CN111823569A - 一种基于丝素蛋白3d打印的生物支架及其制备方法和应用 - Google Patents

一种基于丝素蛋白3d打印的生物支架及其制备方法和应用 Download PDF

Info

Publication number
CN111823569A
CN111823569A CN201910233798.7A CN201910233798A CN111823569A CN 111823569 A CN111823569 A CN 111823569A CN 201910233798 A CN201910233798 A CN 201910233798A CN 111823569 A CN111823569 A CN 111823569A
Authority
CN
China
Prior art keywords
silk fibroin
printing
hpmc
solution
scaffold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910233798.7A
Other languages
English (en)
Inventor
赵霞
钟农萍
董涛
邵正中
陈仲春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huashan Hospital of Fudan University
Original Assignee
Huashan Hospital of Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huashan Hospital of Fudan University filed Critical Huashan Hospital of Fudan University
Priority to CN201910233798.7A priority Critical patent/CN111823569A/zh
Publication of CN111823569A publication Critical patent/CN111823569A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/379Handling of additively manufactured objects, e.g. using robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2002/046Tracheae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pulmonology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明属组织工程和医用材料领域,涉及基于丝素蛋白3D打印的适应支气管黏膜上皮生长的生物支架及其制备方法。本发明采用丝素蛋白/羟丙基羧甲基纤维素作为支架材料,采用3D打印结合冷冻干燥技术,将支气管上皮细胞系(BEAS‑2B细胞)作为种子细胞,将BEAS‑2B细胞在多孔的3D打印的丝素蛋白/羟丙基羧甲基纤维素支架上生长,制成3D打印的丝素蛋白/羟丙基羧甲基纤维素支架。本发明的基于丝素蛋白3D打印的支架可用作气管缺损修补,能为组织工程化人工气管的研制提供有意义的参考。

Description

一种基于丝素蛋白3D打印的生物支架及其制备方法和应用
技术领域
本发明属组织工程和医用材料领域,涉及一种基于丝素蛋白3D打印的生物支架及其制备方法和应用,具体涉及基于丝素蛋白3D打印的适应支气管黏膜上皮生长的生物支架及其制备方法。
背景技术
气管是被覆有一层假复层纤毛柱状上皮的中空的圆柱状器官,内层的纤毛柱状上皮对粘液的清除和防止感染有重要作用。目前临床治疗时,采用多种类型的材料如硅橡胶假体、聚乙烯假体等修复气管缺损,但是由于较难促进气道上皮的再生易导致肉芽组织增生、感染等并发症,因此,对于研制能使上皮再生的支架是非常重要的。
此外,气管狭窄患者的病情各异,气管缺损的形状、长短、及患者体型不一,为支架的制作及缺损修复带来困难,同时以往的研究还发现,支架的结构如孔径大小、孔的形态、孔隙率等对不同组织细胞的粘附、增殖有不同的影响,但目前通过现有的工艺手段难以稳定的制备复杂或个体化的支架结构。随着3D打印技术的发展,其可创造出所需要的物体模型,并能精确的调控其结构,运用3D打印技术解决这些问题有特别的优势。
目前已知,丝素蛋白(SF)是一种天然的高分子材料,主要由甘氨酸、丙氨酸、丝氨酸等18种氨基酸所组成,与人体角质及胶原组成结构相似;所述丝素蛋白安全可靠,由于其具有较好的生物相容性、良好的机械性能及可调控的降解性能,当前广泛应用于医学的各个领域如骨组织工程、血管组织工程、药物传递、皮肤伤口敷料等;现有研究表明,与其他生物材料如胶原蛋白、壳聚糖等相比,丝素蛋白具有更优异的机械性能如显著的抗张力和韧性;目前制备丝素蛋白3D多孔支架的方法较多,传统常用的制备方法有盐粒子洗脱法、气泡法、冷冻干燥法、冻融法等,但是上述方法很难精确调控所述支架的孔结构。
随着3D打印技术的出现及不断发展,可通过3D打印技术打印出事先设计好的物体模型,相比传统的支架制备方法,3D打印通过计算机的控制,自下而上将材料逐层叠加,可精确的调控支架的结构及最终打印出我们想要的复杂结构。目前生物3D打印已广泛应用于组织工程和再生医学、移植和临床、药物筛选和高通量分析以及肿瘤等的研究;然而,并不是所有的材料都可用于3D打印,影响3D打印的因素较多,比如材料的表面张力、粘度、流变特点及交联机制等,都可影响3D打印;可用于生物3D打印的材料比较少,大多为人工合成的高分子材料如聚乳酸、聚己内酯、聚已醇酸,所述材料通过打印喷头后能快速的成型而维持其特定的形状,但是上述材料生物相容性较差。所述丝素蛋白等天然高分子材料,由于较难固化成型,较难进行3D打印,虽然目前有研究通过低温打印法或将丝素蛋白溶液与其它物质交联形成凝胶进行打印,但是打印过程不稳定、对打印机设备要求较高、或打印出的支架机械性能较弱,不能满足组织修复需要。
近年来有学者关注触变性凝胶的制备及特性;所述触变性凝胶是指当凝胶未受到剪切力作用时,凝胶保持固体状态,当进行注射时,由于凝胶受到剪切力,凝胶变为流动态并从注射器挤出,当挤出注射器后,凝胶又迅速恢复到固体状态;所述羟丙基羧甲基纤维素(Hydroxypropyl methyl cellulose,HPMC)是一种纤维素醚衍生物,无毒性,其与丝素蛋白通过混合加热后可形成触变性凝胶并具有较好的机械性能,迄今为止,国内外尚无用丝素蛋白/羟丙基羧甲基纤维进行3D打印支架的制备并运用于支气管上皮细胞生长的报道。
基于现有技术的现状,本申请的发明人拟提供新的生物支架,尤其是基于丝素蛋白3D打印的适应支气管黏膜上皮生长的生物支架。
发明内容
本发明的目的是提供一种基于丝素蛋白3D打印的生物支架,具体涉及一种基于丝素蛋白3D打印的适应支气管黏膜上皮生长的生物支架。
本发明的另一目的是提供所述基于丝素蛋白3D打印支架的制备方法;
本发明的进一步目的是提供所述基于丝素蛋白3D打印支架在支气管上皮细胞生长中的应用。
本发明采用丝素蛋白/羟丙基羧甲基纤维素(SF/HPMC)触变性凝胶为支架材料,采用3D打印技术,结合冷冻干燥技术,制成丝素蛋白/羟丙基羧甲基纤维素支架;其中,
所述丝素蛋白浓度为15-30wt%,
所述羟丙基羧甲基纤维素浓度为10wt%,
所述丝素蛋白与所述羟丙基羧甲基纤维的质量比为9:1;
本发明中,采用Na2CO3脱胶制备丝素蛋白溶液,所述的Na2CO3脱胶的丝素蛋白溶液与羟丙基羧甲基纤维素形成触变性凝胶,利用该凝胶的触变性进行3D打印;
所述丝素蛋白/羟丙基羧甲基纤维素支架,后期结合冷冻干燥法,使打印的丝的断面有微级别的孔结构;经过3D打印后,材料的生物学性状未改变,对细胞无毒性。
本发明利用丝素的良好生物相容性和促进粘膜细胞生长的作用,为呼吸道管腔的修复的生物支架提供必需的黏膜上皮。
本发明所述3D打印的丝素蛋白/羟丙基羧甲基纤维素支架可用作临床气管缺损修补,能为研究丝素蛋白在促进气管粘膜修复及临床重建气管缺损、减少重建气管术后并发症的作用提供有意义的参考。
本发明所述的3D打印的丝素蛋白/羟丙基羧甲基纤维素(SF/HPMC)支架通过下述方法和步骤制备:
(1)制备丝素蛋白溶液
a.将桑蚕茧置入Na2CO3(0.5wt%)溶液中煮沸45min,然后用去离子水反复清洗,然后将蚕丝放入40℃烘箱过夜烘干;
b.溶丝:将脱胶的蚕丝放入60℃的LiBr(9.3mol/L)溶液中,加热1h,然后用纱布过滤溶解的丝素蛋白溶液;
c.透析:将丝素蛋白溶液倒入透析袋中(截留分子量14,000Da),去离子水透析3天,每天换水3-4次,以去除溶液中的LiBr,然后将透析好的丝素蛋白溶液离心(8000rpm,8min),再用纱布过滤上清液;称重法标定所述丝素蛋白的浓度为4wt%;
d.浓缩:用PEG(PEG20000)浓缩丝素蛋白溶液,将丝素蛋白溶液浓缩至浓度约为33-34wt%;浓缩16-18h后,缓慢地收集透析袋中浓缩的丝蛋白溶液(防止因剪切作用使高浓度的丝素蛋白溶液变性);称重法标定此溶液然后放入4℃冰箱储存备用;
(2)制备HPMC溶液
配制10wt%HPMC水溶液,称取1g HPMC粉末,加入9g去离子水,用玻璃棒搅拌,使其充分溶解混匀,放入4℃冰箱储存备用;
(3)制备SF/HPMC凝胶
采用Na2CO3脱胶的方法制备丝素蛋白溶液(该方法得到的丝素蛋白溶液分子量较低,粘度较低;所述丝素蛋白的浓度在15-33wt%可成型,浓度越高,成型性越好);将上述浓缩的丝素蛋白溶液用去离子水稀释至30wt%,然后将10wt%HPMC加入30wt%丝素蛋白溶液中(HPMC与丝素蛋白的质量比为1:9),使混合液充分混匀,倒入3D打印机配备的料筒中,用活塞密封料筒,置入70℃烘箱加入1h;(对于3D打印的材料,适宜的材料粘度在3D打印中起重要作用,其一方面可使材料能从打印机喷头挤出,另一方面可使挤出的丝维持其形态;过高的粘度易使针头堵塞,使打印中断,太低的粘度使材料较难成型;)
(4)制备3D打印SF/HPMC支架
将预先设计好的输出格式为STL的模型文件导入3D打印机控制软件中;将装有30wt%SF/HPMC触变性凝胶的料筒置入打印机的喷头中,设置打印参数:针直径0.11-0.51mm、打印气压0.1-0.5MPa、打印速度15-60mm s-1;当凝胶从喷头中喷出时,形成棒状丝样物,打印机喷头在打印平台上沿XY轴方向移动,打印完成第一层(X轴)后,打印机喷头沿Y轴上移,打印第二层,以此反复逐层叠加,最终打印出设计好的模型;
其中,所述打印模型形状为圆形(直径15mm、厚度1.8mm、填充间距1.4mm);然后将打印好的30wt%SF/HPMC凝胶支架放入-20℃冰箱冷冻24h,再放入冻干机冻干2天,最后将冻干的30wt%SF/HPMC支架放入75%乙醇浸泡1h,诱导SF/HPMC支架进一步形成稳定的β折叠结构。
(5)人支气管上皮细胞系(BEAS-2B细胞)与3D打印的冻干的SF/HPMC支架的复合培养
将上述打印得到的30wt%SF/HPMC支架(直径15mm、厚度1.8mm)平均切为4等份,然后将支架置于75%的乙醇中浸泡过夜消毒,次日用PBS反复浸泡换水去除残存的乙醇,用无菌纱布将支架表面的水分吸干,接着将其置入48孔板中;
将20ul的细胞悬液(约含2×105个细胞)轻轻的滴在支架上,将含有细胞悬液的支架放入孵箱中预培养30min,然后每个孔板中再加入200ul的含10%FBS的DMEM培养基;分别培养1、3、5、7天后,定期扫描电镜及活/死细胞染色观察细胞生长情况。
结果显示:
1)制备3D打印多孔的SF/HPMC支架
3D打印SF/HPMC支架的制备过程如图1所示,通过混合和加热即可形成SF/HPMC触变性凝胶,该触变性凝胶从3D打印喷头喷出时能维持其形状,显示出较好的打印性,为了使打印出的每根丝里都有孔隙结构,当SF/HPMC凝胶支架打印完成时,将其进行后期的冻干处理,最后冻干的支架再浸泡乙醇交联,使其形成更稳定的β折叠结构;
2)3D打印的SF/HPMC支架的结构特点:
将3D打印的冻干的30wt%SF/HPMC支架行扫描电镜检查,结果如图2所示,所述支架的支架表面较光滑(图2B),支架大孔的直径为469±19um,在大孔壁周围可见一些微孔形成;所述支架的断面显示每根丝里都有微尺度的多孔结构(图2C-D);所述支架表面的接触角小于90°,提示支架表面具有较好的亲水性;此外,所述3D打印的SF/HPMC支架具有较好的孔隙率和吸水性,并有较好的机械性能;
3)3D打印的SF/HPMC支架上呼吸道上皮细胞生长扫描电镜观察:
3D打印的SF/HPMC支架上接种BEAS-2B细胞后,第1天时,细胞是分散、孤立的生长,随着培养时间的延长,细胞能在支架表面上增殖,第3天,细胞在支架上增殖,且形态变得扁平;第7天,细胞延着支架的丝生长并延展成片;
4)3D打印的SF/HPMC支架上呼吸道上皮细胞生长的活/死细胞观察:
活细胞:钙黄绿素染色(Calcein AM),证实细胞活力良好;
死细胞:PI染色,染死细胞。
本发明的实验结果显示,所述支气管上皮细胞系可以黏附在3D打印的SF/HPMC支架上,且生长良好,延展成片状覆盖于支架上,活细胞钙黄绿素染色显示支架上支气管上皮细胞系活性良好。
本发明采用3D打印的丝素蛋白/羟丙基羧甲基纤维素支架,将支气管上皮细胞系(BEAS-2B细胞)作为种子细胞,将BEAS-2B细胞在多孔的3D打印的丝素蛋白/羟丙基羧甲基纤维素支架上生长;具体而言,本发明制备新型的3D打印的SF/HPMC多孔支架,并在该支架上培养呼吸道上皮细胞系,形成呼吸道上皮-多孔丝素蛋白复合物,可覆盖于人工气管内壁,使人工气管内壁被覆呼吸道粘膜,更接近于正常气管结构本发明所述基于丝素蛋白3D打印的支架可用作气管缺损修补,能为组织工程化人工气管的研制提供有意义的参考,为进一步促进人工气管的临床应用提供了新方法。
附图说明
图1显示了本发明所述3D多孔的SF/HPMC支架通过3D打印的制备过程。
图2显示了本发明所述3D打印冻干的SF/HPMC支架的结构特点,其中,(A-D)3D打印的多孔的SF/HPMC支架的SEM图;(A)支架的表面形貌;(B)3D打印SF/HPMC丝的放大图;(C)支架的断面形貌,黑色箭头代表支架大孔的侧壁,白色箭头代表支架的断面形貌,其中碎黑点为孔;(D)代表C中白色虚线区域的放大图;(E)冻干的SF/HPMC支架的接触角。
图3为BEAS-2B细胞在3D打印冻干的SF/HPMC支架的表面培养1、3、7天后的扫描电子显微镜图。
图4为BEAS-2B细胞在3D打印冻干的SF/HPMC支架的表面培养1、3、5、7天后的活/死细胞染色后的激光共聚焦显微镜图像;其中,绿色代表钙黄绿素染色(染活细胞),红色代表PI染色(染死细胞)。
具体实施方式
实施例1制备丝素蛋白溶液及HPMC溶液
将桑蚕茧置入Na2CO3(0.5wt%)溶液中煮沸45min,然后用去离子水反复清洗;将蚕丝放入40℃烘箱过夜烘干;将脱胶的蚕丝放入60℃的LiBr(9.3mol/L)溶液中,加热1h;然后用纱布过滤溶解的丝素蛋白溶液;将丝素蛋白溶液倒入透析袋中(截留分子量14,000Da),去离子水透析3天,每天换水3-4次,以去除溶液中的LiBr;将透析好的丝素蛋白溶液离心(8000rpm,8min),然后再用纱布过滤上清液;称重法标定此丝素蛋白的浓度为4wt%;用约20-22%PEG(PEG20000)浓缩丝素蛋白溶液,将丝素蛋白溶液浓缩至浓度约为33-34wt%;浓缩16-18h后,缓慢地收集透析袋中浓缩的丝蛋白溶液,防止因剪切作用使高浓度的丝素蛋白溶液变性;称重法标定此溶液然后放入4℃冰箱储存备用;配制10wt%HPMC水溶液,称取1g HPMC粉末,加入9g去离子水,用玻璃棒搅拌,使其充分溶解混匀,放入4℃冰箱储存备用。
实施例2SF/HPMC凝胶的制备
对于3D打印的材料,适宜的材料粘度在3D打印中起重要作用,其一方面可使材料能从打印机喷头挤出,另一方面可使挤出的丝维持其形态;过高的粘度易使针头堵塞,使打印中断,太低的粘度使材料较难成型;本实施例采用Na2CO3脱胶的方法制备丝素蛋白溶液,该方法得到的丝素蛋白溶液分子量较低,粘度较低;所述丝素蛋白的浓度在15-33wt%可成型,浓度越高,成型性越好;
将上述浓缩的丝素蛋白溶液用去离子水稀释至30wt%(可根据实际情况将该溶液稀释至所需的浓度),然后将10wt%HPMC加入30wt%丝素蛋白溶液中(HPMC与丝素蛋白的质量比为1:9),使混合液充分混匀,然后倒入3D打印机配备的料筒中,用活塞密封料筒,然后置入70℃烘箱加入1h。
实施例3 3D打印SF/HPMC支架的制备
将预先设计好的输出格式为STL的模型文件导入3D打印机控制软件中;将装有30wt%SF/HPMC触变性凝胶的料筒置入打印机的喷头中,设置打印参数:针直径0.11-0.51mm、打印气压0.1-0.5MPa、打印速度15-60mm s-1;当凝胶从喷头中喷出时,形成棒状丝样物,打印机喷头在打印平台上沿XY轴方向移动,打印完成第一层后,打印机喷头沿Y轴上移,打印第二层,以此反复逐层叠加,最终打印出设计好的模型;然后将打印好的30wt%SF/HPMC凝胶支架放入-20℃冰箱冷冻24h,放入冻干机冻干2天,最后将冻干的30wt%SF/HPMC支架放入75%乙醇浸泡1h,诱导SF/HPMC支架进一步形成稳定的β折叠结构。
实施例4人支气管上皮细胞系(BEAS-2B细胞)与3D打印的冻干的SF/HPMC支架的复合培养
将上述打印的30wt%SF/HPMC支架(直径15mm、厚度1.8mm)平均切为4等份,将所述支架置于75%的乙醇中浸泡过夜消毒,用PBS反复浸泡换水去除残存的乙醇,用无菌纱布将支架表面的水分吸干,然后将其置入48孔板中。将20ul的细胞悬液(约含2×105个细胞)轻轻的滴在支架上,然后将含有细胞悬液的支架放入孵箱中预培养30min,然后每个孔板中再加入200ul的含10%FBS的DMEM培养基;分别培养1、3、5、7天后,定期扫描电镜及活/死细胞染色观察细胞生长情况。

Claims (7)

1.一种基于丝素蛋白3D打印的生物支架,其特征在于,以丝素蛋白/羟丙基羧甲基纤维素(SF/HPMC)触变性凝胶为支架材料,采用3D打印技术结合冷冻干燥法制成丝素蛋白/羟丙基羧甲基纤维素支架。
2.按权利要求1所述基于丝素蛋白3D打印的生物支架,其特征在于,所述的丝素蛋白浓度为15-30wt%。
3.按权利要求1所述基于丝素蛋白3D打印的生物支架,其特征在于,所述的羟丙基羧甲基纤维素浓度为10wt%。
4.按权利要求1所述基于丝素蛋白3D打印的生物支架,其特征在于,所述的丝素蛋白与所述羟丙基羧甲基纤维的质量比为9:1。
5.按权利要求1所述基于丝素蛋白3D打印的生物支架,其特征在于,采用Na2CO3脱胶制备丝素蛋白溶液,所述Na2CO3脱胶的丝素蛋白溶液与羟丙基羧甲基纤维素形成触变性凝胶。
6.权利要求1所述基于丝素蛋白3D打印的生物支架的制备方法,其特征在于,其包括步骤,
(1)制备丝素蛋白溶液
a.将桑蚕茧置入0.5wt%Na2CO3溶液中煮沸,然后用去离子水反复清洗,将蚕丝放入40℃烘箱过夜烘干;
b.溶丝:将脱胶的蚕丝放入60℃的LiBr溶液中,加热后,纱布过滤溶解的丝素蛋白溶液;
c.透析:将丝素蛋白溶液倒入截留分子量14,000Da的透析袋中,去离子水透析,每天换水去除溶液中的LiBr,然后将透析的丝素蛋白溶液离心,再用纱布过滤上清液;称重法标定所述丝素蛋白的浓度为4wt%;
d.浓缩:采用PEG(PEG20000)浓缩丝素蛋白溶液,将丝素蛋白溶液浓缩至浓度为33-34wt%;浓缩后,收集透析袋中浓缩的丝蛋白溶液;称重法标定后放入4℃冰箱储存备用;
(2)制备HPMC溶液
配制10wt%HPMC水溶液,称取HPMC粉末加入去离子水,搅拌溶解混匀,放入4℃冰箱储存备用;
(3)制备SF/HPMC凝胶
采用Na2CO3脱胶的法制备丝素蛋白溶液;将浓缩的丝素蛋白溶液用去离子水稀释至30wt%,将10wt%HPMC加入所述丝素蛋白溶液,其中HPMC与丝素蛋白的质量比为1:9,使混合液混匀,倒入3D打印机配备的料筒中,活塞密封料筒,置入70℃烘箱;
(4)制备3D打印SF/HPMC支架
将设计的输出格式为STL的模型文件导入3D打印机控制软件中;将装有30wt%SF/HPMC触变性凝胶的料筒置入打印机的喷头中,设置打印参数:针直径0.11-0.51mm、打印气压0.1-0.5MPa、打印速度15-60mm s-1;当凝胶从喷头中喷出时,形成棒状丝样物,打印机喷头在打印平台上沿XY轴方向移动,完成第一层X轴后,打印机喷头沿Y轴上移打印第二层,反复逐层叠加,最终打印出设计的模型。
7.按权利要求6所述基于丝素蛋白3D打印的生物支架的制备方法,其特征在于,所述步骤(4)中,打印模型形状为圆形,直径15mm、厚度1.8mm、填充间距1.4mm;将打印的30wt%SF/HPMC凝胶支架放入-20℃冰箱冷冻24h,再放入冻干机冻干2天,最后将冻干的30wt%SF/HPMC支架放入75%乙醇浸泡1h,诱导SF/HPMC支架形成稳定的β折叠结构。
CN201910233798.7A 2019-03-26 2019-03-26 一种基于丝素蛋白3d打印的生物支架及其制备方法和应用 Pending CN111823569A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910233798.7A CN111823569A (zh) 2019-03-26 2019-03-26 一种基于丝素蛋白3d打印的生物支架及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910233798.7A CN111823569A (zh) 2019-03-26 2019-03-26 一种基于丝素蛋白3d打印的生物支架及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111823569A true CN111823569A (zh) 2020-10-27

Family

ID=72914177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910233798.7A Pending CN111823569A (zh) 2019-03-26 2019-03-26 一种基于丝素蛋白3d打印的生物支架及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111823569A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113274554A (zh) * 2021-05-14 2021-08-20 清华大学 一种基于凝胶微球的3d打印生物墨水及其应用
CN113290844A (zh) * 2021-05-14 2021-08-24 清华大学 一种构建复杂异质组织/器官的多级悬浮打印方法
CN114633468A (zh) * 2020-12-16 2022-06-17 中国科学院苏州纳米技术与纳米仿生研究所 一种悬浮3d打印制备立体芳纶气凝胶的方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106178106A (zh) * 2016-07-19 2016-12-07 湖北工业大学 3d打印海藻酸钠/聚乙烯醇全物理交联双网络水凝胶支架的方法
CN106901996A (zh) * 2017-02-20 2017-06-30 苏州丝美特生物技术有限公司 一种隐形且可揭的丝素蛋白护理膜基底及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106178106A (zh) * 2016-07-19 2016-12-07 湖北工业大学 3d打印海藻酸钠/聚乙烯醇全物理交联双网络水凝胶支架的方法
CN106901996A (zh) * 2017-02-20 2017-06-30 苏州丝美特生物技术有限公司 一种隐形且可揭的丝素蛋白护理膜基底及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114633468A (zh) * 2020-12-16 2022-06-17 中国科学院苏州纳米技术与纳米仿生研究所 一种悬浮3d打印制备立体芳纶气凝胶的方法及应用
CN114633468B (zh) * 2020-12-16 2024-02-27 中国科学院苏州纳米技术与纳米仿生研究所 一种悬浮3d打印制备立体芳纶气凝胶的方法及应用
CN113274554A (zh) * 2021-05-14 2021-08-20 清华大学 一种基于凝胶微球的3d打印生物墨水及其应用
CN113290844A (zh) * 2021-05-14 2021-08-24 清华大学 一种构建复杂异质组织/器官的多级悬浮打印方法
WO2022237002A1 (zh) * 2021-05-14 2022-11-17 清华大学 一种基于凝胶微球的3d打印生物墨水及其应用

Similar Documents

Publication Publication Date Title
US10201410B2 (en) High-strength biological scaffold material and preparation method thereof
CN106729980B (zh) 一种用于外周神经修复的仿生神经移植物及其制备方法
US10434216B2 (en) Ultra-thin film silk fibroin/collagen composite implant and manufacturing method therefor
CN107998450B (zh) 人工皮肤及人工皮肤的制备方法和应用
CN103877617B (zh) 可注射蚕丝素蛋白-海藻酸盐双交联水凝胶及其制备方法和使用方法
Li et al. Silk fibroin scaffolds with a micro-/nano-fibrous architecture for dermal regeneration
CN107213529B (zh) 一种用于提高成骨细胞粘附和成骨性能的可降解医用高分子三维材料的制备方法
Li et al. Recent progress in tissue engineering and regenerative medicine
CN111823569A (zh) 一种基于丝素蛋白3d打印的生物支架及其制备方法和应用
AU2020403707A1 (en) Recombinant collagen and recombinant collagen sponge material
JP2007515391A (ja) 濃縮された水性シルクフィブロイン溶液およびそれらの使用
AU2018286644B2 (en) Scaffolds for cell culture and tissue regeneration
CN102319449A (zh) 一种基于聚乳酸-羟基乙酸共聚物的生长因子梯度释放微球支架及其制备方法和应用
CN106798948A (zh) 一种调控生物膜表面拓扑结构以促进细胞爬行的方法
WO2021012677A1 (zh) 一种仿生的预脉管化材料及其制备方法和应用
CN111494712B (zh) 一种融合有nt3的丝素蛋白神经移植物的制备方法
CN111265721B (zh) 静电纺不同直径双层人工血管的制备方法
CN114887116B (zh) 一种负载间充质干细胞外基质的3d打印骨缺损修复支架及其制备方法
CN109395162B (zh) 一种天然蛋白基仿生结构骨支架的制备方法
Arnaud Bopenga Bopenga et al. Characterization of extracts from the bark of the gabon hazel tree (Coula edulis baill) for antioxidant, antifungal and anti-termite products
CN110624133A (zh) 一种用于神经修复的神经基质导管及其制备方法
Wu et al. A novel 3D printed type II silk fibroin/polycaprolactone mesh for the treatment of pelvic organ prolapse
CN103505760B (zh) 呼吸道上皮-多孔丝素蛋白复合物及其制备方法和应用
CN117363563A (zh) 基于丝素蛋白-羟基磷灰石支架的软骨细胞复合培养方法和应用
Kuevda et al. Application of recellularized non-woven materials from collagen-enriched polylactide for creation of tissue-engineered diaphragm constructs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201027