CN111865081B - 采用耦合电感的电压变换器的相序纠正方法及电路 - Google Patents

采用耦合电感的电压变换器的相序纠正方法及电路 Download PDF

Info

Publication number
CN111865081B
CN111865081B CN202010683461.9A CN202010683461A CN111865081B CN 111865081 B CN111865081 B CN 111865081B CN 202010683461 A CN202010683461 A CN 202010683461A CN 111865081 B CN111865081 B CN 111865081B
Authority
CN
China
Prior art keywords
phase
switching period
current
time length
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010683461.9A
Other languages
English (en)
Other versions
CN111865081A (zh
Inventor
曹炀
姜礼节
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Monolithic Power Systems Co Ltd
Original Assignee
Chengdu Monolithic Power Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Monolithic Power Systems Co Ltd filed Critical Chengdu Monolithic Power Systems Co Ltd
Priority to CN202010683461.9A priority Critical patent/CN111865081B/zh
Publication of CN111865081A publication Critical patent/CN111865081A/zh
Application granted granted Critical
Publication of CN111865081B publication Critical patent/CN111865081B/zh
Priority to US17/351,029 priority patent/US11522461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种采用耦合电感的电压变换器的相序纠正方法和电路。电压变换器具有多相电路,每相电路至少包括一个功率开关。在当前开关周期内,获取每一相电路的限流延时时长,相加得到总限流延时时长。若当前开关周期的总限流延时时长大于递增时长阈值,将当前开关周期的错相消隐时长增大递增步长值,作为下一开关周期的错相消隐时长,否则保持当前开关周期的错相消隐时长不变,作为下一开关周期的错相消隐时长。本发明不仅实现相序纠正功能,还可以调节错相消隐时长的大小使其达到较优值,从而减小输出电压的波形毛刺。

Description

采用耦合电感的电压变换器的相序纠正方法及电路
技术领域
本发明涉及一种电子电路,更具体地说,本发明涉及一种采用耦合电感的电压变换器。
背景技术
对于传统的非耦合电感而言,追求较小的电流纹波与追求较快的瞬态响应往往是互相矛盾的。耦合电感可以同时实现以上两种需求,因此被越来越多地应用于CPU、GPU、服务器等供电要求严格的场合。
在应用耦合电感时,通常需要控制其各绕组的相位互相错开。例如,对于两相耦合电感,各绕组间应互相交错180度;对于四相耦合电感,各绕组间应互相交错90度。然而,在CPU、GPU、服务器或其他类似应用环境的限流模式下,当相电流超过阈值时,控制脉冲的生成受到影响。由于耦合电感各绕组之间具有电磁耦合,反过来又会影响相电流的大小,再度影响控制脉冲的生成,从而导致各绕组间的相位顺序发生错乱,电压变换器无法正常运行。
发明内容
本发明的目的在于解决现有技术的上述技术问题,针对采用耦合电感的电压变换器,提出一种相序纠正方法及电路。
根据本发明一实施例的一种采用耦合电感的电压变换器的相序纠正方法,所述电压变换器具有多相电路,每一相电路至少包括一个功率开关,所述耦合电感包含多个磁耦合的绕组,其中每一个绕组耦接到所述电压变换器的对应相电路的功率开关,所述相序纠正方法包括:获取当前开关周期的每一相电路所对应的限流延时时长;将所有的限流延时时长相加,得到当前开关周期的总限流延时时长;将当前开关周期的总限流延时时长与递增时长阈值比较,若当前开关周期的总限流延时时长大于递增时长阈值,将当前开关周期的错相消隐时长增大递增步长值,作为下一开关周期的错相消隐时长,否则将当前开关周期的错相消隐时长保持不变,作为下一开关周期的错相消隐时长;以及产生当前开关周期的每一相电路功率开关的控制脉冲。
根据本发明一实施例的一种采用耦合电感的电压变换器的相序纠正电路,所述电压变换器具有多相电路,每一相电路至少包括一个功率开关,所述耦合电感包含多个磁耦合的绕组,其中每一个绕组耦接到所述电压变换器的对应相电路的功率开关,所述相序纠正电路包括:错相消隐时长计算电路,接收当前开关周期的错相消隐时长信号、当前开关周期的每一相电路所对应的限流延时时长信号,输出下一开关周期的错相消隐时长信号,其中,根据当前开关周期的每一相电路所对应的限流延时时长信号,得到当前开关周期的总限流延时时长信号;以及控制脉冲生成电路,接收当前开关周期的错相消隐时长信号、每一相电路所对应的过流信号,输出每一相电路所对应的限流延时时长信号,并输出每一相电路功率开关的控制脉冲信号;其中,当前开关周期的总限流延时时长大于递增时长阈值时,当前开关周期的错相消隐时长增大第一步长值,作为下一开关周期的错相消隐时长,否则,当前开关周期的错相消隐时长作为下一开关周期的错相消隐时长。
根据本发明一实施例的一种电压变换器,具有输入端和输出端,将输入电压变换为输出电压,包括:多相开关电路,每一相开关电路至少包括一个功率开关,所述功率开关的一端耦接到所述输入端接收输入电压;耦合电感,具有多个磁耦合的绕组,每一个绕组的一端耦接到所述功率开关的另一端,每一个绕组的另一端耦接到所述输出端;以及相序纠正电路,包括:错相消隐时长计算电路,接收当前开关周期的错相消隐时长信号、当前开关周期的每一相电路所对应的限流延时时长信号,输出下一开关周期的错相消隐时长信号,其中,根据当前开关周期的每一相电路所对应的限流延时时长信号,得到当前开关周期的总限流延时时长信号;以及控制脉冲生成电路,接收当前开关周期的错相消隐时长信号、每一相电路所对应的过流信号,输出每一相电路所对应的限流延时时长信号,并输出每一相电路功率开关的控制脉冲信号;其中,当前开关周期的总限流延时时长大于递增时长阈值时,当前开关周期的错相消隐时长增大递增步长值,作为下一开关周期的错相消隐时长,否则,当前开关周期的错相消隐时长作为下一开关周期的错相消隐时长。
附图说明
图1示出了根据本发明一实施例的采用耦合电感的电压变换器的相序纠正电路10的电路结构;
图2示出了过流指示电路101的电路结构;
图3A示出了根据本发明一实施例的错相消隐时长计算电路A1的电路结构;
图3B示出了根据本发明一实施例的控制脉冲生成电路A2的电路结构;
图4示出了图3A与图3B的相关信号波形图;
图5A示出了根据本发明一实施的错相消隐时长计算电路A10的电路结构;
图5B示出了对应于图5A的过流指示信号OC1、OC2的局部波形图;
图6示出的是根据本发明一实施例的采用M相耦合电感的电压变换器的相序纠正电路B1的电路结构;
图7示出了根据本发明一实施例的采用耦合电感的电压变换器的相序纠正方法。
具体实施方式
下面将详细描述本发明的具体实施例,应当注意,这里描述的实施例只用于举例说明,并不用于限制本发明。在以下描述中,为了提供对本发明的透彻理解,阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本发明。在其他实例中,为了避免混淆本发明,未具体描述公知的电路、材料或方法。
在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本发明至少一个实施例中。因此,在整个说明书的各个地方出现的短语“在一个实施例中”、“在实施例中”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和/或子组合将特定的特征、结构或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。应当理解,当称元件“耦接到”或“连接到”另一元件时,它可以是直接耦接或耦接到另一元件或者可以存在中间元件。相反,当称元件“直接耦接到”或“直接连接到”另一元件时,不存在中间元件。相同的附图标记指示相同的元件。这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。
图1示出了根据本发明一实施例的采用耦合电感的电压变换器的相序纠正电路10的电路结构。为了便于描述和说明,图1的实施例所示出的电压变换器仅具有两相开关电路,每一相开关电路各自包括功率开关M1和M2,并同时耦接到电压变换器的输入端接收输入电压Vin。耦合电感Lcp为两相耦合电感,具有绕组L1和L2,且绕组L1的一端耦接到功率开关M1,绕组L2的一端耦接到功率开关M2,绕组L1与L2的另一端耦接到电压变换器的输出端,产生输出电压Vout。为了便于说明,假定当前开关周期为电压变换器启动后第n个开关周期。相序纠正电路10包括错相消隐时长计算电路A1与控制脉冲生成电路A2。错相消隐时长计算电路A1接收当前开关周期的错相消隐时长信号Tbk(n),输出下一开关周期的错相消隐时长信号Tbk(n+1)。控制脉冲生成电路A2接收当前开关周期的错相消隐时长Tbk(n)、过流指示信号OC1与OC2,输出控制脉冲信号G1与G2,分别控制功率开关M1与M2。错相消隐时长信号Tbk(n)包含了时间信息,代表当前开关周期的错相消隐时长为Tbk(n)。在一个实施例中,错相消隐时长信号Tbk(n)为具有恒定数值的数字信号。在另一个实施例中,错相消隐时长信号Tbk(n)为具有恒定电平的电压信号。类似地,下文中将要提及的其他时长信号也各自包含了对应的时间信息,在不同实施例中具有不同的具体表现形式。
过流指示信号OC1和OC2由过流指示电路101输出,图2示出了过流指示电路101的电路结构。电流检测信号CS1与CS2分别表征流过绕组L1与L2的电流大小。比较器CP1接收电流检测信号CS1与相电流阈值Ith1,输出过流指示信号OC1。当电流检测信号CS1大于相电流阈值Ith1时,过流指示信号OC1为高电平,表明流过绕组L1的电流处于过流状态。类似地,当电流检测信号CS2大于相电流阈值Ith2时,过流指示信号OC2为高电平,表明流过绕组L2的电流处于过流状态。在另一个实施例中,过流指示信号OC1、OC2低电平时,表明流过绕组L1、L2的电流处于过流状态。本领域普通技术人员应当知晓,只要过流指示信号OC1、OC2能明确指示绕组电流是否处于过流状态即可,不局限于它们为高电平有效、低电平有效或者是脉冲边沿有效等具体表现形式。
图3A示出了根据本发明一实施例的错相消隐时长计算电路A1的电路结构。图3B示出了根据本发明一实施例的控制脉冲生成电路A2的电路结构。图4示出了图3A与图3B的相关信号波形图。下面结合图3A、3B及图4来说明相序纠正电路10的工作过程。
在t0-t1段,控制脉冲G1与G2仍然处于上一个开关周期,即第n-1个开关周期(n为大于1的自然数)。t0时刻,屏蔽解除信号OnOk1产生脉冲,表明已经过错相消隐时长Tbk(n-1),控制脉冲G1被允许产生脉冲,但由于过流指示信号OC1表明绕组L1的电流仍然大于相电流阈值Ith1,此时控制脉冲信号G1为低电平。t1时刻,过流指示信号OC1表明绕组L1的电流降至相电流阈值Ith1以下,导通功率开关M1的条件已经具备,控制脉冲信号G1产生脉冲,进入当前开关周期,即第n个开关周期。
t1时刻,控制脉冲信号G1产生脉冲后,启动计时器11。比较器12将计时器11的计时时长与当前开关周期的错相消隐时长信号Tbk(n)进行比较,并将比较结果输入短脉冲电路13。t2时刻,计时器11的计时时长已达到当前开关周期的错相消隐时长Tbk(n),屏蔽解除信号OnOk2作为短脉冲电路13的输出结果,产生脉冲,并启动延时电路14。延时电路14接收过流指示信号OC2作为控制信号。t3时刻,过流指示信号OC2表明绕组L2的电流降至相电流阈值Ith2以下,延时电路14停止计时,输出限流延时时长信号Del2(n)以记录t2-t3段的时长信息。如上文所述,在t3时刻,导通功率开关M2的条件已经具备,故控制脉冲信号G2产生脉冲。在图3B的实施例中,延时电路14的输出端耦接到SR触发器的置位端“S”,而固定导通时长电路15耦接到SR触发器的复位端“R”,使得控制脉冲信号G2的高电平时长固定,即功率开关M2的导通时长是固定的。
类似地,在t3时刻经过了错相消隐时长Tbk(n)之后,屏蔽解除信号OnOk1在t4时刻产生脉冲,经过限流延时时长Del1(n)之后,控制脉冲信号G1产生脉冲,进入下一个开关周期。这里不再对t3-t5段进行赘述。
根据上文所述,t1-t5段为当前开关周期,在此时间段内,错相消隐时长计算电路A1根据当前开关周期的错相消隐时长信号Tbk(n)以及限流延时时长Del1(n)、De12(n),得到下一开关周期的错相消隐时长信号Tbk(n+1),从而在下一个开关周期中产生控制脉冲信号G1、G2。在图3A的实施例中,错相消隐时长计算电路A1包括递增计算电路2。
递增计算电路2包括加法器21、比较器22、加法器23及选择电路24。加法器21接收限流延时时长信号Del1(n)、Del2(n),将其相加得到总限流延时时长信号Del_sum(n)。比较器22将总限流延时时长信号Del_sum(n)与递增时长阈值bkplus_th比较。加法器23接收当前开关周期的错相消隐时长信号Tbk(n)及递增步长值plus_stp。选择电路24接收比较器22的输出结果作为控制信号,且输入端“0”接收错相消隐时长信号Tbk(n),输入端“1”接收加法器23的输出结果。换而言之,当总限流延时时长Del_sum(n)大于递增时长阈值bkplus_th时,选择电路24选择当前开关周期的错相消隐时长信号Tbk(n)与递增步长值信号plus_stp之和作为下一开关周期的错相消隐时长信号Tbk(n+1);否则,选择电路24选择当前开关周期的错相消隐时长Tbk(n)作为下一开关周期的错相消隐时长Tbk(n+1)。
在本发明中,控制脉冲信号G1与G2之间的错相消隐时长Tbk(n)足够长,使得控制脉冲信号G1、G2的相位差为180度,实现了相序纠正。并且,错相消隐时长Tbk(n)的大小可以适应性地调节,逐步达到较优值,从而有效减小输出电压Vout的波形毛刺。
图5A示出了根据本发明一实施的错相消隐时长计算电路A10的电路结构。图5B示出了对应于图5A的过流指示信号OC1、OC2的局部波形图。在图5A的实施例中,相对于图3A,错相消隐时长计算电路A10还包括递减计算电路3。递增计算电路2输出下一开关周期的错相消隐时长中间值信号Tbk(n+1)_temp,被递减计算电路3接收,接下来递减计算电路3根据下一开关周期错相消隐时长中间值信号Tbk(n+1)_temp输出下一开关周期的错相消隐时长信号Tbk(n+1)。递减计算电路3包括比较器31、减法器32及选择电路33。比较器31将限流窗口时长信号TnonOC(n)与递减时长阈值bkminus_th比较。减法器32将错相消隐时长中间值信号Tbk(n+1)_temp与递减步长值信号minus_stp相减。选择电路33接收比较器31的输出结果作为控制信号,且输入端“0”接收错相消隐时长中间值信号Tbk(n+1)_temp,输入端“1”接收减法器32的输出结果。换而言之,当限流窗口时长TnonOC(n)大于递减时长阈值bkminus_th时,选择电路33选择下一开关周期的错相消隐时长中间值信号Tbk(n+1)_temp减去递减步长值信号minus_stp作为下一开关周期的错相消隐时长信号Tbk(n+1);否则,选择下一开关周期的错相消隐时长中间值信号Tbk(n+1)_temp作为下一开关周期的错相消隐时长信号Tbk(n+1)。限流窗口时长信号TnonOC(n)的定义可以参考图5B,是指,所有过流指示信号OC1、OC2都表示对应的绕组电流降至相电流阈值以下(图5B的实施例中表现为低电平)这样一种状态所持续的时间长度。
以上为应用两相耦合电感的情形。本发明还可扩展至应用三相及三相以上的耦合电感的情形。图6示出的是根据本发明一实施例的采用M相耦合电感的电压变换器的相序纠正电路B1的电路结构,M为大于或等于3的自然数。与图5A相比,图6的不同之处在于,加法器25接收M个限流延时时长信号Del1(n)、Del2(n)……DelM(n),将其全部相加,得到总限流延时时长Del_sum。此外,在图6的实施例中,限流窗口时长信号TnonOC(n)是所有的M个过流指示信号OC1、OC2……OCM同时表示对应绕组电流降至相电流阈值以下时的时间长度,与上文相同,这里不再赘述。
图7示出了根据本发明一实施例的采用耦合电感的电压变换器的相序纠正方法。该电压变换器具有多相电路,每一相电路至少包括一个功率开关,该耦合电感包含多个磁耦合的绕组,其中每一个绕组耦接到所述电压变换器的对应相电路的功率开关。该相序纠正方法以进入当前开关周期为起点,包括:获取当前开关周期的每一相电路所对应的限流延时时长Del1(n)、Del2(n)、……DelM(n),相加得到总限流延时时长Del_sum(n);将总限流延时时长Del_sum(n)与递增时长阈值bkplus_th进行比较,若总限流延时时长Del_sum(n)大于递增时长阈值bkplus_th,将当前开关周期的错相消隐时长Tbk(n)增加递增步长值plus_stp,作为下一开关周期的错相消隐时长中间值Tbk(n+1)_temp,否则将当前开关周期的错相消隐时长Tbk(n)作为下一开关周期的错相消隐时长中间值;将限流窗口时长TnonOC(n)与递减时长阈值bkminus_th比较,若限流窗口时长TnonOC(n)大于递减时长阈值bkminus_th,将下一开关错相消隐时长中间值Tbk(n+1)_temp减去递减步长值minus_stp,作为下一开关周期的错相消隐时长Tbk(n+1),否则将下一开关错相消隐时长中间值Tbk(n+1)_temp作为下一开关周期的错相消隐时长Tbk(n+1)。
在一个实施例中,每一相电路功率开关的导通时长是固定的。
虽然已参照几个典型实施例描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (10)

1.一种采用耦合电感的电压变换器的相序纠正方法,所述电压变换器具有多相电路,每一相电路至少包括一个功率开关,所述耦合电感包含多个磁耦合的绕组,其中每一个绕组耦接到所述电压变换器的对应相电路的功率开关,所述相序纠正方法包括:
获取当前开关周期的每一相电路所对应的限流延时时长;
将所有的限流延时时长相加,得到当前开关周期的总限流延时时长;
将当前开关周期的总限流延时时长与递增时长阈值比较,若当前开关周期的总限流延时时长大于递增时长阈值,将当前开关周期的错相消隐时长增大递增步长值,作为下一开关周期的错相消隐时长,否则将当前开关周期的错相消隐时长保持不变,作为下一开关周期的错相消隐时长;以及
产生当前开关周期的每一相电路功率开关的控制脉冲。
2.如权利要求1所述的相序纠正方法,还包括:
获取当前开关周期的限流窗口时长;以及
将当前开关周期的限流窗口时长与递减时长阈值比较,若当前开关周期的限流窗口时长大于递减时长阈值,将所述下一开关周期的错相消隐时长减小递减步长值,重新作为下一开关周期的错相消隐时长,否则保持所述下一开关周期的错相消隐时长不变。
3.如权利要求1或2所述的相序纠正方法,其中每一相电路功率开关的导通时长是固定的。
4.一种采用耦合电感的电压变换器的相序纠正电路,所述电压变换器具有多相电路,每一相电路至少包括一个功率开关,所述耦合电感包含多个磁耦合的绕组,其中每一个绕组耦接到所述电压变换器的对应相电路的功率开关,所述相序纠正电路包括:
错相消隐时长计算电路,接收当前开关周期的错相消隐时长信号、当前开关周期的每一相电路所对应的限流延时时长信号,输出下一开关周期的错相消隐时长信号,其中,根据当前开关周期的每一相电路所对应的限流延时时长信号,得到当前开关周期的总限流延时时长信号;以及
控制脉冲生成电路,接收当前开关周期的错相消隐时长信号、每一相电路所对应的过流信号,输出每一相电路所对应的限流延时时长信号,并输出每一相电路功率开关的控制脉冲信号;
其中,当前开关周期的总限流延时时长大于递增时长阈值时,当前开关周期的错相消隐时长增大第一步长值,作为下一开关周期的错相消隐时长,否则,当前开关周期的错相消隐时长作为下一开关周期的错相消隐时长。
5.如权利要求4所述的相序纠正电路,其中,所述错相消隐时长计算电路包括递增计算电路,所述递增计算电路包括:
加法器,将当前开关周期的每一相电路所对应的限流延时时长信号相加,得到当前开关周期的总限流延时时长信号;
比较器,将当前开关周期的总限流延时时长信号与递增时长阈值信号比较,输出比较结果;以及
选择电路,接收所述比较结果,输出下一开关周期的错相消隐时长信号,其中,当所述比较结果表示当前开关周期的总限流延时时长大于递增时长阈值时,选择下一开关周期的错相消隐时长信号为当前开关周期的错相消隐时长信号与递增步长值信号之和,否则,选择下一开关周期的错相消隐时长信号为当前开关周期的错相消隐时长信号。
6.如权利要求4所述的相序纠正电路,其中,当前开关周期的限流窗口时长大于递减时长阈值时,所述下一开关周期的错相消隐时长减小递减步长值,重新作为下一开关周期的错相消隐时长,否则,保持所述下一开关周期的错相消隐时长不变。
7.如权利要求6所述的相序纠正电路,其中,所述错相消隐时长计算电路包括递减计算电路,所述递减计算电路包括:
比较器,将当前开关周期的限流窗口时长信号与递减时长阈值信号比较,输出比较结果;以及
选择电路,接收所述比较结果,输出下一开关周期的错相消隐时长信号,其中,当所述比较结果表示当前开关周期的限流窗口时长大于递减时长阈值时,选择下一开关周期的错相消隐时长信号为原先下一开关周期的错相消隐时长信号减去递减步长值信号之差,否则,选择下一开关周期的错相消隐时长信号为原先下一开关周期的错相消隐时长信号。
8.如权利要求4-7任一项所述的相序纠正电路,其中,所述控制脉冲生成电路还包括固定导通时长控制电路,所述每一相电路功率开关控制脉冲信号控制所对应的功率开关的导通时长为固定时长。
9.一种电压变换器,具有输入端和输出端,将输入电压变换为输出电压,包括:
多相开关电路,每一相开关电路至少包括一个功率开关,所述功率开关的一端耦接到所述输入端接收输入电压;
耦合电感,具有多个磁耦合的绕组,每一个绕组的一端耦接到所述功率开关的另一端,每一个绕组的另一端耦接到所述输出端;以及
相序纠正电路,包括:
错相消隐时长计算电路,接收当前开关周期的错相消隐时长信号、当前开关周期的每一相电路所对应的限流延时时长信号,输出下一开关周期的错相消隐时长信号,其中,根据当前开关周期的每一相电路所对应的限流延时时长信号,得到当前开关周期的总限流延时时长信号;以及
控制脉冲生成电路,接收当前开关周期的错相消隐时长信号、每一相电路所对应的过流信号,输出每一相电路所对应的限流延时时长信号,并输出每一相电路功率开关的控制脉冲信号;
其中,当前开关周期的总限流延时时长大于递增时长阈值时,当前开关周期的错相消隐时长增大递增步长值,作为下一开关周期的错相消隐时长,否则,当前开关周期的错相消隐时长作为下一开关周期的错相消隐时长。
10.如权利要求9所述的电压变换器,其中,当前开关周期的限流窗口时长大于递减时长阈值时,所述下一开关周期的错相消隐时长减小递减步长值,重新作为下一开关周期的错相消隐时长,否则,保持所述下一开关周期的错相消隐时长不变。
CN202010683461.9A 2020-07-15 2020-07-15 采用耦合电感的电压变换器的相序纠正方法及电路 Active CN111865081B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010683461.9A CN111865081B (zh) 2020-07-15 2020-07-15 采用耦合电感的电压变换器的相序纠正方法及电路
US17/351,029 US11522461B2 (en) 2020-07-15 2021-06-17 Phase sequence correction method and circuit for voltage converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010683461.9A CN111865081B (zh) 2020-07-15 2020-07-15 采用耦合电感的电压变换器的相序纠正方法及电路

Publications (2)

Publication Number Publication Date
CN111865081A CN111865081A (zh) 2020-10-30
CN111865081B true CN111865081B (zh) 2021-05-18

Family

ID=72984241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010683461.9A Active CN111865081B (zh) 2020-07-15 2020-07-15 采用耦合电感的电压变换器的相序纠正方法及电路

Country Status (2)

Country Link
US (1) US11522461B2 (zh)
CN (1) CN111865081B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253526A (zh) * 2013-06-26 2014-12-31 英飞凌科技奥地利有限公司 具有自测试的多相调节器
CN106257812A (zh) * 2016-08-17 2016-12-28 浙江大学 一种基于COT控制含均流功能两相Buck电路的电源管理芯片
CN110445381A (zh) * 2019-07-26 2019-11-12 成都芯源系统有限公司 含菊花链架构的多相开关变换器及其切相控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495995B2 (en) * 2001-03-09 2002-12-17 Semtech Corporation Self-clocking multiphase power supply controller
US7414383B2 (en) * 2006-05-12 2008-08-19 Intel Corporation Multi-phase voltage regulator with phases ordered by lowest phase current
JP5420433B2 (ja) * 2010-01-14 2014-02-19 ルネサスエレクトロニクス株式会社 半導体装置および電源装置
CN104506022B (zh) 2014-12-15 2017-02-22 成都芯源系统有限公司 一种多路输出的开关变换器及其控制电路和控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253526A (zh) * 2013-06-26 2014-12-31 英飞凌科技奥地利有限公司 具有自测试的多相调节器
CN106257812A (zh) * 2016-08-17 2016-12-28 浙江大学 一种基于COT控制含均流功能两相Buck电路的电源管理芯片
CN110445381A (zh) * 2019-07-26 2019-11-12 成都芯源系统有限公司 含菊花链架构的多相开关变换器及其切相控制方法

Also Published As

Publication number Publication date
US20220021307A1 (en) 2022-01-20
CN111865081A (zh) 2020-10-30
US11522461B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
JP4652901B2 (ja) 1つのdc/dcコンバータ用閉ループデジタル制御システム
CN108418426B (zh) 相电流估计器、估计相电流的方法和开关功率转换器
EP2337202B1 (en) Switching voltage regulator and related feed-forward control method
TWI343710B (zh)
US10651721B2 (en) Multi-phase converter and associated control circuit and control method for undershoot improvement
US7884584B2 (en) Switching power supply circuit
CN110333767B (zh) 多相功率变换器
US11063577B2 (en) Pulse width modulation technique with time-ratio duty cycle computation
EP1524573A2 (en) Adaptive multi-mode system
CN112865498B (zh) 多相开关变换器及其控制器和控制方法
JP2006033958A (ja) スイッチングレギュレータ
US6903948B2 (en) Power converter employing pulse width modulation control
US20190280598A1 (en) Pulse-frequency control circuit, microcomputer, dc-to-dc converter, and pulse-frequency control method
JP2007209135A (ja) 電流モード制御方式のdc−dcコンバータ
CN110311538B (zh) 电流模式控制方式的开关模式供电装置及其信号产生方法
CN111865081B (zh) 采用耦合电感的电压变换器的相序纠正方法及电路
US9577519B2 (en) Enhanced peak current mode DC-DC power converter
US9236727B2 (en) Current mode step-down switching regulator
US7057358B2 (en) Electronic ballast and operating method for a gas discharge lamp
US7932704B1 (en) System and method of providing control pulses to control operation of a converter with high frequency repetitive load transients
CN117595844B (zh) 一种脉宽调制器和数字控制系统
US20230283168A1 (en) Power converter control module
CN117155115A (zh) 切换电容式电压转换电路及切换电容转换器控制方法
CN116581985A (zh) 功率变换器的脉冲分配模块、控制电路以及控制方法
CN118214252A (zh) 多相电源电路及其方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant