CN111834517B - 基于阵列晶体管传感器的柔性数位板 - Google Patents

基于阵列晶体管传感器的柔性数位板 Download PDF

Info

Publication number
CN111834517B
CN111834517B CN202010474960.7A CN202010474960A CN111834517B CN 111834517 B CN111834517 B CN 111834517B CN 202010474960 A CN202010474960 A CN 202010474960A CN 111834517 B CN111834517 B CN 111834517B
Authority
CN
China
Prior art keywords
piezoelectric
flexible
electrode
voltage
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010474960.7A
Other languages
English (en)
Other versions
CN111834517A (zh
Inventor
吴俊�
段升顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010474960.7A priority Critical patent/CN111834517B/zh
Publication of CN111834517A publication Critical patent/CN111834517A/zh
Application granted granted Critical
Publication of CN111834517B publication Critical patent/CN111834517B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/101Piezoelectric or electrostrictive devices with electrical and mechanical input and output, e.g. having combined actuator and sensor parts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种基于阵列晶体管传感器的柔性数位板,包括顶封装层、数据获取层和底封装层;所述数据获取层包括行扫描器、顶电极、柔性阵列晶体管层、列扫描器、和底电极;所述阵列晶体管传感器的基本单元采用压电半导体晶体管或者压电MOS管。对于N×M的晶体管传感器阵列,顶电极的第i根输出线和底电极的第j根输出线对应输出数位板二维平面位置(i,j)处晶体管传感器单元的电流信息Iij,接下来通过信息采集转换电路转换为电压信息Uij,来表征压力信息。本发明的柔性数位板,在工作原理上和结构构造方面,为数位板赋予了可弯曲折叠的性能与全新的工作机理。

Description

基于阵列晶体管传感器的柔性数位板
技术领域
本发明涉及柔性电子及数位板,具体涉及一种基于阵列晶体管传感器的柔性数位板。
背景技术
目前的数位板主要是基于电磁式感应原理,在笔触和数位板之间接触进行创新优化,以期达到更好的识别精度。数位板相对于传统的主要依赖于软件识别模式的手写板已经有了极大的性能提升,在签字,绘画等领域均有很大的应用前景,其主要参数有压感级别、分辨率、读取速度和板面大小。
但是,目前数位板的工作原理较为单一,主要是基于电磁式感应原理。除此之外,由于其全硬件外壳的设计,数位板的尺寸受限,大尺寸不易携带,而小尺寸在某些场景下又达不到应用的尺寸要求,即全硬壳设计使其移动便携性大大降低。
柔性电子下的晶体管工作原理为,结合压电等特性可以改变栅源极或者源漏极之间的电压,从而使得输出电流的特性改变。因而实现通过电流的变化可以实现对压力的分级精确感知。进一步的,通过特殊的信息采集转换电路,可以将电流的变化改变为电压的变化,从而实现电压的输出表征压力的不同。除此之外,通过阵列化设计还可以实现柔性数位板二维坐标点(x,y)出压力信号的获取,并且通过电极间距实现不同的空间分辨率。
除此之外,柔性这一特性也为数位板的形式带来革新,若将现有的全硬模式转变为可弯曲的柔性模式,会给其带来更强的便携性和更轻的重量。
发明内容
发明目的:为了解决现有技术存在的问题,本发明的目的是提供一种基于柔性电子下的晶体管工作原理实现对压力的精确感知,并以此改善传统数位板的刚性结构的柔性数位板。
技术方案:一种基于阵列晶体管传感器的柔性数位板,包括顶封装层、数据获取层和底封装层;所述顶封装层和底封装层采用高分子有机聚合物;所述数据获取层包括行扫描器、顶电极、柔性阵列晶体管层、列扫描器、和底电极;所述顶电极和行扫描器电连接,位于柔性阵列晶体管层的上方,所述底电极和列扫描器电连接,位于柔性阵列晶体管层的下方,所述柔性阵列晶体管层采用阵列式晶体管传感器;
处理器控制列扫描器和行扫描器对整个阵列进行扫描,列扫描器扫描晶体管阵列y轴的第i列,同时,行扫描器扫描晶体管传感器阵列x轴的第j行,顶电极的第i根输出线和底电极的第j根输出线对应输出数位板二维平面位置(i,j)处晶体管传感器单元的电流信息Iij,接下来通过信息采集转换电路转换为电压信息Uij,来表征压力信息,电压的输出格式便于后续采集。其中,1≤i≤N,1≤j≤M。利用电压信号的幅度来表征该位置施加压力的大小。
进一步的,所述柔性阵列晶体管层基于压力形变晶体管的工作原理可分为压电半导体晶体管和压电MOS管,即阵列式晶体管传感器的基本单元为压电半导体晶体管或者压电MOS管。
进一步的,所述压电半导体晶体管采用上表面电极-压电半导体-下表面电极三层柔性结构。所述压电MOS管可分为压电提供栅极电压和压电提供漏极电压两种不同的压电MOS管。
进一步的,所述顶电极、底电极采用金属材料,液态金属或者纳米导电材料。、顶电极和底电极的数量、间距压力空间分辨率确定。
进一步的,所述压电提供栅极电压的压电MOS管由源极,漏极,有机半导体材料,介质材料,柔性导体及压电栅极组成;所述漏极,源极和柔性导体可采用PEDOT:PSS,或者PEDOT:PSS-Mxene等柔性导电纳米混合材料;所述有机半导体材料采用P3HT;所述介质材料采用P(VDF-HFP)-[EMIM]+[TFSI]-;所述压电栅极采用压电材料ZnO,PZT,钛酸钡,PVDF等任意一种具有压电特性的压电材料。
所述压电提供漏极电压的压电MOS管由源极,压电漏极,有机半导体材料,介质材料,柔性导体及栅极组成;所述栅极,源极和柔性导体可采用PEDOT:PSS或者PEDOT:PSS-Mxene等柔性导电纳米混合材料;所述有机半导体材料采用P3HT;所述介质材料采用P(VDF-HFP)-[EMIN]+[TFSI]-;所述压电漏极采用压电材料ZnO,PZT,钛酸钡,PVDF等任意一种具有压电特性的压电材料。
和现有技术相比,本发明具有如下显著优点:在工作原理上采用基于阵列晶体管传感器感知压力的原理,相较于传统的基于电磁式感应原理的硬质数位板,在感应原理上提供了新的思路,进一步扩宽了数位板的发展方向;在结构构造方面,与传统的硬质数位板不同,其柔性的结构赋予了它可弯曲折叠以及便携的优异性能。为传统数位板的发展方向提供了一定的思路。
附图说明
图1为本发明的一种基于阵列晶体管传感器的数位板的结构示意图;
图2为压电半导体晶体管传感器基本单元的结构;
图3为压电半导体晶体管传感器数据获取层的工作原理图;
图4为基于压电半导体晶体管传感器的柔性数位板某一位置被选中时的信号采集电路图。
图5为压电提供栅极电压的压电MOS管传感器基本单元的结构;
图6为压电提供栅极电压的压电MOS管传感器数据获取层的结构示意图;
图7为基于压电提供栅极电压的压电MOS管传感器的柔性数位板某一位置被选中时的信号采集电路图。
图8为压电提供漏极电压的压电MOS管传感器基本单元的结构;
图9为压电提供漏极电压的压电MOS管传感器数据获取层的结构示意图;
图10为基于压电提供漏极电压的压电MOS管传感器的柔性数位板某一位置被选中时的信号采集电路图。
具体实施方式
下面结合附图和具体实施例,对本发明的技术方案做详细的说明。
如图1所示,一种柔性数位板的结构,包括顶封装层1,数据获取层2和底封装层3。其中,顶封装层1和底封装层3可采用PDMS,硅胶等高分子有机聚合物,主要对数据获取层起到电绝缘和保护的作用,优选采用PDMS。数据获取层2的结构为典型的三层结构,自上而下分别为行扫描器和顶电极21,柔性阵列晶体管层23,列扫描器和底电极22,数据获取层2还包括数据采集转换电路。
顶电极和行扫描器电连接,位于柔性阵列晶体管层的上方,底电极和列扫描器电连接,位于柔性阵列晶体管层的下方。顶电极用于获取行信号(x轴信号),底电极用于获取列信号(y轴信号)。顶电极和底电极可以采用金属材料,液态金属,纳米导电材料。
本发明中,数位板的数据获取层2的结构根据晶体管单元的工作原理不同采用三种不同的设计方案。
(1)晶体管单元为压电半导体晶体管
数位板的数据获取层是基于压电半导体晶体管的,即数据获取层的柔性阵列晶体管层采用的是阵列压电半导体阵列。如图2所示,压电半导体晶体管由上表面电极,压电半导体和下表面电极构成,上表面电极和下表面电极采用纳米金属铜等柔性导电材料,具有的良好的导电性和柔性。
压电半导体采用ZnO,GaN等压电半导体材料,其与上表面电极和下表面电极形成肖特基结。具体地,当将压力F施加在数位板的传感器单元上时,在压电半导体肖特基结出产生正电势,吸引电子往接触界面移动,导致耗尽区减小,势垒高度降低。
电流密度和势垒高度的关系如下:
Jn=JD0·exp[qe33s33Wpiezo·(2KTεs)-1]·exp[qV·(kT)-1-1]
其中,JD0为电流密度,Wpiezo压电半导体宽度,e33s33为压电半导体33方向上的压电系数和形变量,εs为介电常数,KT为常数。
因此,通过压力诱发压电半导体电势变化,进而诱发势垒高度变化,从而导致电流变化。
电流表达式为:
Iout=∫Jndxdydz
基于压电半导体的阵列晶体管传感器的数位板的数据获取层为三层结构,自上而下分别为行扫描器和顶电极,压电半导体,列扫描器和底电极。
其中,柔性数位板的空间分辨率由压电半导体晶体管单元的尺寸决定,压电半导体晶体管单元越小,空间分辨率越高;顶电极和底电极的数量、间距由压力空间分辨率确定。
具体地,对于特定的行列选择,比如位置(b,5),经过如图4所示的特定的电路设计,将电流变化转化为电压变化,便于后续数据采集,其具体的转换表达式如下:
Vb5=Ib5·R
此时,压电半导体的灵敏度Ku为:
可以看出,柔性数位板的压力分级感应精度由压电半导体晶体管的性能决定。
基于阵列压电半导体晶体管传感器的数位板的数据获取层的工作流程如下:
对于N×M的晶体管传感器阵列,处理器控制列扫描器和行扫描器对整个阵列进行扫描,列扫描器扫描晶体管阵列y轴的第i列,同时,行扫描器扫描晶体管传感器阵列x轴的第j行,顶电极的第i根输出线和底电极的第j根输出线对应输出数位板二维平面位置(i,j)处半导体晶体管单元的电流信息Iij,接下来通过信息采集转换电路转换为电压信息Uij,电压的输出格式便于后续采集,通过电压信号的幅度来表征该位置施加压力的大小。其中,1≤i≤N,1≤j≤M。
具体地,对于图3中(b,5)位置的压电半导体单元,其输出电压为Ub5=Ib5·R。
进一步地,如对于5×5的压电阵列,将连续输出U11,U12,U13,U14,U15,U21…,U41,U42,U43,U44,U45。这些电压输出经由软件层面的处理,可以得到在这一时刻内整个数位板的压力分布情况。
(2)晶体管单元为压电提供栅极电压的压电MOS管
数位板的数据获取层是基于压电提供栅极电压的压电MOS管的,即数据获取层的柔性阵列晶体管层采用的是压电提供栅极电压的压电MOS管阵列。
如图5所示,压电提供栅极电压的压电MOS管由源电极,漏电极,有机半导体材料,介质材料,柔性导体及压电栅极组成。
漏极,源极和柔性导体可采用PEDOT:PSS或者PEDOT:PSS-Mxene等柔性导电纳米混合材料;有机半导体材料采用P3HT;介质材料采用P(VDF-HFP)-[EMIM]+[TFSI]-;压电栅极采用压电材料ZnO,PZT,钛酸钡,PVDF等任意一种具有压电特性的压电材料。
使用P(VDF-HFP)-[EMIM]+[TFSI]-其作为栅介电层,在栅极电压作用下会形成十分明显的双电层(EDL),虽然其总厚度一般约为0.2-20nm,远小于一般绝缘层的厚度,但是由于双电子层的存在使得该栅介电层表现出较大的电容,可以有效的降低栅极的阈值电压。
当将压力F施加在数位板的压电MOS管单元上时,压电栅极上会产生电压,作为MOS管的栅极电压,通过柔性导体将电压传递给栅介电层P(VDF-HFP)-[EMIN]+[TFSI]-上,进而引起有机半导体材料P3HT中的自由电子或空穴向靠近栅介电层移动,形成导电通道,源漏之间形成导电电流Ids,其中,Ids与栅极电压Vgs和源漏电压Vds都有关,当固定Vds之后,便可通过Ids来表征Vgs的变化。
Ids与压力F之间的关系如下:
Ids=f(Vgs)=f(g(F))
其中,f(·)和g(·)表示某一一一对应的函数关系。
具体地:
其中,dmn为压电材料mn方向上的压电系数,t为压电材料的厚度,εrε0为压电材料的介电常数,A为压电材料上下表面的正对面积,F为mn方向上施加的压力。
基于压电提供栅极电压的压电MOS管的柔性阵列晶体管数位板的数据获取层一种可能的结构设计如图6所示。
其中,柔性数位板的空间分辨率由压电半导体晶体管单元的尺寸决定,压电半导体晶体管单元越小,空间分辨率越高;
具体地,对于特定的行列选择,比如(b,5),经过如图7所示的特定的电路设计,将电流变化转化为电压变化,便于后续数据采集,其具体的转换表达式如下:
Vb5=Ib5·R
此时,压阻阵列的灵敏度Ku为:
可以看出,柔性数位板的压力分级感应精度由压电mos管和压电器件的性能决定。
基于阵列压电半导体晶体管传感器的数位板的数据获取层的工作流程如下:
由处理器控制行列扫描器扫描一遍整个阵列,获取每个压电提供栅极电压的压电MOS管单元的电流输出Iij,之后通过信息采集转换电路将电流信号转换为电压信号,具体地,对于图6中(b,5)位置的压电MOS单元,其输出电压为Ub5=Ib5·R。
进一步地,比如对于5×5的压电阵列,将连续输出U11,U12,U13,U14,U15,U21…,U41,U42,U43,U44,U45。这些电压输出经由软件层面的处理,可以得到在这一时刻内整个数位板的压力分布情况。
(3)晶体管单元为压电提供漏极电压的压电MOS管
数位板的数据获取层是基于压电提供漏极电压的压电MOS管的,即数据获取层的柔性阵列晶体管层采用的是压电提供漏极电压的压电MOS管阵列。
如图8所示,所述压电提供漏极电压的压电MOS管由源极,压电漏极,有机半导体材料,介质材料,柔性导体及栅极组成;所述栅极,源极和柔性导体可采用PEDOT:PSS,或者PEDOT:PSS-Mxene等柔性导电纳米混合材料;所述有机半导体材料采用P3HT;所述介质材料采用P(VDF-HFP)-[EMIM]+[TFSI]-;所述压电漏极采用压电材料ZnO,PZT,钛酸钡,PVDF等任意一种具有压电特性的压电材料。
其具体的工作原理如下,当MOS管的栅极电压大于阈值电压时,通过柔性导体将电压传递给栅介电层P(VDF-HFP)-[EMIN]+[TFSI]-上,进而引起有机半导体材料P3HT中的自由电子或空穴向靠近栅介电层移动,形成导电通道,源漏之间形成导电电流Ids。当将压力F施加在数位板的压电MOS管单元上时,压电器件会在上下表面产生电势差,而上下表面直接连接在源漏电极上,随着电压的增大,Ids会随之增大。其中,Ids与栅极电压Vgs和源漏电压Vds都有关,当固定Vds之后,便可通过Ids来表征Vgs的变化。当固定Vgs之后,便可通过Ids来表征Vds的变化。此时,Ids与压力F之间的关系如下:
Ids=f(Vds)=f(g(F))
其中,f(·)和g(·)表示某一一一对应的函数关系。
进一步地:
其中,dmn为压电材料mn方向上的压电系数,t为压电材料的厚度,εrε0为压电材料的介电常数,A为压电材料上下表面的正对面积,F为mn方向上施加的压力。
基于压电提供漏极电压的压电MOS管的柔性阵列晶体管数位板的数据获取层一种可能的结构设计如图9所示。
其中,柔性数位板的空间分辨率由压电半导体晶体管单元的尺寸决定,压电半导体晶体管单元越小,空间分辨率越高;
具体地,对于特定的行列选择,比如(b,5),经过如图10所示的特定的电路设计,将电流变化转化为电压变化,便于后续数据采集,其具体的转换表达式如下:
Vb5=Ib5·R
此时,压阻阵列的灵敏度Ku为:
可以看出,柔性数位板的压力分级感应精度由压电半导体晶体管的性能决定。
基于阵列压电半导体晶体管传感器的数位板的数据获取层的工作流程如下:
由处理器控制行列扫描器扫描一遍整个阵列,获取每个压电提供漏极电压的压电MOS管单元的电流输出Iij,之后通过信息采集转换电路将电流信号转换为电压信号,具体地,对于图9中(b,5)位置的压电MOS单元,其输出电压为Ub5=Ib5·R。
进一步地,比如对于5×5的压电阵列,将连续输出U11,U12,U13,U14,U15,U21…,U51,U52,U53,U54,U55。这些电压输出经由软件层面的处理,可以得到在这一时刻内整个数位板的压力分布情况。

Claims (8)

1.一种基于阵列晶体管传感器的柔性数位板,其特征在于,包括顶封装层、数据获取层和底封装层;所述顶封装层和底封装层采用高分子有机聚合物;
所述数据获取层包括行扫描器、顶电极、柔性阵列晶体管层、列扫描器和底电极;所述顶电极和行扫描器电连接,位于柔性阵列晶体管层的上方,所述底电极和列扫描器电连接,位于柔性阵列晶体管层的下方,所述柔性阵列晶体管层采用阵列式晶体管传感器;所述阵列式晶体管传感器的晶体管单元采用压电MOS管;所述压电MOS管为压电提供栅极电压和/或压电提供漏极电压的压电MOS管;
所述压电提供栅极电压的压电MOS管由源极、漏极、有机半导体材料、介质材料、柔性导体及压电栅极组成;源极、漏极、有机半导体材料、介质材料及压电栅极位于柔性导体上,且压电栅极位于柔性导体的一端,源极、漏极、有机半导体材料、介质材料位于柔性导体的另一端,介质材料作为栅介电层,当将压力F施加在压电MOS管单元上时,压电栅极上会产生电压,作为MOS管的栅极电压,通过柔性导体将电压传递给栅介电层;
所述压电提供漏极电压的压电MOS管由源极、压电漏极、有机半导体材料、介质材料、柔性导体及栅极组成;源极、压电漏极、有机半导体材料、介质材料及栅极位于柔性导体上,且栅极位于柔性导体的一端,源极、压电漏极、有机半导体材料、介质材料位于柔性导体的另一端,介质材料作为栅介电层,当MOS管的栅极电压大于阈值电压时,通过柔性导体将电压传递给栅介电层;
列扫描器和行扫描器对整个晶体管阵列进行扫描,顶电极的第i根输出线和底电极的第j根输出线对应输出数位板二维平面位置(i,j)处晶体管单元的电流信息,通过信息采集转换电路转换为电压信息/>,进而转化为压力信息/>,1≤i≤N,1≤j≤M,N为顶电极的数目,M为底电极的数目。
2.根据权利要求1所述的一种基于阵列晶体管传感器的柔性数位板, 其特征在于,所述顶电极/底电极采用金属材料或者纳米导电材料。
3.根据权利要求2所述的一种基于阵列晶体管传感器的柔性数位板, 其特征在于,所述顶电极/底电极采用液体金属。
4. 根据权利要求1所述的一种基于阵列晶体管传感器的柔性数位板, 其特征在于:所述压电提供栅极电压的压电MOS管中所述漏极、源极和柔性导体采用PEDOT:PSS或者PEDOT:PSS-Mxene。
5. 根据权利要求1所述的一种基于阵列晶体管传感器的柔性数位板, 其特征在于:所述压电提供漏极电压的压电MOS管中所述栅极、源极和柔性导体采用PEDOT:PSS或者PEDOT:PSS-Mxene。
6. 根据权利要求1所述的一种基于阵列晶体管传感器的柔性数位板, 其特征在于:所述有机半导体材料采用P3HT。
7. 根据权利要求1所述的一种基于阵列晶体管传感器的柔性数位板, 其特征在于:所述介质材料采用P(VDF-HFP)-
8.根据权利要求1所述的一种基于阵列晶体管传感器的柔性数位板,其特征在于:所述压电栅极、压电漏极采用压电材料ZnO、PZT、钛酸钡或者PVDF。
CN202010474960.7A 2020-05-29 2020-05-29 基于阵列晶体管传感器的柔性数位板 Active CN111834517B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010474960.7A CN111834517B (zh) 2020-05-29 2020-05-29 基于阵列晶体管传感器的柔性数位板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010474960.7A CN111834517B (zh) 2020-05-29 2020-05-29 基于阵列晶体管传感器的柔性数位板

Publications (2)

Publication Number Publication Date
CN111834517A CN111834517A (zh) 2020-10-27
CN111834517B true CN111834517B (zh) 2023-09-26

Family

ID=72913754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010474960.7A Active CN111834517B (zh) 2020-05-29 2020-05-29 基于阵列晶体管传感器的柔性数位板

Country Status (1)

Country Link
CN (1) CN111834517B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114152357B (zh) * 2021-10-25 2022-11-25 北京科技大学 用于感应温度与触摸的柔性自驱动传感器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002259043A (ja) * 2002-02-22 2002-09-13 Sharp Corp データ処理装置
CN103579490A (zh) * 2012-07-18 2014-02-12 国家纳米科学中心 一种晶体管和晶体管阵列
CN103779272A (zh) * 2013-01-11 2014-05-07 国家纳米科学中心 晶体管阵列及其制备方法
CN104281287A (zh) * 2013-07-09 2015-01-14 瑞鼎科技股份有限公司 触控笔及其操作方法
CN105655480A (zh) * 2016-01-04 2016-06-08 京东方科技集团股份有限公司 一种压电薄膜传感器、压电薄膜传感器电路及制作方法
CN105808001A (zh) * 2016-03-10 2016-07-27 京东方科技集团股份有限公司 一种压感触摸屏及显示装置
CN109307564A (zh) * 2018-10-11 2019-02-05 华南理工大学 一种基于纳米压电材料的集成化柔性触觉传感器及其制备方法
CN110854263A (zh) * 2018-08-02 2020-02-28 北京纳米能源与系统研究所 自驱动压力应变传感器及其制备方法、电子皮肤

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002259043A (ja) * 2002-02-22 2002-09-13 Sharp Corp データ処理装置
CN103579490A (zh) * 2012-07-18 2014-02-12 国家纳米科学中心 一种晶体管和晶体管阵列
CN103779272A (zh) * 2013-01-11 2014-05-07 国家纳米科学中心 晶体管阵列及其制备方法
CN104281287A (zh) * 2013-07-09 2015-01-14 瑞鼎科技股份有限公司 触控笔及其操作方法
CN105655480A (zh) * 2016-01-04 2016-06-08 京东方科技集团股份有限公司 一种压电薄膜传感器、压电薄膜传感器电路及制作方法
CN105808001A (zh) * 2016-03-10 2016-07-27 京东方科技集团股份有限公司 一种压感触摸屏及显示装置
CN110854263A (zh) * 2018-08-02 2020-02-28 北京纳米能源与系统研究所 自驱动压力应变传感器及其制备方法、电子皮肤
CN109307564A (zh) * 2018-10-11 2019-02-05 华南理工大学 一种基于纳米压电材料的集成化柔性触觉传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Photo-Curable Ion-Enhanced Fluorinated Elastomers for Pressure-Sensitive Textiles;Guan-Ting Chen, et al.;Adv. Intell. Syst.;第2卷;全文 *

Also Published As

Publication number Publication date
CN111834517A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN110931522B (zh) 显示面板及其制作方法
US7825911B2 (en) Touch sensor, touch pad and input device
US9430103B2 (en) Method and device for sensing control point on capacitive-type panel
KR101493494B1 (ko) 터치 스크린 내에 지문 인식 영역을 포함하는 사용자 단말기
CN106997253B (zh) 集成触摸屏的显示装置
CN102402332B (zh) 用于触摸传感器的读出电路
KR101780296B1 (ko) 상호 커패시턴스 감지 어레이
US9465475B2 (en) Touch panel and method of forming the same
CN102915141A (zh) 触摸面板及其制造方法
US10297695B2 (en) Thin film transistor and method for detecting pressure by utilizing the same and touch apparatus
JP5160502B2 (ja) 静電容量方式タッチパネル
CN1826576A (zh) 便携式设备和用于便携式设备的触敏显示器
CN107346412A (zh) 感测手指的指纹图案的指纹感测装置、方法和电子装置
US9483150B2 (en) Touch sensor mechanism and manufacturing method thereof
KR20190108177A (ko) 터치-감지 및 비접촉 인터페이스들을 위한 스위치된 전극 용량 측정 장치
CN1538143A (zh) 静电电容检测装置
CN111834517B (zh) 基于阵列晶体管传感器的柔性数位板
EP2357550B1 (en) Position detecting device and method
Jiang et al. Transparent capacitive-type fingerprint sensing based on zinc oxide thin-film transistors
CN107735799A (zh) 具有自适应电力控制的指纹感测系统
US20200167030A1 (en) Method to mitigate coupling capacitance between touch sensing emitter and display cathode of a flexible oled display apparatus, and touch device therefor
CN111610887A (zh) 一种触控基板及其制备方法、显示基板及显示装置
US9891757B2 (en) Elastive sensing
CN109256407B (zh) 一种触摸感测显示面板
CN101739161A (zh) 触碰感测器及其触碰式显示面板与触碰式显示模块

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant