧结体中而导致密度降低,因此优选在真空、还原性气氛或者不含有氮气的氧气气氛中进行烧结。然后,在Ar等惰性气氛下、在1600℃~1800℃、100MPa~200MPa下进行HIP(热等静压)1小时~4小时。
(关于退火)
然后,在大气炉中将上述得到的烧结体在1300℃~1500℃下加热5小时~15小时。通过以上操作,能够得到所期望的Cr:YAG烧结体。
包含实施例、比较例在内的本发明的实施方式的Cr:YAG烧结体的评价方法等可以如下所述进行。
(关于成分组成)
关于烧结体中所含的成分组成,通过利用ICP(电感耦合等离子体)发射光谱分析法等进行研究来进行分析。
(关于透光性)
关于透光性,研究没有由Cr产生的吸收的波长1300nm的光的透射率。如果在Cr4+:YAG中没有光散射,则波长1300nm下的透射率包含因界面反射引起的损失在内应该达到约84%,因此,如果每1cm烧结体厚度的波长1300nm的光的透射率为80%以上,则判断为良好。
(Cr的价数评价)
从Cr3+向Cr4+的价数转变的评价使用X射线近边吸收光谱(XANES)并通过与作为参考试样的Cr3+:YAG烧结体进行比较来进行。需要说明的是,如前所述,在YAG中Cr与“Al原子”置换而存在,但是在YAG中Al原子具有在周围具有8个氧的八配位和在周围具有4个氧的四配位的状态。三价的Cr与八配位的Al原子进行置换,四价的Cr与四配位的Al原子进行置换。在对该Cr原子照射具有5980eV~6040eV的能量的X射线时,观测到Cr原子的K吸收边(从1s轨道向4p轨道的跃迁)。对该区域详细进行研究时,有时在5990eV附近出现独立的峰。这是伴随从1s轨道向3d轨道的跃迁的峰,原本是禁戒跃迁,但是通过利用晶体场形成3d轨道与4p轨道的杂化轨道而成为允许的跃迁,被称为边前峰(pre-edge peak)。对于以八配位存在的三价的Cr而言不出现该峰,对于以四配位存在的四价的Cr而言出现该峰。因此,通过测定该峰的强度,能够评价YAG中的四价Cr原子的转化率(Cr4+/(Cr3++Cr4+))。
(关于参考试样Cr3+:YAG)
以分别为34.48摩尔%、62.36摩尔%、0.06摩尔%、0.10摩尔%的方式称量Y2O3粉末、Al2O3粉末、Cr2O3粉末、Si(OC2H5)4。通过像这样不添加MgO粉末、CaCO3粉末而不进行价数补偿,Cr必然为三价。接着,与下述实施例1同样地由原料粉末制作浆料,然后添加Si(OC2H5)4和乳酸铝而制作造粒粉,然后进行成型、加热、烧制等,从而制作了参考试样用Cr3+:YAG烧结体。
(被动调Q的运行试验)
为了确认所制作的Cr4+:YAG是否发挥被动调Q的功能,利用图3中示出的装置进行试验。使来自产生808nm的激光的激光二极管13的光通过介质镜11(透射100%的808nm的光,反射100%的1064nm的光),并入射至1原子%Nd:GdVO4晶体10。以夹着该晶体10的方式配置介质镜11和介质镜12(反射97%的1064nm的光),在其前方配置检测1064nm的光的光检测器14。然后,利用介质镜11和介质镜12使从晶体10发射的1064nm的光折回而进行激光振荡。
[实施例]
以下,基于实施例和比较例进行说明。需要说明的是,本实施例仅是一个例子,不受该例任何制限。即,本发明仅受权利要求书限制,包含本发明所含的实施例以外的各种变形。
(实施例1)
如表1所示分别称量规定量的平均粒径为1μm的Y2O3粉末、Al2O3粉末、Cr2O3粉末、MgO粉末、CaCO3粉末作为原料,将这些原料粉末投入混合粉碎机中,利用以水为溶剂、以氧化铝为介质的球磨机进行5小时湿式混合,从而得到了浆料。
向该浆料中添加Si(OC2H5)4和乳酸铝并进行搅拌,然后使其干燥,然后通过喷雾干燥而得到了平均粒径为20μm~30μm的造粒粉。
接着,将该造粒粉放入模具(φ150mm×40mm)中并进行冷压,然后在176MPa下进行CIP成型。接着,在大气炉中将其在100℃下加热5小时,然后在900℃下加热2小时。
接着,在真空加热炉中对该成型体在1800℃下进行15小时烧制,然后在1700℃下、147MPa、Ar气氛中进行3小时的HIP。然后,在大气炉中、在1400℃下加热10小时,从而制作了φ150mm×40mm的Cr4+:YAG烧结体。
对通过以上步骤得到的烧结体进行成分分析,结果如表1所示,满足上述1)~3)的条件。对该烧结体测定波长1300nm的光的透射率,结果在厚度为1cm时显示出84%的优异的透光性。
接着,将对于实施例1的YAG烧结体和作为参考试样的Cr3+:YAG的K吸收边的XANES测定结果示于图1中。如图1所示,在实施例1中出现了位于5990eV附近的边前峰,但是在Cr3 +:YAG中未出现位于5990eV附近的边前峰。图2中示出进一步放大5990eV附近后的图。另外,在图2中一并示出了作为全部由四价Cr构成的晶体的铬酸四叔丁酯(Cr(Ot-Bu)4)的XANES测定光谱的结果。由于该铬酸四叔丁酯的峰强度为全部为四价Cr的情况下的强度,因此通过与铬酸四叔丁酯的峰强度的峰强度比而求出Cr4+/(Cr3++Cr4+)。由该强度比求出的值Cr4+/(Cr3++Cr4+)=0.29。
接着,为了确认所制作的Cr:YAG是否发挥被动调Q的功能,使用图3中示出的装置进行了试验。将其结果示于图4中。图4的(31)为未插入Cr:YAG 20的状态的图,可知:无论何时,都检测到恒定的光强度信号。另一方面,图4的(32)~(35)示出将实施例1中制作的Cr:YAG 20插入Nd:GdVO4晶体10与介质镜12之间,改变来自激光二极管13的激发光强度,并改变振荡输出功率时的结果。如图4所示,光强度信号为脉冲形,观察到振荡输出功率越高,则脉冲周期越窄,确认发生了由Cr4+:YAG引起的被动调Q。图4的(36)示出此时的一个脉冲的形状。脉冲宽度为约80纳秒。
(实施例2~8)
除了如表1所示改变原料粉末的称量比以外,通过与实施例1同样的方法制作了Cr:YAG烧结体。进行所得到的Cr:YAG烧结体的成分分析,结果如表1所示,均满足上述1)~3)的条件。另外,对各Cr:YAG烧结体与实施例1同样地测定波长1300nm的光的透射率,结果均在厚度为1cm时显示出80%以上的优异的透光性。此外,对该Cr:YAG烧结体与实施例1同样地利用XANES进行价数评价,结果转化率Cr4+/(Cr3++Cr4+)为至少0.25以上。另外,对于各Cr:YAG烧结体,使用图3中示出的装置进行与实施例1同样的试验,结果均确认到由被动调Q引起的脉冲振荡。
(比较例1)
除了如表1所示改变原料粉末的称量比以外,通过与实施例1同样的方法制作了Cr:YAG烧结体。对该Cr:YAG烧结体进行成分分析,结果如表1所示,未满足上述1)的条件。对该Cr:YAG烧结体测定波长1300nm的光的透射率,结果观察到在厚度为1cm时透光性降低为75%。对该烧结体使用图3中示出的装置进行与实施例1同样的试验,结果激光振荡停止。认为这是由于透光性差,因此激光被遮蔽。
(比较例2)
除了如表1所述改变原料粉末的称量比以外,通过与实施例1同样的方法制作了Cr:YAG烧结体。对该Cr:YAG烧结体进行成分分析,结果如表1所示,未满足上述2)的条件。对该Cr:YAG烧结体进行Cr的价数评价,结果为Cr4+/(Cr3++Cr4+)=0.08。对该烧结体使用图3中示出的装置进行与实施例1同样的试验,结果虽然发生激光振荡,但是未发生脉冲振荡,无论何时,都检测到恒定强度的光信号。这是因为Cr4+的浓度不足,未发生被动调Q。
(比较例3)
如表1所示改变原料粉末的称量比,另外,不添加Si(OC2H5)4,除此以外,通过与实施例1同样的方法制作了Cr:YAG烧结体。对该Cr:YAG烧结体进行成分分析,结果如表1所示,未满足上述3)的组成条件。对该Cr:YAG烧结体测定波长1300nm的光的透射率,结果观察到透光性降低为78%。对该烧结体使用图3中示出的装置进行与实施例1同样的试验,结果激光振荡停止。认为这是由于透光性差,因此激光被遮蔽。
(比较例4)
除了如表1所示改变原料粉末的称量比以外,通过与实施例1同样的方法制作了Cr:YAG烧结体。对该Cr:YAG烧结体进行成分分析,结果如表1所示,未满足上述2)的条件。对该Cr:YAG烧结体进行Cr的价数评价,结果为Cr4+/(Cr3++Cr4+)=0.01。对该烧结体使用图3中示出的装置进行与实施例1同样的试验,结果虽然发生激光振荡,但是未发生脉冲振荡,无论何时,都检测到恒定强度的光信号。这是因为Cr4+的浓度不足,未发生被动调Q。
(比较例5)
除了如表1所示改变原料粉末的称量比以外,通过与实施例1同样的方法制作了Cr:YAG烧结体。对该Cr:YAG烧结体进行成分分析,结果如表1所示,未满足上述2)的条件。对该Cr:YAG烧结体进行Cr的价数评价,结果为Cr4+/(Cr3++Cr4+)=0.01。对该烧结体使用图3中示出的装置进行与实施例1同样的试验,结果虽然发生激光振荡,但是未发生脉冲振荡,无论何时,都检测到恒定强度的光信号。这是因为Cr4+的浓度不足,未发生被动调Q。
(比较例6)
除了如表1所示改变原料粉末的称量比以外,通过与实施例1同样的方法制作了Cr:YAG烧结体。对该Cr:YAG烧结体进行成分分析,结果如表1所示,未满足上述2)的条件。对该Cr:YAG烧结体进行Cr的价数评价,结果为Cr4+/(Cr3++Cr4+)=0.10。对该烧结体使用图3中示出的装置进行与实施例1同样的试验,结果虽然发生激光振荡,但是未发生脉冲振荡,无论何时,都检测到恒定强度的光信号。这是因为Cr4+的浓度不足,未发生被动调Q。
(比较例7)
除了如表1所示改变原料粉末的称量比以外,通过与实施例1同样的方法制作了Cr:YAG烧结体。对该Cr:YAG烧结体进行成分分析,结果如表1所示,未满足上述1)和2)的条件。对该Cr:YAG烧结体测定波长1300nm的光的透射率,结果观察到在厚度为1cm时透光性降低为60%。对该烧结体使用图3中示出的装置进行与实施例1同样的试验,结果激光振荡停止。认为这是由于透光性差,因此激光被遮蔽。
(比较例8)
除了如表1所示改变原料粉末的称量比以外,通过与实施例1同样的方法制作了Cr:YAG烧结体。对该Cr:YAG烧结体进行成分分析,结果如表1所示,未满足上述2)的条件。对该Cr:YAG烧结体进行Cr的价数评价,结果为Cr4+/(Cr3++Cr4+)=0.31。对该烧结体使用图3中示出的装置进行与实施例1同样的试验,结果虽然发生激光振荡,但是未发生脉冲振荡,无论何时,都检测到恒定强度的光信号。这是因为Cr4+的浓度不足,未发生被动调Q。
Figure BDA0002677535660000131
产业实用性
根据本发明,能够制造透光性优异并且Cr4+转化率高的Cr:YAG烧结体。本发明的实施方式的Cr:YAG烧结体可用于荧光体、激光介质等。
标号说明
10 1原子%Nd:GdVO4晶体
11 介质镜
12 介质镜
13 激光二极管
14 光检测器
20 Cr:YAG烧结体

Claims (3)

1.一种Cr:YAG烧结体,其特征在于,所述Cr:YAG烧结体含有Al、Y、Cr、Ca、Mg、Si和O,并且该烧结体中的成分含量满足下述1)~3)的条件式,其中,在条件式中,各元素符号表示成分含量(原子ppm),
1)|(Y+Ca)/(Al+Cr+Si+Mg)-0.6|<0.001,
2)0原子ppm≤(Ca+Mg)-(Cr+Si)≤50原子ppm,
3)50原子ppm≤Si≤500原子ppm。
2.如权利要求1所述的Cr:YAG烧结体,其特征在于,所述Cr:YAG烧结体的波长1300nm的光的透射率为80%以上。
3.如权利要求1或2所述的Cr:YAG烧结体,其特征在于,所述Cr:YAG烧结体的Cr4+的转化率为Cr4+/(Cr3++Cr4+)≥0.25。
CN201980018765.9A 2019-02-12 2019-10-28 Cr:YAG烧结体 Active CN111868007B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019022409 2019-02-12
JP2019-022409 2019-02-12
PCT/JP2019/042127 WO2020166139A1 (ja) 2019-02-12 2019-10-28 Cr:YAG焼結体

Publications (2)

Publication Number Publication Date
CN111868007A true CN111868007A (zh) 2020-10-30
CN111868007B CN111868007B (zh) 2022-06-21

Family

ID=72044044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980018765.9A Active CN111868007B (zh) 2019-02-12 2019-10-28 Cr:YAG烧结体

Country Status (5)

Country Link
US (1) US11225439B2 (zh)
EP (1) EP3722271A4 (zh)
JP (1) JP6823224B2 (zh)
CN (1) CN111868007B (zh)
WO (1) WO2020166139A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213933A (zh) * 2021-03-19 2021-08-06 浙江大学 一种宽带近红外荧光陶瓷及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057683A (zh) * 1990-06-29 1992-01-08 通用电气公司 透明的多晶石榴石
CN1724465A (zh) * 2005-06-03 2006-01-25 中国科学院上海硅酸盐研究所 双掺杂的钇铝石榴石透明陶瓷材料及制备方法
CN104557013A (zh) * 2014-12-18 2015-04-29 徐州市江苏师范大学激光科技有限公司 一种四价铬掺杂钇铝石榴石透明陶瓷的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019380B1 (zh) 1969-08-01 1975-07-07
JPH05286761A (ja) 1992-04-10 1993-11-02 Kurosaki Refract Co Ltd 固体レーザ用多結晶透明yagセラミックスの製造方法
JP3463941B2 (ja) 1992-04-27 2003-11-05 黒崎播磨株式会社 レーザ用多結晶透明セラミックス
JP2526407B2 (ja) 1993-12-27 1996-08-21 科学技術庁無機材質研究所長 波長可変レ―ザ―用単結晶
CA2255983C (en) 1997-12-16 2007-10-23 Konoshima Chemical Co., Ltd. A corrosion resistant ceramic and a production method thereof
JPH11255559A (ja) * 1997-12-16 1999-09-21 Konoshima Chemical Co Ltd 耐食性セラミックス及びその製造方法
JP4237707B2 (ja) 2003-01-27 2009-03-11 神島化学工業株式会社 希土類ガーネット焼結体とその製造方法
JP2008195570A (ja) 2007-02-13 2008-08-28 Covalent Materials Corp 透光性酸化イットリウムアルミニウムガーネット焼結体およびその製造方法
JP5019380B2 (ja) 2007-09-27 2012-09-05 コバレントマテリアル株式会社 透光性酸化イットリウムアルミニウムガーネット焼結体およびその製造方法。
JP6739748B2 (ja) 2016-05-06 2020-08-12 株式会社リコー レーザ装置、点火装置及び内燃機関

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057683A (zh) * 1990-06-29 1992-01-08 通用电气公司 透明的多晶石榴石
CN1724465A (zh) * 2005-06-03 2006-01-25 中国科学院上海硅酸盐研究所 双掺杂的钇铝石榴石透明陶瓷材料及制备方法
CN104557013A (zh) * 2014-12-18 2015-04-29 徐州市江苏师范大学激光科技有限公司 一种四价铬掺杂钇铝石榴石透明陶瓷的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU TIANYUAN: "Effects of Sintering Aids on the Transparency and Conversion Efficiency of", 《JOURNAL OF AMERICAN CERAMIC SOCIETY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213933A (zh) * 2021-03-19 2021-08-06 浙江大学 一种宽带近红外荧光陶瓷及其制备方法和应用
CN113213933B (zh) * 2021-03-19 2022-04-08 浙江大学 一种宽带近红外荧光陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
US20210221741A1 (en) 2021-07-22
JPWO2020166139A1 (ja) 2021-02-18
CN111868007B (zh) 2022-06-21
EP3722271A4 (en) 2021-06-16
EP3722271A1 (en) 2020-10-14
US11225439B2 (en) 2022-01-18
JP6823224B2 (ja) 2021-01-27
WO2020166139A1 (ja) 2020-08-20

Similar Documents

Publication Publication Date Title
EP1588993B1 (en) Rare earth garnet sintered compact
Sanghera et al. Laser oscillation in hot pressed 10% Yb3+: Lu2O3 ceramic
Tarala et al. Estimation of Sc3+ solubility in dodecahedral and octahedral sites in YSAG: Yb
Li et al. High transparency Pr: Y2O3 ceramics: A promising gain medium for red emission solid-state lasers
Yin et al. Submicron‐grained Yb: Lu2O3 transparent ceramics with lasing quality
Chaika et al. Influence of Cr doping on the phase composition of Cr, Ca: YAG ceramics by solid state reaction sintering
US11339057B2 (en) Preparation of sinterable complex oxide powder and manufacturing of transparent ceramics
EP3613717A1 (en) Paramagnetic garnet-type transparent ceramic, magneto-optical material, and magneto-optical device
CN111868007B (zh) Cr:YAG烧结体
Li et al. Fabrication and properties of transparent Nd‐doped BaF2 ceramics
Vorona et al. Structural-phase state and lasing of 5–15 at% Yb3+: Y3Al5O12 optical ceramics
JP6589723B2 (ja) 蛍光材料及びその製造方法
Bezotosnyi et al. Influence of CaO/MgO ratio on Cr3+ to Cr4+ conversion efficiency in YAG: Cr4+ ceramic saturable absorbers
Chaika et al. Effects of divalent dopants on the microstructure and conversion efficiency of Cr4+ ions in Cr, Me: YAG (Me-Ca, Mg, Ca/Mg) transparent ceramics
Loiko et al. Comparative study of Ho: Y2O3 and Ho: Y3Al5O12 transparent ceramics produced from laser-ablated nanoparticles
Perrière et al. Study of dopant distribution in Cr4+: YAG transparent ceramics and its use as passively Q-switching media in Nd: YAG laser delivering 38 mJ per pulse
Wajler et al. Nonlinear absorption of submicrometer grain‐size cobalt‐doped magnesium aluminate transparent ceramics
Ratzker et al. Co2+: MgAl2O4 saturable absorber transparent ceramics fabricated by high-pressure spark plasma sintering
Osipov et al. The influence of HfO2 additives on the optical properties of Nd3+‐doped Y2O3 ceramics
Kaminskii et al. Novel polycrystalline laser material: Nd3+: Y3Al5O12 ceramics fabricated by the high‐pressure colloidal slip‐casting (HPCSC) method
Vorona et al. Reactive sintering of highly-doped YAG/Nd3+: YAG/YAG composite ceramics
Hostaša et al. Polycrystalline Yb3+–Er3+-co-doped YAG: Fabrication, TEM-EDX characterization, spectroscopic properties, and comparison with the single crystal
JPH05301770A (ja) レーザ用多結晶透明セラミックス
Kaminskii et al. High quality Y3Al5O12 doped transparent ceramics for laser applications, role of sintering additives
KR102249369B1 (ko) 고출력 적외선 레이저 세라믹 소재용 나노복합체 및 그의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant