CN111841511A - 一种磁性纳米颗粒-氧化石墨烯纳米复合材料及其制备方法 - Google Patents

一种磁性纳米颗粒-氧化石墨烯纳米复合材料及其制备方法 Download PDF

Info

Publication number
CN111841511A
CN111841511A CN202010671136.0A CN202010671136A CN111841511A CN 111841511 A CN111841511 A CN 111841511A CN 202010671136 A CN202010671136 A CN 202010671136A CN 111841511 A CN111841511 A CN 111841511A
Authority
CN
China
Prior art keywords
pgp
graphene oxide
beads
magnetic nanoparticle
aug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010671136.0A
Other languages
English (en)
Inventor
李洁
郇伟伟
吴玄
赵佳俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang A&F University ZAFU
Original Assignee
Zhejiang A&F University ZAFU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang A&F University ZAFU filed Critical Zhejiang A&F University ZAFU
Priority to CN202010671136.0A priority Critical patent/CN111841511A/zh
Publication of CN111841511A publication Critical patent/CN111841511A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明提供了一种磁性纳米颗粒‑氧化石墨烯纳米复合材料及其制备方法,属于复合材料领域。本发明通过冰模板法和冻干工艺制备了具有蜂窝状微结构的三维多孔氧化石墨烯/聚乙烯亚胺珠,用于N‑连接糖肽的富集和鉴定,所用聚乙烯亚胺不仅可稳定三维多孔结构,还能够进一步固定金纳米颗粒并随后修饰谷胱甘肽分子,所得产物pGP/AuG具有开孔结构、蜂窝状通道和优异的亲水性,能够通过利用丰富的结合位点以及糖肽与谷胱甘肽和聚乙烯亚胺之间的多价相互作用进行特异性富集。本发明制得的pGP/AuG选择性富集N‑连接糖肽具有高检测灵敏度、富集选择性、结合能力、恢复率及可重复性的特点。

Description

一种磁性纳米颗粒-氧化石墨烯纳米复合材料及其制备方法
技术领域
本发明涉及复合材料领域,具体涉及一种磁性纳米颗粒-氧化石墨烯纳米复合材料及其制备方法。
背景技术
蛋白质糖基化是最普遍和最复杂的翻译后修饰之一,在许多细胞生物学过程中起着不可或缺的作用,例如免疫反应,细胞通讯和蛋白质折叠。蛋白质异常糖基化已被证明与许多人类疾病有关,例如癌症,免疫缺陷和阿尔茨海默氏病。糖蛋白的综合鉴定对于理解其生物学功能和发现临床生物标志物具有重要意义。目前,质谱(MS)已成为蛋白质组学研究中最有效的工具。然而,MS型糖蛋白组学分析仍然存在一些挑战:糖肽/糖蛋白的丰度低,固有的不均匀聚糖和对非糖肽的严重离子抑制。因此,迫切需要开发样品富集技术,以从糖类蛋白质组学研究的复杂生物样品中选择性捕获和预浓缩糖肽/糖蛋白。
根据亲水相互作用法(HILIC),凝集素亲和法,硼酸法和肼化学法的四种主要模式设计和合成亲和富集材料。其中,HILIC的富集方法是基于有机溶剂/水溶液中糖肽和非糖肽的不同亲水性进行富集。由于操作简便,重复性好,特异性高等优点,HILIC方法在糖蛋白组学研究中受到越来越多的关注。通常,通过中间接头将亲水性功能分子接枝在基底上。各种亲水分子,例如氨基,麦芽糖,多糖,两性离子群,和氨基酸被用于富集糖肽。多种基底材料,包括磁珠,介孔二氧化硅,金属有机骨架和氧化石墨烯对于某些HILIC材料,繁琐的多步反应过程导致材料功能化效率低下。重要的是,几种亲水性巯基分子已被用于通过硫醇基团与金属氧化物/金属之间的亲和力相互作用直接修饰金属氧化物/金属材料,由此可以看出这些制备的材料具有从复杂样品中富集糖肽的高效能。
氧化石墨烯(GO)是一种典型的二维层状材料,具有较高的比表面积,良好的稳定性,平坦表面上的羟基和环氧基以及边缘处的羧基。这些基团的存在为GO提供了出色的亲水性和丰富的反应位点,以进一步官能化。肽,蛋白质甚至纳米材料都已经可以被固定在GO上,这些复合材料在从各种生物样本中选择性提取/吸附目标生物分子方面证明了优异的性能。为了进一步提高用于糖肽识别的亲水性和特异性,在GO上接枝了各种亲水分子,这些材料实现了对来自各种生物样品的低丰度糖肽的高度选择性捕获。简而言之,这些大多数的GO复合材料都是二维体系结构。此外,已经能够合成具有大孔结构的三维GO基多孔材料,并将其用于高吸附力和短时间的污染物去除。但是,目前尚无关于将具有大孔通道的GO基多孔珠用于糖肽富集的研究。
在本研究中,制备了具有蜂窝状微结构的多孔GO基珠(pGP),并用两性亲水基团对其进行了修饰,并将其用于从生物样品中特异性捕获低丰度糖肽。聚乙烯亚胺在稳定三维多孔结构和进一步固定金纳米颗粒方面都起着重要作用。例如,选择两性亲水基团L-谷胱甘肽(GSH)并自组装到Au纳米颗粒上以形成pGP/AuG珠。固定的GSH分子和PEI的游离氨基被认为提供了丰富的结合位点以及与糖肽的多价相互作用。使用标准糖蛋白胰蛋白酶消化液和实际生物学标本评估pGP/AuG珠的富集性能。这些结果表明,pGP/AuG珠具有高选择性,灵敏度和回收率,在糖蛋白组学研究中拥有巨大潜力。
发明内容
本发明的目的是提供一种磁性纳米颗粒-氧化石墨烯纳米复合材料及其制备方法,能够简单高效的完成基于质谱的糖蛋白组学研究中复杂的生物样品的制备。
为了实现上述目的,本发明采用如下技术方案:
一种磁性纳米颗粒-氧化石墨烯纳米复合材料,该复合材料基于多孔氧化石墨烯的两性离子亲水珠,用于N-连接糖肽的富集和鉴定;所述两性离子亲水珠通过冰模板法和冻干工艺制得。
进一步的,所述复合材料为蜂窝状微结构的三维多孔结构。
进一步的,该纳米复合材料的开孔结构和自身的亲水性特征可提供亲和吸附作用,适用于从生物样品中特异性捕获低丰度糖肽。
一种磁性纳米颗粒-氧化石墨烯纳米复合材料的制备方法,该制备方法包括如下步骤:
取氧化石墨烯水性浆液、支链聚乙烯亚胺水溶液和聚乙二醇二缩水甘油醚均匀混合,将混合浆料速冷,冻干后,得pGP珠,将获得的pGP珠在60~65℃下热处理,取热处理后的pGP珠粒与四氯金酸三水合物混合搅拌,得pGP/Au产物,水洗,取pGP/Au产物按质量比1:3~7分散在谷胱甘肽的水溶液中,于50~55℃下搅拌,出料,即得磁性纳米颗粒-氧化石墨烯纳米复合材料。
进一步的,所述氧化石墨烯水性浆液的浓度为10mg·g-1,支链聚乙烯亚胺水溶液的浓度为250mg·g-1,四氯金酸三水合物的浓度为2.5mg·mL-1,谷胱甘肽水溶液的浓度为0.001mol/L。
进一步的,所述挤压混合浆料的过程采用注射器针头挤压混合。
进一步的,所述氧化石墨烯水性浆液、支链聚乙烯亚胺水溶液和聚乙二醇二缩水甘油醚的质量比为18~23:2:0.3~0.7。
进一步的,所述速冷的过程为将混合浆料注入液氮溶液中迅速冻结并沉底。
进一步的,所述pGP珠粒与四氯金酸三水合物的质量比为4~6:1。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
(1)本发明多孔GO基两性离子亲水珠(pGP/AuG)的制备过程如图1所示:首先,通过冰模板法,冻干和随后的热交联方法,合成了具有蜂窝状微通道结构的多孔氧化石墨烯/聚乙烯亚胺(pGP)珠;其次,在存在聚乙烯亚胺(PEI)的情况下原位还原Au纳米颗粒并将其锚定在pGP的表面上;随后,L-谷胱甘肽(GSH)分子通过Au-S键自组装到Au纳米颗粒上;值得注意的是,PEI在此过程中扮演了两个重要角色;通过形成GO和PEI之间的静电相互作用以及支链PEI中的氨基与中间体聚乙二醇二缩水甘油醚(PEGDE)中的环氧基之间的共价相互作用,可以稳定三维多孔结构;此外,PEI用作还原和稳定剂,用于固定Au纳米颗粒;具有蜂窝状通道,开孔结构和丰富的亲水分子的特征,pGP/AuG珠进一步用作新型亲和吸附剂,可从复杂的生物样品中选择性富集低丰度的糖肽,用于基于质谱的糖蛋白质组学研究。
(2)本发明制得的pGP/AuG能够选择性富集N-连接糖肽,具有高检测灵敏度、富集选择性、结合能力、恢复率及可重复性的特点。
附图说明
图1是通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)对pGP和pGP/AuG珠的形态表征图,其中,(a,b)pGP珠的低倍的SEM显微照片,(c,e)pGP珠的高倍的SEM和TEM显微照片,(d,f)pGP/Au珠的高倍的SEM和TEM显微照片。
图2是以检查表面化学成分的X射线光电子能谱(XPS)图像,其中,(a)XRD图:(i)pGP,(ii)pGP/Au;(b,c)pGP/Au的XPS和EDS光谱;(d)FTIR光谱:(i)pGP/Au,(ii)pGP/AuG,(iii)GSH。
图3是人IgG胰蛋白酶消化物的MALDI-TOF质谱图,其中,(a)不富集,(b)pGP/AuG珠富集,(c)pGP珠富集,(d)商业两性离子亲水珠富集,(e)pGP/AuG珠富集并被PNGase F去糖基化,(f)市售两性离子亲水珠富集并被PNGase F去糖基化,检测到的糖肽标记有“★”。
图4是使用pGP/AuG珠粒以不同浓度对人IgG胰蛋白酶消化物的MALDI-TOF质谱图,其中,(a)20fmol/μL,(b)5fmol/μL,(c)2fmol/μL,检测到的糖肽标记为“★”。
图5是含有人IgG和BSA胰蛋白酶消化物的混合物的MALDI-TOF质谱,质量比为1:200,其中,(a)直接分析,(b)富集pGP/AuG珠,(c)以1:500的质量比富集pGP/AuG珠,检测到的糖肽标记为“★”。
图6是pGP/AuG珠的结合能力评估图,即通过使用不同量的pGP/AuG珠粒从固定量的人IgG胰蛋白酶消化物中富集糖肽来确定pGP/AuG珠粒的结合能力。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
一种磁性纳米颗粒-氧化石墨烯纳米复合材料,该复合材料基于多孔氧化石墨烯的两性离子亲水珠,用于N-连接糖肽的富集和鉴定;所述两性离子亲水珠通过冰模板法和冻干工艺制得,所述复合材料为蜂窝状微结构的三维多孔结构,该纳米复合材料的开孔结构和亲水性特征可提供亲和吸附作用,适用于从生物样品中特异性捕获低丰度糖肽。
一种磁性纳米颗粒-氧化石墨烯纳米复合材料的制备方法,包括如下步骤:
按质量比18~23:2:0.3~0.7取氧化石墨烯水性浆液(10mg·g-1)、支链聚乙烯亚胺水溶液(250mg·g-1)和聚乙二醇二缩水甘油醚均匀混合,移至内径为0.25mm的注射器针头挤压混合浆料,并将其注入液氮溶液中,液滴迅速冻结并沉入不锈钢瓶底部,收集并冻干后,将获得的pGP珠在60~65℃下热处理7~9h后,按质量比4~6:1取热处理后的pGP珠粒与四氯金酸三水合物(2.5mg·mL-1)混合搅拌2h后,得pGP/Au产物,用水清洗后,取pGP/Au产物按质量比1:3~7分散在浓度0.001mol/L的谷胱甘肽的水溶液中,于50~55℃下搅拌10~13h,即得磁性纳米颗粒-氧化石墨烯纳米复合材料。
实施例1
一种磁性纳米颗粒-氧化石墨烯纳米复合材料的制备方法,包括如下步骤:
按质量比20:2:0.5取氧化石墨烯水性浆液(10mg·g-1)、支链聚乙烯亚胺水溶液(250mg·g-1)和聚乙二醇二缩水甘油醚均匀混合,移至内径为0.25mm的注射器针头挤压混合浆料,并将其注入液氮溶液中,液滴迅速冻结并沉入不锈钢瓶底部,收集并冻干后,将获得的pGP珠在62℃下热处理8h后,按质量比5:1取热处理后的pGP珠粒与四氯金酸三水合物(2.5mg·mL-1)混合搅拌2h后,得pGP/Au产物,用水清洗后,取pGP/Au产物按质量比1:5分散在浓度0.001mol/L的谷胱甘肽的水溶液中,于52℃下搅拌12h,即得磁性纳米颗粒-氧化石墨烯纳米复合材料。
将实施例1所得复合材料进行如下测试:
(1)pGP/AuG珠的表征:
通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)对pGP和pGP/AuG珠的形态进行了表征。如图1所示,pGP珠是具有部分表面收缩的近似球形,平均直径经计算约为1.8毫米。
放大的图像显示出pGP珠表面上带有蜂窝状通道的大量孔(图1)。当GO和PEI混合液滴加入液氮溶液中时,在冰晶生长过程中形成孔。通过冰模板法制备了其他几种具有微蜂窝结构的多功能材料。如图1所示,在固定Au纳米颗粒之后,pGP/AuG珠的多孔结构与pGP珠的多孔结构相似。与pGP珠的光滑表面相比(图1c),在放大的SEM显微照片中,大量的Au纳米颗粒锚固在pGP/AuG珠的表面上(图1d)。此外,在TEM图像如图1e所示,GO片在pGP珠的表面。相比之下,图1f中有大量的金纳米颗粒分散并锚固在粉状pGP/Au珠的表面上。根据TEM显微照片,计算Au纳米颗粒的平均直径尺寸为65nm。这些结果证明了金纳米颗粒的成功固定。
在实验阶段,可以观察到PEI在合成具有稳定结构的GO基多孔珠中起着重要作用。对于不含或低PEI成分的GO多孔珠,摇动24h后,在水溶液中观察到大量碎片。当PEI/GO的质量比超过2∶1时,获得的pGP珠粒可以在水溶液中保留整个结构。溶液中几乎没有碎片,pGP珠的结构和形态保留得很好。稳定的结构可以归因于两个因素:GO上的羧酸基团和PEI上的氨基基团之间的静电相互作用;另外,采用具有双环氧基团的中间体PEGDE与支链PEI进行共价交联,在热环境下,环氧基团与氨基之间发生开环聚合反应。
通过汞压入孔隙率法(MIP)研究了pGP/Au珠的孔结构,孔隙率和比表面积。pGP/Au珠的孔体积和比表面积分别确定为3.91mL/g和203.0m2/g。pGP/Au珠的孔隙率确定为66.9%。另外,pGP/Au珠显示出平均直径(4V/A)为1190nm的微孔。高孔隙率,比表面积和开孔结构有助于pGP/Au珠的吸附性能。
pGP和pGP/Au珠的X射线衍射(XRD)图显示在图2a中。GO的2θ值为20.5°处有一个宽的衍射峰。相比之下,在装载Au纳米颗粒后,在2θ值分别为38.2°,44.4°,64.6°和77.6°处出现了四个新的尖锐衍射峰。这些峰分别对应Au(JCPDS 01-1172)的(111),(200),(220)和(311)峰,表明Au纳米粒子附着在pGP珠上。
记录X射线光电子能谱(XPS)图像以检查表面化学成分。如图2b所示,在pGP/Au珠的XPS光谱中观察到84.0eV和87.7eV的两个结合能。这些峰可归因于Au(0)的Au 4f7/2和Au4f5/2。另外,在能量色散谱(EDS)中出现Au元素的信号峰。还证明了金纳米颗粒在pGP珠上的成功附着。
采用傅里叶变换红外光谱(FTIR)分析法确定了谷胱甘肽分子的表面修饰。在图2d中,与pGP/AuG的FTIR光谱相比,在pGP/AuG的FTIR光谱中清楚地观察到与GSH分子相对应的指纹峰。结果揭示了GSH分子对于附着有金纳米颗粒的pGP珠的成功修饰。
通过确定pGP/AuG珠的水接触角来研究亲水性。将珠粒在研钵中粉碎。水接触角测得为0°,显示了pGP/AuG珠的出色亲水性。因此,pGP/AuG珠的独特的多孔结构以及丰富的氨基和两性亲水基团使其成为糖肽富集的有前途的吸附剂。
(2)测试样品制备:
将人IgG以1mg·mL-1的浓度溶于NH4HCO3缓冲液(1mL,50mM,pH=8.3)中。加入20μg胰蛋白酶后,将混合物在37℃下反应17h。将BSA(牛血清白蛋白)(5mg)溶于含有8mM尿素的NH4HCO3缓冲液(2.5mL,50mM,pH=8.3)。然后,加入50μLDTT(1mol·L-1)并在60℃下反应45min。随后,添加15mgIAA并在黑暗中反应1h。最后,将混合物用NH4HCO3缓冲液(50mM,pH=8.3)稀释至25mL,并在37℃下用100μg胰蛋白酶消化17h。
将人血清(1μL)与50μLNH4HCO3缓冲液(50mM,pH=8.3)混合,将该混合物以12000rpm离心5min。小心收集上清液,并在100℃下变性10min。随后,添加100μLDTT(1mol·L-1),并在60℃下反应1h。然后,将7.5mgIAA混合并在黑暗中反应1h。最后,加入60μg胰蛋白酶,并在37℃下反应17h。将所得的胰蛋白酶消化物冻干,并保持在-20℃以便进一步使用。
(3)糖肽富集和质谱分析:
为了从标准胰蛋白酶消化物中选择性富集糖肽,将pGP/AuG(2mg)分散在加载缓冲液(500μL,ACN(乙腈)/H2O/TFA(三氟乙酸),95:4.9:0.1,v/v/v)中,并与人IgG胰蛋白酶消化液(3μL,有或没有BSA胰蛋白酶消化液)一起反应。分离并用上样缓冲液洗涤两次后,用洗脱缓冲液(ACN/H2O/TFA,30:69.9:0.1,v/v/v)释放捕获的糖肽。随后,将所得洗脱液冻干以用于水中的去糖基化或再溶解,并通过MALDI-TOF MS进行分析。
为了从人血清样本中选择性富集糖肽,将pGP/AuG(5mg)分散在加载缓冲液(2mL,ACN/H2O/TFA,95:4.9:0.1,v/v/v)中,并与胰蛋白酶消化液一起反应。吸附的杂质用上样缓冲液洗涤三遍。然后,用洗脱缓冲液(ACN/H2O/TFA,30:69.9:0.1,v/v/v)释放捕获的糖肽。将洗脱液冻干,去糖基化,并通过纳米LC-MS/MS进一步分析。
pGP/AuG珠的糖肽富集性能所得分析结果:
具体来说,连接聚糖的糖肽比非糖肽的亲水性更高。因此,在这项研究中,HILIC富集模式用于pGP/AuG珠。将胰蛋白酶消化物与pGP/AuG珠一起反应,进行选择性吸附和洗涤程序后,洗脱捕获的糖肽,并通过MS分析洗脱液。为了获得最佳的富集,首先优化加载缓冲液。研究了六种含有0.1%TFA浓度的ACN(86%,89%,92%,95%和98%)的上样缓冲液。标准(人IgG)胰蛋白酶消化物用作模型样品。
图3显示了不富集和富集几种人IgG胰蛋白酶消化物的MALDI-TOF质谱图。具有强信号强度的大量非糖肽峰占主导地位,这强烈抑制了糖肽的检测。在图3a中未观察到糖肽峰。在通过pGP/AuG珠富集之后,非糖肽几乎消失了,并且在图3b中明显地发现了25个糖肽峰,其信号强度和信噪比(S/N)增加。另外,采用两种亲水材料来富集糖肽。如图3c和3d所示,通过pGP珠和商业亲水珠富集后,只有20和21个具有干净背景的糖肽峰被检测到。相比之下,使用pGP/AuG鉴定的糖肽峰的信号强度和信噪比均高于其他两种材料。获得的更好的富集效率可以归因于亲水分子的含量高,以及糖肽与pGP/AuG珠粒上的谷胱甘肽和聚乙烯亚胺之间的多价亲水相互作用。
为了确认富含pGP/AuG珠的糖肽和商业亲水珠属于N-连接的糖肽,将所得洗脱液进一步用PNGase F去糖基化。如图3e和3f所示,可以看到m/z超过2200的峰都消失了,这表明所有富集的肽都是N-连接的糖肽。另外,剩下的两个脱酰胺基肽的氨基酸序列为EEQFN#STFR和EEQYN#STYR。
使用不同浓度的人IgG胰蛋白酶消化物检测灵敏度。如图4所示,在通过pGP/AuG珠富集后,从20fmol/μL和5fmol/μL人IgG胰蛋白酶消化物中检测到9和10个糖肽峰(图4a,b)。当浓度降低到2fmol/μL时,仍可以检测到5个糖肽峰,其S/N比超过30(图5c)。因此,pGP/AuG珠的检出限低至2fmol/μL。结果表明,所制备的pGP/AuG珠对N-连接糖肽具有良好的敏感性。
对pGP/AuG珠对复杂混合物中低丰度糖肽的富集选择性进行评估。人IgG和BSA胰蛋白酶消化物的混合物用作测试样品。如图5a所示,对于质量比为1:200的人IgG和BSA胰蛋白酶消化物的混合物的直接分析,几乎未检测到糖肽峰。重要的是,在用pGP/AuG珠富集之后,在图5b中大多数观察到峰的属于糖肽峰并检测到19个糖肽峰。当人IgG和BSA胰蛋白酶消化物的质量比增加到1:500时,在通过pGP/AuG珠富集后,捕获并鉴定了15种糖肽(图5c)。这些分析结果证明,即使在存在丰富的非糖肽的情况下,pGP/AuG珠也具有良好的糖肽富集能力。
通过使用不同量的pGP/AuG珠粒从固定量的人IgG胰蛋白酶消化物中富集糖肽来确定pGP/AuG珠粒的结合能力。如图6所示,当pGP/AuG珠与人IgG消化物的质量比为1:3时,六个高丰度糖肽的信号强度首先增加并达到最大值。不久之后,信号强度随着质量比的进一步提高而略有改善。因此,pGP/AuG珠的结合能力经计算为约333.3mg·g-1。结合能力优于几种亲水材料,例如TpPa-1@Ag@GSH(160mg·g-1),MoS2/Au-NP-L-半胱氨酸(120mg·g-1),和氧化石墨烯/聚乙烯亚胺-角叉菜胶(300mg·g-1)。
(5)从真实生物样本中富集和鉴定糖肽
受到糖肽富集的出色性能的启发,采用了真正的复杂生物样品来证明pGP/AuG珠的实用性。人血清中含有几种糖蛋白,它们是疾病诊断的潜在生物标志物。人血清糖蛋白组学研究意义重大,但也具有挑战性。在这项研究中,用胰蛋白酶消化了1μL人血清,并用pGP/AuG珠进行了处理。在洗涤和洗脱过程之后,使用PNGase F将获得的洗脱液去糖基化,并通过纳米LC-MS/MS进行进一步分析。结果,通过三个独立的分析鉴定了衍生自128个N-糖基化蛋白的209个N-糖基化肽。pGP/AuG珠的富集和鉴定性能可与以前报道的几种亲水性材料相媲美甚至更高,例如COF功能化的磁性石墨烯复合物(1μL人血清,85N-糖蛋白,232N-糖肽),氧化石墨烯/聚乙烯亚胺-角叉菜胶(2μL人血清,56N-糖蛋白,56N-糖肽),magHN/Au-GSH纳米纤维(1μL人血清,104N-糖蛋白,246N-糖肽)这些分析结果表明,所制备的pGP/AuG珠具有从复杂的生物标本中捕获低丰度糖肽以进行基于质谱的糖蛋白组学研究的可行能力。
综上所述,本发明合成的具有蜂窝状微结构的多孔氧化石墨烯基两性离子亲水珠,用于从生物样品中捕获低丰度的糖肽。加入的聚乙烯亚胺在稳定3D多孔结构和进一步固定金纳米颗粒方面都起着不可或缺的作用,而两性亲水基团L-谷胱甘肽通过Au-S键自组装到金纳米颗粒上,因为具有开孔结构、蜂窝状通道、出色的亲水性,丰富的游离氨基和两性亲水基团,使得pGP/AuG珠在选择性富集糖肽方面表现出良好的性能,例如高选择性、高灵敏度、优秀的结合能力,高回收率,和可重复性。此外,证明了pGP/AuG珠用于人血清N-糖蛋白组学分析的实际可行性。本申请为制备多孔亲水材料及其在糖基化生物标志物研究中的应用提供了一种简便的方法。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种磁性纳米颗粒-氧化石墨烯纳米复合材料,其特征在于,该复合材料基于多孔氧化石墨烯的两性离子亲水珠,用于N-连接糖肽的富集和鉴定;所述两性离子亲水珠通过冰模板法和冻干工艺制得。
2.根据权利要求1所述的磁性纳米颗粒-氧化石墨烯纳米复合材料,其特征在于,所述复合材料为蜂窝状微结构的三维多孔结构。
3.根据权利要求2所述的磁性纳米颗粒-氧化石墨烯纳米复合材料,其特征在于,该纳米复合材料的开孔结构和自身的亲水性特征可提供亲和吸附作用,适用于从生物样品中特异性捕获低丰度糖肽。
4.一种如权利要求1~3任意一项所述的磁性纳米颗粒-氧化石墨烯纳米复合材料的制备方法,其特征在于,该制备方法包括如下步骤:
取氧化石墨烯水性浆液、支链聚乙烯亚胺水溶液和聚乙二醇二缩水甘油醚均匀混合,将混合浆料速冷,冻干后,得pGP珠,将pGP珠热处理,取热处理后的pGP珠粒与四氯金酸三水合物混合搅拌,得pGP/Au产物,水洗,取pGP/Au产物按质量比1:3~7分散在谷胱甘肽的水溶液中,于50~55℃下搅拌,出料,即得磁性纳米颗粒-氧化石墨烯纳米复合材料。
5.根据权利要求4所述的磁性纳米颗粒-氧化石墨烯纳米复合材料的制备方法,其特征在于,所述氧化石墨烯水性浆液的浓度为10mg·g-1,支链聚乙烯亚胺水溶液的浓度为250mg·g-1,四氯金酸三水合物的浓度为2.5mg·mL-1,谷胱甘肽水溶液的浓度为0.001mol/L。
6.根据权利要求4所述的磁性纳米颗粒-氧化石墨烯纳米复合材料的制备方法,其特征在于,所述挤压混合浆料的过程采用注射器针头挤压混合。
7.根据权利要求4所述的磁性纳米颗粒-氧化石墨烯纳米复合材料的制备方法,其特征在于,所述氧化石墨烯水性浆液、支链聚乙烯亚胺水溶液和聚乙二醇二缩水甘油醚的质量比为18~23:2:0.3~0.7。
8.根据权利要求4所述的磁性纳米颗粒-氧化石墨烯纳米复合材料的制备方法,其特征在于,所述速冷的过程为将混合浆料注入液氮溶液中迅速冻结并沉底。
9.根据权利要求4所述的磁性纳米颗粒-氧化石墨烯纳米复合材料的制备方法,其特征在于,所述pGP珠的热处理为在60~65℃下热处理7~9h。
10.根据权利要求4所述的磁性纳米颗粒-氧化石墨烯纳米复合材料的制备方法,其特征在于,所述pGP珠粒与四氯金酸三水合物的质量比为4~6:1。
CN202010671136.0A 2020-07-13 2020-07-13 一种磁性纳米颗粒-氧化石墨烯纳米复合材料及其制备方法 Pending CN111841511A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010671136.0A CN111841511A (zh) 2020-07-13 2020-07-13 一种磁性纳米颗粒-氧化石墨烯纳米复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010671136.0A CN111841511A (zh) 2020-07-13 2020-07-13 一种磁性纳米颗粒-氧化石墨烯纳米复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111841511A true CN111841511A (zh) 2020-10-30

Family

ID=72983239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010671136.0A Pending CN111841511A (zh) 2020-07-13 2020-07-13 一种磁性纳米颗粒-氧化石墨烯纳米复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111841511A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012159170A1 (en) * 2011-05-25 2012-11-29 Macquarie University A system for the capture of a biological or chemical entity ii
CN103877940A (zh) * 2012-12-19 2014-06-25 中国科学院大连化学物理研究所 4-巯基苯硼酸固定化氧化石墨烯复合纳米材料及制备和应用
CN104707991A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 磁性氧化石墨烯纳米银复合材料及制备和应用
CN106475068A (zh) * 2015-09-01 2017-03-08 中国科学院大连化学物理研究所 苯硼酸功能化的氧化石墨烯复合纳米材料及其制备和应用
CN106770614A (zh) * 2016-12-30 2017-05-31 复旦大学 亲水性纳米复合材料结合质谱分析鉴定糖基化肽段的方法
CN107607640A (zh) * 2017-08-30 2018-01-19 复旦大学 一种硼酸修饰的纳米复合材料的糖肽富集与质谱检测方法
CN107727480A (zh) * 2017-09-30 2018-02-23 北京蛋白质组研究中心 超薄片层状功能化二硫化钼纳米复合材料及其在糖肽富集中的应用
CN108906007A (zh) * 2018-07-20 2018-11-30 河南中医药大学 一种糖基亲水磁性复合物微球的制备方法及其应用
CN110130099A (zh) * 2019-04-25 2019-08-16 浙江农林大学 用于选择性捕获和识别糖肽的磁性纳米纤维基两性离子亲水性材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012159170A1 (en) * 2011-05-25 2012-11-29 Macquarie University A system for the capture of a biological or chemical entity ii
CN103877940A (zh) * 2012-12-19 2014-06-25 中国科学院大连化学物理研究所 4-巯基苯硼酸固定化氧化石墨烯复合纳米材料及制备和应用
CN104707991A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 磁性氧化石墨烯纳米银复合材料及制备和应用
CN106475068A (zh) * 2015-09-01 2017-03-08 中国科学院大连化学物理研究所 苯硼酸功能化的氧化石墨烯复合纳米材料及其制备和应用
CN106770614A (zh) * 2016-12-30 2017-05-31 复旦大学 亲水性纳米复合材料结合质谱分析鉴定糖基化肽段的方法
CN107607640A (zh) * 2017-08-30 2018-01-19 复旦大学 一种硼酸修饰的纳米复合材料的糖肽富集与质谱检测方法
CN107727480A (zh) * 2017-09-30 2018-02-23 北京蛋白质组研究中心 超薄片层状功能化二硫化钼纳米复合材料及其在糖肽富集中的应用
CN108906007A (zh) * 2018-07-20 2018-11-30 河南中医药大学 一种糖基亲水磁性复合物微球的制备方法及其应用
CN110130099A (zh) * 2019-04-25 2019-08-16 浙江农林大学 用于选择性捕获和识别糖肽的磁性纳米纤维基两性离子亲水性材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUN LI ET AL.: ""Porous graphene oxide/chitosan beads with honeycomb-biomimetic microchannels as hydrophilic adsorbent for the selective capture of glycopeptides"", 《MICROCHIMICA ACTA》 *

Similar Documents

Publication Publication Date Title
Liu et al. Hydrophilic tripeptide-functionalized magnetic metal–organic frameworks for the highly efficient enrichment of N-linked glycopeptides
Ma et al. A facilely synthesized glutathione-functionalized silver nanoparticle-grafted covalent organic framework for rapid and highly efficient enrichment of N-linked glycopeptides
Jiang et al. Hydrophilic GO/Fe3O4/Au/PEG nanocomposites for highly selective enrichment of glycopeptides
Jiang et al. New GO–PEI–Au–L-Cys ZIC-HILIC composites: synthesis and selective enrichment of glycopeptides
Wang et al. Facile synthesis of magnetic covalent organic frameworks for the hydrophilic enrichment of N-glycopeptides
Zhang et al. Highly specific enrichment of N-linked glycopeptides based on hydrazide functionalized soluble nanopolymers
Zhao et al. Recent advances of mesoporous materials in sample preparation
Cheng et al. The GO/rGO–Fe 3 O 4 composites with good water-dispersibility and fast magnetic response for effective immobilization and enrichment of biomolecules
Wang et al. Synthesis of zwitterionic hydrophilic magnetic mesoporous silica materials for endogenous glycopeptide analysis in human saliva
Xiong et al. Ti 4+-immobilized multilayer polysaccharide coated magnetic nanoparticles for highly selective enrichment of phosphopeptides
Zheng et al. Click synthesis of glucose-functionalized hydrophilic magnetic mesoporous nanoparticles for highly selective enrichment of glycopeptides and glycans
CN107727480B (zh) 超薄片层状功能化二硫化钼纳米复合材料及其在糖肽富集中的应用
Zhao et al. Recent advances in the application of core–shell structured magnetic materials for the separation and enrichment of proteins and peptides
Jiang et al. 4-Mercaptophenylboronic acid functionalized graphene oxide composites: Preparation, characterization and selective enrichment of glycopeptides
Feng et al. Novel synthesis of glucose functionalized magnetic graphene hydrophilic nanocomposites via facile thiolation for high-efficient enrichment of glycopeptides
Wang et al. An ultra hydrophilic dendrimer-modified magnetic graphene with a polydopamine coating for the selective enrichment of glycopeptides
Zhang et al. Epitope-imprinted mesoporous silica nanoparticles for specific recognition of tyrosine phosphorylation
Xie et al. Post-synthesis modification of covalent organic frameworks for ultrahigh enrichment of low-abundance glycopeptides from human saliva and serum
Ma et al. Ligand-free strategy for ultrafast and highly selective enrichment of glycopeptides using Ag-coated magnetic nanoarchitectures
Bibi et al. Efficient enrichment of glycopeptides with sulfonic acid-functionalized mesoporous silica
Xiong et al. Surfactant-free synthesis of SnO2@ PMMA and TiO2@ PMMA core-shell nanobeads designed for peptide/protein enrichment and MALDI-TOF MS analysis
Coffinier et al. Affinity surface-assisted laser desorption/ionization mass spectrometry for peptide enrichment
CN110779789A (zh) 一种亲水基团修饰二维磁性纳米材料的制备及其在糖肽规模化富集中的应用
Li et al. Fabrication of hydrophilic multilayer magnetic probe for salivary glycopeptidome analysis
Yang et al. Boronic acid-functionalized mesoporous magnetic particles with a hydrophilic surface for the multimodal enrichment of glycopeptides for glycoproteomics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201030