CN111856229B - 一种压接式绝缘栅双极型晶体管高温反偏试验方法 - Google Patents

一种压接式绝缘栅双极型晶体管高温反偏试验方法 Download PDF

Info

Publication number
CN111856229B
CN111856229B CN201910292678.4A CN201910292678A CN111856229B CN 111856229 B CN111856229 B CN 111856229B CN 201910292678 A CN201910292678 A CN 201910292678A CN 111856229 B CN111856229 B CN 111856229B
Authority
CN
China
Prior art keywords
voltage
transistor
temperature
test
mechanical pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910292678.4A
Other languages
English (en)
Other versions
CN111856229A (zh
Inventor
程养春
问耀文
郑夏晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201910292678.4A priority Critical patent/CN111856229B/zh
Publication of CN111856229A publication Critical patent/CN111856229A/zh
Application granted granted Critical
Publication of CN111856229B publication Critical patent/CN111856229B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

本发明公开了一种压接式绝缘栅双极型晶体管高温反偏试验方法,通过加大压接式IGBT器件的夹持力,将原先需要1000h的压接式IGBT器件高温反偏试验时间缩短到了197.64h,极大缩短了试验时间。将IGBT器件放置在恒温箱中,温度恒定在150℃;同时向集电极和发射极之间施加电压VCE(取最大电压VCE‑max的80%);栅极电压VGE保持为零;同时施加机械压力,使机械压强Ptest保持在2Gpa。持续197.64h后,降温至室温,撤去电压和外加的机械压力,再按照国际标准IEC60747‑9(2007)中规定的晶体管参数检测方法和耐受试验失效标准,诊断该器件是否失效。

Description

一种压接式绝缘栅双极型晶体管高温反偏试验方法
技术领域
本发明属于电力电子器件可靠性试验方法领域,涉及大功率IGBT器件的高温反偏试验方法,,尤其涉及压接式IGBT器件的加速老化试验时间的确定。
背景技术
近年来,大功率绝缘栅双极型晶体管(IGBT)器件出现了一种新的封装形式—压接式。大功率压接式IGBT器件无引线、无焊接且双面散热的独特设计,大幅度提升了单个器件的功率容量,提高了器件可靠性,目前已经有取代传统焊接灌封型IGBT器件的趋势,成为高端应用领域的首选器件之一。与以往焊接式封装不同,压接型IGBT器件需要通过外部压力使内部各个组件保持电气与机械连接。因此,IGBT内部机械应力、温度和电流之间存在复杂的耦合,引发器件的翘曲、开裂、老化,最终导致器件失效。
IGBT器件关断时,外加的高电压同时施加在器件内部的耐压层和终端结构上。随着大功率IGBT器件电压等级的升高,器件中IGBT芯片的终端设计越来越重要。典型终端结构包括钝化层、场板、场限环、结终端扩展或其组合,其作用是控制芯片内部PN结边缘电场。表面钝化结构主要用于控制半导体界面电荷问题。电荷陷阱可能来源于制造过程中的工艺环节及使用过程中老化,钝化结构对控制杂散电荷效应至关重要。有学者通过仿真计算表明,器件终端位置的电场最高(超过3kV/mm),也是最容易发生绝缘失效的位置。也有人指出,钝化层表面场强可达100~150kV/cm。终端结构设计不合理,例如钝化层内存在较多的缺陷或杂质、局部电场过高、钝化层表面存在杂质等,将导致器件泄漏电流偏高,使用寿命缩短。
为了检验IGBT、MOSFET等功率半导体器件的可靠性,筛选不合格产品,需要开展众多的长期加速老化试验和环境试验,保障合格产品处于故障率浴盆曲线的中段(即,偶然老化期)。其中针对终端质量和寿命的试验主要是高温反偏试验。该试验对剔除具有表面效应缺陷的早期失效器件特别有效,还能揭示与时间和电应力有关的器件边缘及钝化层场耗尽结构中的缺陷和老化造成的电气失效模式。
根据国际电工委员会(IEC)的标准,该试验的条件为:试验过程中结温优选器件所能承受的最高结温,向集电极和发射极之间施加的电压VCE优选最大电压VCE-max的80%。一些IGBT器件厂家和使用者制定了更加详细的条件,例如结温150℃(-0℃/+5℃),栅极(或者门极)电压VGE=0,持续时间1000h。考核结束后进行常规电学测试(参照国际标准IEC60747-9(2007)),不能通过常规电学测试的器件被判为不合格。这种加速老化试验的结果,需要借助老化模型给出的加速因子才能转换到工程实际应用中。目前,与高温反偏试验相配合的理论模型还不是非常完善,主要是装配或者工艺残留物造成的可动离子在终端表面强电场下累积,产生表面电荷,改变电场进而产生额外的泄漏电流;甚至可以在芯片的低掺杂区产生翻新沟道,并形成通过pn结的短路通道。
对于在3300V及其以上高电压等级的大功率压接式IGBT器件中,芯片终端部位的长期老化寿命问题越来越突出,成为制约器件研发的瓶颈之一。除了外部的残留可动离子源,终端绝缘自身的老化也是器件损坏的主要因素之一,特别是在工艺良好的条件下。但是,关于终端钝化层的电、热、力多因素老化规律的研究甚少。
众多电介质材料的长期电老化特性显示出了与外加机械应力的显著相关性,拉应力将增加材料的老化速度,减小材料的电寿命。而高电压、大功率压接式IGBT器件中,终端部位有时承受较大的拉应力。目前,针对压接式IGBT器件的终端,缺乏明确的加速老化模型,特别是缺乏机械应力对器件终端钝化层绝缘寿命影响情况的分析。
发明人经过理论分析和仿真研究,表明向压接式IGBT器件施加机械压力时,器件中IGBT芯片的终端区域SiO2钝化层所承受的最大拉应力是芯片压应力的1.4倍。该拉应力将降低SiO2钝化层的电气寿命。因此,发明人想到通过增加IGBT器件的机械压力来加速SiO2钝化层的老化速度,进而缩短压接式IGBT器件的高温反偏试验时间。
发明人研究表明,压接式IGBT器件中IGBT芯片的SiO2钝化层,在器件本身夹持力的作用下,芯片承受压应力48Mpa,则钝化层最大拉应力为67.1Mpa;若外加机械夹持力,使芯片承受的压应力达到2Gpa,则钝化层最大拉应力将达到2.8Gpa,进而使得SiO2钝化层加速老化。发明人通过研究,建立了机械拉应力对SiO2钝化层电气寿命的加速因子为:
公式(1)中:
KB——玻尔兹曼常数,等于1.38065×10-23J/K;
Ttest——加速老化时器件所处的绝对温度,在本发明中等于423K(即,150℃);
Wm——SiO2钝化层中O3≡Si-O-Si≡O3微元的机械能,由公式(2)计算:
公式(2)中:
Y——SiO2钝化层的杨氏弹性模量,等于72GPa;
V——单位微元体积,设为1cm3
N——1cm3体积中SiO
σ——外界机械压力在芯片钝化层中产生的拉应力。
将上文中的拉应力和各项参数代入公式(1)中,可以计算出压接式IGBT器件在150℃、48Mpa夹持压强下持续1000h后的老化程度等效于器件在150℃、2Gpa夹持压强下持续197.64h。
因此,发明人在上述研究成果基础上,提出了一种通过增加机械压力来加快压接式IGBT器件老化速度、进而缩短试验时间的方法。
发明内容
本发明提供的一种包含机械压力加速的压接式绝缘栅双极型晶体管高温反偏试验方法,包括以下步骤:
步骤1:将压接式绝缘栅双极型晶体管放置在恒温箱中,恒温箱的温度Ttest恒定在150℃;并且同时向该晶体管的集电极和发射极之间施加电压VCE,VCE取最大电压VCE-max的80%;该晶体管的栅极电压VGE保持为零;同时,向该晶体管施加机械压力,使机械压强Ptest保持在2Gpa;
步骤2:保持该晶体管的温度Ttest、电压VCE、栅极电压VGE和机械压强Ptest恒定不变,持续时间为197.64h;
步骤3:将该晶体管从恒温箱中取出,降温至室温,并撤去电压VCE和外加的机械压力;
步骤4:按照国际标准IEC60747-9(2007)中规定的晶体管参数检测方法和耐受试验失效标准,诊断该晶体管是否失效;
本发明的有益效果是,通过加大压接式IGBT器件的夹持力,将原先需要1000h的压接式IGBT器件高温反偏试验时间缩短到了197.64h,极大缩短了试验时间。
附图说明
图1为一种单芯片的压接式IGBT器件结构示意;
图2为本发明提供的一种包含机械压力加速的压接式绝缘栅双极型晶体管高温反偏试验方法的实施流程图;
具体实施方式
下面以3300V/50A的单芯片压接式IGBT器件为例,详细说明本发明的具体实施方式。
步骤1:向该器件的集电极和发射极之间施加2640V直流电压,短路发射极和栅极(或者门极);同时用机械装置从集电极和发射极外侧夹持器件,并且保持对器件施加的机械压强恒定为2Gpa;将器件连同电源线和机械夹持放置在恒温箱中,快速升温到150℃,并保持温度恒定在150℃;
步骤2:恒温箱温度达到150℃时开始计时;保持恒温箱温度(即,器件的温度)为150℃、器件集电极与发射极之间的电压为2640V、器件发射极与栅极极电压为零、机械压强为2GPa恒定不变,持续197.64h;
步骤3:持续时间到达197.64h时,将该晶体管从恒温箱中取出,降温至室温,并撤去集电极与发射极之间的电压,撤去外加的机械压力;
步骤4:按照国际标准IEC60747-9(2007)中规定的晶体管参数检测方法和耐受试验失效标准,诊断该晶体管是否失效;
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (1)

1.一种包含机械应力加速的压接式绝缘栅双极型晶体管高温反偏试验方法,其特征是,所述方法包括:
步骤1:将钝化层为SiO2的压接式绝缘栅双极型晶体管放置在恒温箱中,恒温箱的温度Ttest恒定在150℃;并且同时向该晶体管的集电极和发射极之间施加电压VCE,VCE取最大电压VCE-max的80%;该晶体管的栅极电压VGE保持为零;同时,向该晶体管外加机械压力,使机械压强Ptest保持在2Gpa;
步骤2:保持该晶体管的温度Ttest、电压VCE、栅极电压VGE和机械压强Ptest恒定不变,持续时间为197.64h;
步骤3:将该晶体管从恒温箱中取出,降温至室温,并撤去电压VCE和外加的机械压力;
步骤4:按照国际标准IEC60747-9(2007)中规定的晶体管参数检测方法和耐受试验失效标准,诊断该晶体管是否失效。
CN201910292678.4A 2019-04-12 2019-04-12 一种压接式绝缘栅双极型晶体管高温反偏试验方法 Active CN111856229B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910292678.4A CN111856229B (zh) 2019-04-12 2019-04-12 一种压接式绝缘栅双极型晶体管高温反偏试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910292678.4A CN111856229B (zh) 2019-04-12 2019-04-12 一种压接式绝缘栅双极型晶体管高温反偏试验方法

Publications (2)

Publication Number Publication Date
CN111856229A CN111856229A (zh) 2020-10-30
CN111856229B true CN111856229B (zh) 2023-08-15

Family

ID=72951205

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910292678.4A Active CN111856229B (zh) 2019-04-12 2019-04-12 一种压接式绝缘栅双极型晶体管高温反偏试验方法

Country Status (1)

Country Link
CN (1) CN111856229B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102054776A (zh) * 2009-10-28 2011-05-11 中芯国际集成电路制造(上海)有限公司 应力记忆作用半导体器件的制造方法
CN102967814A (zh) * 2012-10-19 2013-03-13 西安电子科技大学 晶体管晶格形变导致性能退化的测试装置及方法
WO2015007394A1 (de) * 2013-07-19 2015-01-22 Liebherr-Components Biberach Gmbh Verfahren zur überwachung wenigstens eines igbts auf alterung innerhalb einer arbeitsmaschine
CN107679353A (zh) * 2017-11-20 2018-02-09 重庆大学 模拟压接式igbt器件失效短路机理的有限元建模方法
JP2019037024A (ja) * 2017-08-10 2019-03-07 株式会社日立プラントメカニクス クレーンにおけるインバータのigbt寿命予測方法及びその装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5731448B2 (ja) * 2012-07-18 2015-06-10 エスペック株式会社 パワーサイクル試験装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102054776A (zh) * 2009-10-28 2011-05-11 中芯国际集成电路制造(上海)有限公司 应力记忆作用半导体器件的制造方法
CN102967814A (zh) * 2012-10-19 2013-03-13 西安电子科技大学 晶体管晶格形变导致性能退化的测试装置及方法
WO2015007394A1 (de) * 2013-07-19 2015-01-22 Liebherr-Components Biberach Gmbh Verfahren zur überwachung wenigstens eines igbts auf alterung innerhalb einer arbeitsmaschine
JP2019037024A (ja) * 2017-08-10 2019-03-07 株式会社日立プラントメカニクス クレーンにおけるインバータのigbt寿命予測方法及びその装置
CN107679353A (zh) * 2017-11-20 2018-02-09 重庆大学 模拟压接式igbt器件失效短路机理的有限元建模方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Analysis on Overheating Failure of 3.3kV/50A single-chip sub-module of 3.3kV/3kA Press Pack IGBT for the Hybrid DCCB;Mengyue Hu;2018 IEEE 2nd International Conference on Dielectrics(ICD);1-4 *

Also Published As

Publication number Publication date
CN111856229A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
Liu et al. In situ condition monitoring of IGBTs based on the miller plateau duration
CN102313864B (zh) 测试设备及测试方法
WO2020207513A2 (zh) 一种评估半导电屏蔽材料发射性能的测试装置及评估方法
KR101630612B1 (ko) 반도체장치의 검사방법
Ueta et al. Insulation characteristics of epoxy insulator with internal crack-shaped micro-defects-fundamental study on breakdown mechanism
CN103337468A (zh) 测试结构
CN111856229B (zh) 一种压接式绝缘栅双极型晶体管高温反偏试验方法
CN111859839B (zh) 一种压接式绝缘栅双极型晶体管高温反偏老化时间折算方法
Ziemann et al. Time-resolved short circuit failure analysis of SiC MOSFETs
CN111142002B (zh) 一种并联芯片温度均匀性检测方法及装置
CN116184156A (zh) 一种mos器件的源漏击穿电压的测试方法及装置
Plawsky et al. Variable ramp rate breakdown experiments and the role of metal injection in low-$ k $ dielectrics
CN101931100A (zh) 一种电池组件
Tanaka et al. Current integrated charge measurement evaluation of insulation layer for power module using DC current integrated charge measurement
Allers et al. Thermal and dielectric breakdown for metal insulator metal capacitors (MIMCAP) with tantalum pentoxide dielectric
CN114210605A (zh) 碳化硅功率半导体器件测试方法
JP4475069B2 (ja) 半導体モジュールの良品判定方法
Agri et al. Insulating liquids, an alternative to silicone gel for power electronic devices
Heimler et al. Power Cycling of Discrete Devices with very high Power Density
JP5003288B2 (ja) シリコンウェーハの評価方法およびシリコンウェーハの製造方法
JP4893783B2 (ja) 半導体モジュールの製造方法及び良品判定装置
Boldyrjew-Mast et al. Impact of Degradation Mechanisms in Gate Stress Tests on the Hard-Switching Behavior of 1.2 kV SiC Power MOSFETs
KR102266350B1 (ko) 알루미늄 고분자 커패시터의 수명 평가 방법
CN117706314A (zh) 一种被动式动态偏置测试电路
Choi et al. Investigations of 900V 4H-SiC Planar Power MOSFET for More Robust Reliability Performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Cheng Yangchun

Inventor after: Wen Yaowen

Inventor after: Zheng Xiahui

Inventor before: Cheng Yangchun

Inventor before: Zheng Xiahui

GR01 Patent grant
GR01 Patent grant