CN111819549A - 从易失性到非易失性存储器的备份操作 - Google Patents

从易失性到非易失性存储器的备份操作 Download PDF

Info

Publication number
CN111819549A
CN111819549A CN201980017288.4A CN201980017288A CN111819549A CN 111819549 A CN111819549 A CN 111819549A CN 201980017288 A CN201980017288 A CN 201980017288A CN 111819549 A CN111819549 A CN 111819549A
Authority
CN
China
Prior art keywords
memory system
backup operation
memory
self
host
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980017288.4A
Other languages
English (en)
Inventor
埃里克·R·福克斯
加里·R·范西克尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN111819549A publication Critical patent/CN111819549A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1446Point-in-time backing up or restoration of persistent data
    • G06F11/1458Management of the backup or restore process
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3065Monitoring arrangements determined by the means or processing involved in reporting the monitored data
    • G06F11/3072Monitoring arrangements determined by the means or processing involved in reporting the monitored data where the reporting involves data filtering, e.g. pattern matching, time or event triggered, adaptive or policy-based reporting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0223User address space allocation, e.g. contiguous or non contiguous base addressing
    • G06F12/023Free address space management
    • G06F12/0238Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0223User address space allocation, e.g. contiguous or non contiguous base addressing
    • G06F12/023Free address space management
    • G06F12/0238Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
    • G06F12/0246Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory in block erasable memory, e.g. flash memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7203Temporary buffering, e.g. using volatile buffer or dedicated buffer blocks

Abstract

本文中揭示响应于触发事件在存储器系统上执行备份操作的装置及技术。所述存储器系统可包括处理装置、易失性存储器单元群组及非易失性存储器单元群组。所述处理装置可经配置以响应于触发事件执行内部备份操作,包括:响应于所述触发事件确定所述存储器系统是否在自刷新模式中;响应于确定所述存储器系统并不在自刷新模式中,在一时间段之后在未使内部备份操作失败的情况下重新确定所述存储器系统是否在自刷新模式中;及响应于重新确定所述存储器系统是在自刷新模式中,执行包括将存储于所述易失性存储器单元群组上的数据的至少一部分保存到所述非易失性存储器单元群组的所述内部备份操作。

Description

从易失性到非易失性存储器的备份操作
优先权主张
本申请案主张2018年9月6日申请的序列号为16/123,512的美国申请案的优先权的权益,所述申请案主张在2018年2月8日申请的标题为“自刷新重试(SELF REFRESHRETRY)”的序列号为62/628,089的美国临时专利申请案的权益或优先权,所述申请案中的每一者的全部内容以引用的方式并入本文中。
技术领域
本发明的实施例大体上涉及存储器系统,且更明确来说涉及从易失性到非易失性存储器(NVM)的备份操作。
背景技术
存储器子系统可为存储系统(例如固态驱动器(SSD)),且可包含存储数据的一或多个存储器组件。举例来说,所述存储器组件可为非易失性存储器组件及易失性存储器组件。一般来说,主机系统可利用存储器子系统以将数据存储于存储器组件处及从存储器组件检索数据。
易失性存储器可需要电力来维持数据且包含随机存取存储器(RAM)、动态随机存取存储器(DRAM)及同步动态随机存取存储器(SDRAM)等等。非易失性存储器可在未供电时通过留存存储数据而提供永久性数据且可包含NAND闪存、NOR闪存、只读存储器(ROM)、电可擦除可编程ROM(EEPROM)、可擦除可编程ROM(EPROM)及电阻可变存储器(例如相变随机存取存储器(PCRAM))、电阻性随机存取存储器(RRAM)及磁阻性随机存取存储器(MRAM)、交叉点存储器阵列等等。
存储器单元通常布置成矩阵或阵列。多个矩阵或阵列可组合成存储器装置,且多个装置可经组合以形成存储器系统的存储卷,例如固态驱动器(SSD)、通用快闪存储(UFSTM)装置、多媒体卡(MMC)固态存储装置、嵌入式MMC装置(eMMCTM)等。
存储器系统可包含执行逻辑功能以操作存储器装置或与外部系统介接的一或多个处理器或其它存储器控制器。存储器矩阵或阵列可包含组织成数个物理页的数个存储器单元块。存储器系统可从主机接收与存储器操作相关联的命令,所述存储器操作例如在存储器装置与所述主机之间传送数据(例如,用户数据及相关联完整性数据,例如错误数据及地址数据等)的读取或写入操作,从存储器装置擦除数据的擦除操作或执行一或多个其它存储器操作。
附图说明
将从下文给出的详细描述及本发明的各个实施例的附图更充分理解本发明。
图1说明根据本发明的一些实例的非易失性双列直插存储器模块(NVDIMM)装置的实例。
图2说明使用存储器系统的处理装置对所述存储器系统执行内部备份操作的实例方法。
图3说明根据本发明的一些实例的使用定时器触发存储器系统中的灾难性保存操作(CSAVE)的实例方法。
图4说明本发明的实施例可在其中操作的实例计算机系统。
具体实施方式
本发明的方面涉及执行从包含存储器子系统的存储器系统的易失性存储器到非易失性存储器(NVM)的备份操作。存储器子系统在本文中也被称为“存储器装置”。存储器子系统的实例是存储系统,例如固态驱动器(SSD)及非易失性双列直插存储器模块(NVDIMM)。在一些实施例中,所述存储器子系统是具有易失性存储器子系统及非易失性存储器子系统两者的混合存储器/存储子系统。一般来说,主机系统可利用包含一或多个存储器组件的存储器子系统。所述主机系统可提供待存储于所述存储器子系统处的数据且可请求将从所述存储器子系统检索的数据。
存储器系统可包含单个模块(例如单列直插存储器模块或双列直插存储器模块(SIMM或DIMM))上的多个存储器装置。主存储器的一种形式包含NVDIMM。NVDIMM是以易失性存储器速度操作但保持非易失性存储器的电力损失数据保持功能性的存储器子系统。在某些实例中,NVDIMM可包含存储器控制器、易失性存储器(例如,同步动态随机存取存储器(SDRAM))、非易失性存储器(例如,NAND闪存)及备份电源,备份电源通常为经配置以例如在主电力损失(例如,来自主机的电力损失)之后提供备份电力到存储器模块的电池或电容器。在实例中,NVDIMM的易失性存储器及非易失性存储器中的每一者可包含多个存储器组件(例如,数个裸片或逻辑单元(LUN)),每一存储器组件包含装置逻辑或与NVDIMM的存储器控制器分离的装置控制器或处理器。NVDIMM可在正常操作期间使用易失性存储器。在主电力损失(例如,主机电力损失)之后,或响应于从主机接收的指令,NVDIMM可执行内部备份或灾难性保存操作(CSAVE),从而将易失性存储器的内容或内容的一部分写入到非易失性存储器,且在某些实例中在主电力损失期间使用备份电源管理非易失性存储器。
电子装置工程联合委员会(JEDEC)已颁布与DIMM有关的若干标准,包含双倍数据速率(DDR)存储器接口及使用DDR接口的NVDIMM。NVDIMM装置包含许多实施方案,其包含NVDIMM-N、NVDIMM-F、NVDIMM-P、NVDIMM-X或一或多个其它NVDIMM装置。举例来说,NVDIMM-N是其中除了DRAM或SRAM易失性存储器之外DIMM还包含快闪存储装置及存储器控制器的JEDEC标准系列。用于字节可寻址能量备份接口(BAEBI)的JEDEC标准245B.01(JESD245B.05)提供许多实施方案及交互细节。在实例中,本文中所揭示的NVDIMM可包含NVDIMM-N装置,或一或多个其它NVDIMM实施方案。
NVDIMM的操作可通过存储器控制器响应于来自主机的指令或一或多个其它事件而控制。存储器控制器可包含经布置或编程以管理模块的DRAM或SDRAM易失性部分与快闪非易失性部分(例如,备份DRAM或SDRAM存储器的存储装置)之间的数据传送的专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它处理电路。主机可通过一或多个通信接口与NVDIMM通信,例如存储器控制器与主机之间的分组交换集成电路间(I2C、I2C或IIC)通信总线、用于NVDIMM与主机之间的存储器操作的多引脚串行通信总线(例如,DDR版本4(DDR4)存储器接口等),或一或多个其它通信接口等。
I2C通信可提供直接读取或写入到存储器控制器中的寄存器或以其它方式传递到所述存储器控制器的灵活、有效解决方案。然而,虽然易失性存储器装置中的典型串行通信接口(例如DDR4或其它多引脚串行通信接口)的处理量可为每秒1,600兆位到3,200兆位(Mbit)(或更多),但I2C通信更慢,举例来说,大约每秒100千位到400千位(Kbit)。
可使用来自主机的命令(例如从主机到存储器控制器的I2C命令)或串行通信接口(例如,DDR4通信总线等)的物理信号线(例如,SAVE_n线)上的信号等触发CSAVE操作。当NVDIMM接收CSAVE操作时,可设置CSAVE_INFO寄存器中的位以指示触发源(例如,SAVE_n或I2C命令)。所述位可包含START_CSAVE位,且CSAVE_INFO寄存器可包含NVDIMM_FUNC_CMD寄存器。在实例中,寄存器可用于指示触发源。举例来说,CSAVE_TRIGGER_SUPPORT寄存器中的SAVE_n触发位可用于指示已从串行通信接口(例如,DDR4)上的SAVE_n触发源触发CSAVE操作。
在重新起动NVDIMM或包含NVDIMM的系统之后(例如在主电力损失之后),通信接口(例如主机与NVDIMM之间的串行、多引脚通信总线(例如,DDR4等))中的一或多者可在已知状态中。在其中主机在控制的下的CSAVE情境中(例如在提供I2C或SAVE_n命令以执行CSAVE操作时),主机可将通信接口置于所需状态中。然而,在其它实例中(例如在主机或存储器控制器变得无响应时),通信接口的状态可为(例如,对NVDIMM来说)未知。特定标准要求,如果通信接口的状态并不在特定已知状态中,那么NVDIMM无法进行CSAVE操作。举例来说,如果主机未将存储器控制器置于自刷新模式中,或存储器控制器、易失性存储器或通信接口另外未在自刷新模式中(例如,在DRAM或DDR4通信接口空闲的情况下),那么传统CSAVE操作将失败。
本发明者尤其已认识到,当主机冻结、锁定或以其它方式变得无响应或偏离正常操作时(即使在主机电力存在且有效时),且在某些实例中当通信接口的状态已知或未知时(例如,在存储器控制器、易失性存储器或通信接口中的一或多者并不在自刷新模式中时),将存储于易失性存储器中的数据的至少一部分(例如,关键数据、一些数据或所有数据等)备份、写入或保存到非易失性存储器可为有利的。在本发明的实例实施例中,在复原或恢复情形中,针对恢复或诊断,一些数据可比无数据更好。此外,如果存储器系统或易失性存储器并不在自刷新模式中(例如,在一时间段之后数次再检查自刷新模式之后),那么仍可执行CSAVE操作。
此外,由于通信总线的状态在此备份、写入或保存发生时可能未知,所以可使用一或多个寄存器以向主机或用户表明此备份、写入或保存发生,为何发生此备份、写入或保存,或NVDIMM(例如,在通信总线在未知状态中时,在通信总线在不利于典型CSAVE功能性的状态中时,或在未启用NVDIMM的自刷新模式时等)具有执行此备份、写入或保存的能力。
在实例中,定时器(例如,监视定时器)可在主机与存储器控制器之间实施,例如在存储器控制器中的定时器寄存器中。在实例中,所述定时器寄存器可包含HOST_TIMEOUT_CSAVE_TIMEOUT寄存器,例如,在页15/偏移0x80(P15:0x80)处。定时器寄存器可为具有读取/写入存取的8位寄存器[7:0]。定时器可通过主机或存储器控制器中的一或两者设置、编程、起始、复位或以其它方式控制。在实例中,定时器可通过主机控制。在其它实例中,存储器控制器可通过其它主机动作或指令推断主机控制。
图1说明包含主机105及NVDIMM 110的实例系统100。主机105可包含例如在电子(或主机)装置中的主机处理器、中央处理单元或一或多个其它处理器。NVDIMM 110包含控制器125(例如,存储器控制器、处理装置等)、易失性存储部分130(例如,RAM)、非易失性存储部分145(例如,NAND)、第一接口120(例如,I2C总线)及第二接口115(例如,DDR接口)。在实例中,NVDIMM 110可符合JEDEC NVDIMM-N标准系列。在其它实例中,NVDIMM 110可符合一或多个其它NVDIMM标准。
易失性部分130(例如,易失性存储器阵列、存储器单元群组等)可包含经由第二接口115存储用于主机105的读取或写入操作的数据的一或多个DRAM或SRAM集成电路(IC)。非易失性存储部分145(例如,非易失性存储器阵列、存储器单元群组等)可以不需要电力来维持状态的任何存储技术实施。实例非易失性存储技术可包含NAND闪存、NOR闪存、存储类存储器(例如,相变存储器)、磁性存储装置及类似者。
主机105可使用第一接口120与控制器125通信以执行NVDIMM 110内的各种操作,例如执行CSAVE,或启用或停用控制器125的额外功能性,例如基于定时器的CSAVE触发器,如本文中所描述。在实例中,主机105或控制器125中的一或多者可包含经配置以执行或控制本文中所描述的备份操作(例如,CSAVE等)中的一或多者的备份组件155(例如,电路、处理装置、专用逻辑、可编程逻辑、固件等)。控制器125可实施为电子硬件,例如FPGA、ASIC、数字信号处理器(DSP)或其它处理电路,且可执行所述电子硬件上的指令(例如,固件)以执行操作。
第一接口120可包含I2C总线。主机105可使用I2C总线及I2C通信以设置控制器125中的寄存器。举例来说,主机105可设置特定寄存器使得所述寄存器中的特定位从零改变成一。当此位值变化对应于命令的执行时,控制器125可响应于位修改而执行所述命令。如果命令具有自变量,那么主机105可设置对应于所述自变量的寄存器。
在实例中,控制器125可经配置以(例如,在控制器125的解码器135处)例如经由第一接口120接收经编码消息。在第一接口120根据I2C标准系列操作的情况下,消息编码可为所述消息的I2C市场化。解码器135可经布置以获得包含属性的经解码消息。在实例中,所述属性可为命令的名称。命令名称可在分组化消息的有效负载中。在实例中,属性是地址。地址可在分组化消息的标头中。在实例中,所述地址可包含页指定符。在实例中,地址可包含页指定符及偏移两者。
解码器135或控制器125可经布置以比较属性与对应于存储器封装的广告状态的属性集以确定所述属性是在所述属性集中。此处,广告状态意味着可在NVDIMM 110外部观察的NVDIMM 110的状态。举例来说,可通过主机105读取的状态位(例如,“忙碌位”)或寄存器是广告状态。在实例中,所述广告状态指示控制器125是否存在进行中的操作。在实例中,广告状态指示进行中的操作的类型。
属性与属性集的比较可以若干方式实施。在实例中,属性集是存储于表140或其它数据结构中。此处,解码器135或控制器125可经布置以将属性与表140中的记录匹配以确定属性是在属性集中。如果不存在匹配,那么属性并不对应于NVDIMM 110的广告状态。在实例中,属性集可通过JEDEC BAEBI标准系列(例如JESD245B.01标准)定义。
NVDIMM 110可任选地包含与主机电力分离的电源150。电源150可并入到NVDIMM封装中,或连接到NVDIMM封装(如所说明)。在主机电力出现故障的情况下,电源150可提供电力以使控制器125能够将数据从易失性部分130移动到非易失性部分145。
在本发明的实例实施例中,定时器可在每次电力开启时以0秒起动。到定时器寄存器的非零写入可起动(或如果已起动,那么复位或重新起动)定时器到所述非零写入的值。在实例中,值的单位可以秒计。在1秒粒度下,一个8位I2C寄存器可提供定时器,其从1秒设置到255秒(4.25分钟),递增计数或递减计数(例如,每秒一次等)。在实例中,到定时器寄存器的零的写入可使定时器停止。在某些实例中,定时器寄存器的读取可复位定时器,或将定时器返回到先前经写入值。
在实例中,一旦通过主机设置或响应于主机命令或其它指令,存储器控制器可例如每秒一次递减定时器寄存器。当倒数到达0时,存储器控制器可起始NVDIMM上的CSAVE。
在实例中,HOST_TIMEOUT_CSAVE_TIMEOUT寄存器可具有以下属性:
定义 存取 强制 永久性 默认
[7:0]:超时 RW N/A N 0
表1:HOST_TIMEOUT_CSAVE_TIMEOUT属性
在本文中的属性表中,“存取”是主机存取性质(读取/写入(RW)、只读(RO)或只写(WO)),“强制”是强制性的(Y或N);“永久”是通过电力循环持续(Y或N);且“默认”是寄存器的默认值。
主机或存储器控制器中的一或两者可经配置以在定时器期满之前(例如,取决于定时器是否递增计数或递减计数等,在定时器上的时间期满之前,或在时间到达经设置、编程或默认时间之前)复位定时器。如果定时器在未经复位或未通过主机或存储器控制器以其它方式停用的情况下期满,那么NVDIMM可执行CSAVE操作,将存储于易失性存储器中的数据的至少一部分保存到非易失性存储器。在实例中,定时器寄存器可具有读取/写入能力,且可从内部时钟或从主机接收的一或多个其它指令或时钟更新。
在某些实例中,使用寄存器中的一或多个值,NVDIMM执行此定时器功能性的能力可传递到主机或用户且在此超时发生时,响应于定时器的期满发生备份、写入或保存(例如,CSAVE)。在实例中,定时器功能性可使用第一寄存器(例如,供应商特定、支持寄存器等)中的值传递到主机或用户,且响应于定时器的期满而发生的备份、写入或保存(例如,CSAVE)可使用第二寄存器(例如,供应商特定、信息寄存器等)中的值传递到主机或用户。
在实例中,第一寄存器(例如,支持寄存器)可包含VENDOR_CSAVE_TRIGGER_SUPPORT寄存器(例如,在页0/偏移0x16(P0:0x16)处)。在某些实例中,第一寄存器可指示存储器系统支持哪些CSAVE触发器。第一寄存器并不与CSAVE_TRIGGER_SUPPORT寄存器的内容重复,但对其进行补充,从而提供超出由通过JEDEC定义的CSAVE_TRIGGER_SUPPORT寄存器所提供的进一步CSAVE触发器支持的指示。在实例中,在第一寄存器中设置的位可指示存储器系统支持对应触发器(例如,监视定时器CSAVE触发器等)或对应触发器经启用,而在第一寄存器中清除的位可指示存储器系统并不支持对应寄存器或对应触发经停用。在其它实例中,第一位可指示存储器系统能够执行对应触发器,且第二位可启用或停用对应触发器。
在实例中,第二寄存器(例如,信息寄存器)可包含VENDOR_CSAVE_INFO寄存器(例如,在页15/偏移0x82(P15:0x82)处)。第二寄存器并不与CSAVE_INFO寄存器重复,但对其进行补充,从而提供响应于第一寄存器中指示的功能触发最后CSAVE事件的进一步指示。在实例中,如果第一寄存器定义多个触发器,那么第二寄存器可提供哪一触发器导致CSAVE事件的指示。如果CSAVE事件是由不同于第一寄存器中所提供的指示的事件触发(例如,如果CSAVE事件是由I2C或SAVE_n命令触发),那么第二寄存器将提供第一寄存器中所定义的功能性并未触发先前CSAVE事件的指示。举例来说,如果设置第二寄存器的位(例如,位3),那么通过第一寄存器中所定义的功能性触发最后CSAVE操作。在实例中,一旦通过不同指令或事件触发CSAVE事件,便可清除位。
在实例中,第一及第二寄存器可为8位寄存器[7:0],且可包含供应商特定寄存器,其位置可经保留或在标准(例如,JEDEC标准)中定义为供应商特定寄存器,但其功能并不在此标准中定义。在其它实例中,支持及信息寄存器的功能可使用单个寄存器中的不同位或使用分离寄存器中的特定位实施。
在实例中,VENDOR_CSAVE_TRIGGER_SUPPORT寄存器及VENDOR_CSAVE_INFO寄存器可具有以下属性:
Figure BDA0002666638930000071
Figure BDA0002666638930000081
表2:VENDOR_CSAVE_TRIGGER_SUPPORT属性
Figure BDA0002666638930000082
表3:VENDOR_CSAVE_INFO属性
当CSAVE操作确实发生时,存储器系统(例如,NVDIMM)可使易失性存储器(例如,DRAM)在逻辑上(如果不是在物理上)与主机断开连接。举例来说,在自刷新模式中,存储器控制器可停用易失性存储器的输入缓冲器(例如,只有时钟及复位信号等除外)。在自刷新模式中,在维持电力时,甚至在易失性存储器中的一些或所有数据(例如,关键数据、一些数据或所有数据等)已经备份、写入或保存到非易失性存储器之后,易失性存储器可维持其数据。
在实例中,当易失性存储器(例如,DRAM)处于自刷新模式中时,DDR CKE0/CKE1信号经确证为低。此类信号是作为IPHI_NVCM_MISC_STATUS寄存器中的位[5:4]呈现。因此,在某些实例中,此类位可提供易失性存储器的自刷新状态。
图2说明使用存储器系统的处理装置对所述存储器系统执行内部备份操作的实例方法200。所述内部备份操作可包含响应于触发事件且独立于主机特定事件而将存储于存储器系统的易失性存储器单元群组上的数据的至少一部分保存到存储器系统的非易失性存储器单元群组。
在201,可检测触发事件。所述触发事件可包含实施于存储器系统上的定时器的期满。主机特定事件可包含来自主机的命令(例如,保存命令、自刷新模式命令等)。在其它实例中,主机特定事件可包含主机电力损失、无效主机电力(例如,主机电力低于维持主机或存储器系统操作的阈值等)。在实例中,触发事件可包含在以下中的一或多者时定时器的期满:主机电力有效(例如,高于阈值等);处理装置并不在自刷新模式中;或主机与存储器系统之间的通信总线的状态(例如,对存储器系统来说)未知。
在202,如果未检测触发事件,那么过程可返回到201,且存储器系统可监测或检测触发事件。在202,如果检测所述触发事件,那么在203,存储器系统可确定存储器系统是否在自刷新模式中。在204,如果存储器系统并不在自刷新模式中,那么存储器系统可在某些实例中在一时间段之后(例如,在若干时钟循环、毫秒、秒等之后)重新确定存储器系统是否在自刷新模式中。在205之后,过程可返回到204,且如果存储器系统并不在自刷新模式中,那么过程返回到205。在存储器系统已多次(例如,5次、10次、20次等)重新确定存储器系统并不在自刷新模式中之后,或在一时间段(例如,数个时钟循环、几十或几百毫秒、秒等)之后,存储器系统可使内部备份操作失败。
如果在204存储器系统是在自刷新模式中,那么可执行备份操作。在某些实例中,如果存储器系统并不在自刷新模式中,那么现有备份操作失败。相比来说,重新确定存储器系统是否在自刷新模式中可为存储器系统或主机提供在使备份操作失败之前将存储器系统置于自刷新模式中的时间。
在其它实例中,即使存储器系统并不在自刷新模式中,存储器系统仍可存储可通过主机读取的存储器系统并不在自刷新模式中的指示,执行备份操作,且存储存储器系统已执行备份操作的指示。
图3说明使用定时器触发存储器系统(例如NVDIMM)中的灾难性保存操作(CSAVE)的实例方法300。在实例中,所述定时器可例如使用定时器寄存器在所述NVDIMM中实施。
在301,实施定时器的定时器寄存器(例如,HOST_TIMEOUT_CSAVE_TIMEOUT寄存器等)可在每次复位、重新起动、电力开启时或在先前CSAVE事件之后等默认到0。存储器控制器(例如,控制器125、处理装置等)可从主机(例如,主机105)接收指令,且可以其它方式控制定时器的实施。值0有效地停用定时器。
在302,如果定时器寄存器(或存储器控制器)接收非零写入,那么定时器可在303设置到所述值(例如,在1与255之间等)。在302,如果定时器寄存器并未接收非零写入,那么定时器的值可保持于0,且过程可返回到301。在方法300中的任何时间,如果定时器寄存器接收0的写入,那么过程可返回到301,定时器寄存器的值可设置到0,且倒数定时器可停止而不会起始CSAVE。在实例中,存储器控制器(或与存储器控制器相关联的逻辑)可写入定时器寄存器的值。
在304,如果定时器寄存器接收非零写入(例如,在1与255之间等),那么定时器可在303设置到所述值。如果在304定时器寄存器并未接收非零写入,且在305定时器寄存器并未接收0的写入,那么在306可例如使用存储器控制器使定时器寄存器中的值递减。在实例中,存储器控制器可经配置以使定时器每秒递减一次。在其它实例中,可使用其它较长或较短时间段(例如,取决于存储器系统的使用案例,定时器可每20毫秒、5秒、10秒等递减)。如果在305定时器寄存器接收0的写入,那么过程可返回到301,定时器寄存器的值可设置到0且倒数定时器可停止。
在307,如果定时器的值大于0,那么过程可返回到304。在307,如果定时器期满(例如,在定时器的值不大于0时),可在308检查存储器系统的一或多个组件(例如,存储器控制器、易失性存储器、通信接口等)的自刷新模式。
在308,如果存储器系统或其组件(例如,存储器控制器、易失性存储器、通信接口等)是在自刷新模式中,那么可在309触发CSAVE事件。在所述CSAVE事件经触发或完成之后,过程可返回到301。在另一实例中,方法300可忽略存储器系统或通信接口的状态。举例来说,如果易失性存储器并不在自刷新模式中,但定时器在307期满,那么CSAVE事件可仍在309发生(例如,省略步骤308)。
在308,如果存储器系统或其组件并不在自刷新模式中,那么若干事项中的一者可发生。在实例中,定时器期满且存储器系统或其组件并不在自刷新模式中的指示可例如通过存储器控制器例如存储于自刷新寄存器中,且CSAVE事件仍可经触发。在实例中,易失性存储器并不在自刷新模式中的指示可使用MODULE_HEALTH_STATUS0寄存器中的DRAM_NOT_SELF_REFRESH位存储。此外,为继续CSAVE事件,可清除CSAVE_INFO寄存器中的NVM_DATA_VALID位。
在另一实例中,存储器控制器可等待一时间段(例如,10毫秒、1秒、数个时钟循环等),接着再检查(例如,n=n+1次)自刷新模式。再检查自刷新的次数(例如,X次)及存储器控制器在再检查之前或在再检查之间等待的时间段可为默认量、可复位或可编程,例如,类似于上文所描述的定时器。在数次(例如,X次)失败的再检查之后,可在309触发CSAVE事件,或过程可返回到301而不会触发CSAVE事件。对于任一结果,失败的再检查的指示可存储(例如,在再检查寄存器中)以供存储器系统行为的随后参考、诊断或特性化。
在实例中,在方法300中的任何点,定时器寄存器的任何读取可传回寄存器的当前值,在某些实例中,其对应于在存储器系统起始CSAVE事件之前剩余的秒数。此外,在某些实例中,方法300可忽略存储器系统是否经装备以执行CSAVE操作,且与存储器系统的装备状态无关地执行所述CSAVE,只要存储器系统具有执行CSAVE操作的能力。
在某些实例中,方法300可在固件更新期间(例如在主机或存储器系统接收固件更新时)停用。如果定时器运行且固件更新模式经启用,那么存储器系统可使定时器停止且停用CSAVE事件。在实例中,一旦固件更新完成,定时器的先前状态便无法复原,但保持停用直到重新起动或设置,例如上文所描述。
图4说明计算机系统400的实例机器,在所述机器内可执行用于引起所述机器执行本文中所论述的方法论中的任一或多者的指令集。在一些实施方案中,计算机系统400可对应于主机系统(例如,图1的主机系统120),所述主机系统包含或利用存储器系统(例如,图1的存储器系统110)或可用于执行控制器的操作(例如,执行操作系统以执行对应于例如本文中所描述的备份或保存操作的操作)。在替代实施方案中,机器可连接(例如,网络链接)到LAN、内部网络、商际网络及/或因特网中的其它机器。所述机器可作为客户端-服务器网络环境中的服务器机器或客户端机器而操作,作为对等(或分布式)网络环境中的对等机器操作,或作为云计算基础设施或环境中的服务器机器或客户端机器操作。
机器可为个人计算机(PC)、平板计算机PC、机顶盒(STB)、个人数字助理(PDA)、蜂窝式电话、网络设备、服务器、网络路由器、交换器或网桥,或能够执行指定通过所述机器采取的动作的指令集(循序或以其它方式)的任何机器。此外,虽然仅说明单个机器,但术语“机器”还应被视为包含个别或联合执行的(或多个)指令集以执行本文中所论述的方法论中的任一或多者的机器的任何集合。
实例计算机系统400包含处理装置402、主存储器404(例如,只读存储器(ROM)、闪存、动态随机存取存储器(DRAM),例如同步DRAM(SDRAM)或Rambus DRAM(RDRAM)等)、静态存储器406(例如,闪存、静态随机存取存储器(SRAM)等)及数据存储系统418,其经由总线430彼此通信。
处理装置402表示一或多个通用处理装置,例如微处理器、中央处理单元或类似者。更特定来说,处理装置可为复杂指令集计算(CISC)微处理器、精简指令集计算(RISC)微处理器、超长指令字集(VLIW)微处理器,或实施其它指令集的处理器,或实施指令集的组合的处理器。处理装置402还可为一或多个专用处理装置,例如专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、网络处理器或类似者。处理装置402经配置以执行用于执行本文中所论述的操作及步骤的指令426。计算机系统400可进一步包含经由网络420通信的网络接口装置408。
数据存储系统418可包含其上存储器现本文中所描述的方法论或功能中的任一或多者的一或多个指令集或软件426的机器可读存储媒体424(也被称为计算机可读媒体)。指令426还可在其由计算机系统400执行期间完全或至少部分驻留于主存储器404内及/或驻留于处理装置402内,主存储器404及处理装置402还构成机器可读存储媒体。机器可读存储媒体424、数据存储系统418及/或主存储器404可对应于图1的存储器系统110。
在一个实施方案中,指令426包含例如在上文所描述的非易失性双列直插存储器模块(NVDIMM)存储器系统上实施对应于备份操作的功能性的备份组件155。虽然机器可读存储媒体424在实例实施方案中展示为单个媒体,但术语“机器可读存储媒体”应被视为包含存储一或多个指令集的单个媒体或多个媒体。术语“机器可读存储媒体”还应被视为包含能够存储或编码通过机器执行且引起机器执行本发明的方法论中的任一或多者的指令集的任何媒体。术语“机器可读存储媒体”应相应地视为包含(但不限于)固态存储器、光学媒体及磁性媒体。
已根据对计算机存储器内的数据位的操作的算法及符号表示呈现前文详细描述的一些部分。这些算法描述及表示是数据处理领域的技术人员用于向其它所属领域的技术人员最有效地传达其工作的主旨的方式。算法在此处且通常被设想为导致所要结果的自洽操作序列。所述操作是需要物理操纵物理量的操作。通常(但不一定),这些量呈能够经存储、组合、比较及以其它方式操纵的电信号或磁信号的形式。有时,主要出于常用的原因,将这些信号称为位、值、元件、符号、字符、术语、数字或类似者已证明是方便的。
然而,应记住,所有这些及类似术语应与适当物理量相关联且仅为应用于这些量的方便标记。本发明可是指操纵表示为计算机系统的寄存器及存储器内的物理(电子)量的数据且将所述数据变换成类似地表示为计算机系统存储器或寄存器或其它此类信息存储系统内的物理量的其它数据的计算机系统或类似电子计算装置的动作及过程。
本发明还涉及用于执行本文中的操作的设备。此设备可专门为预期目的而构造,或其可包含通过存储于计算机中的计算机程序选择性激活或重新配置的通用计算机。此计算机程序可存储于计算机可读存储媒体中,例如(但不限于)任何类型的磁盘(包含软盘、光学磁盘、CD-ROM及磁光盘)、只读存储器(ROM)、随机存取存储器(RAM)、EPROM、EEPROM、磁卡或光学卡,或适于存储电子指令的任何类型的媒体,上述每一者耦合到计算机系统总线。
本文中呈现的算法及显示并非固有地与任何特定计算机或其它设备有关。根据本文中的教示,各种通用系统可与程序一起使用,或可证明构造更专用装置来执行方法是方便的。用于各种这些系统的结构将如下文描述中所阐述那样呈现。另外,本发明并不参考任何特定编程语言进行描述。将了解,各种编程语言可用于实施如本文中所描述的本发明的教示。
本发明可提供为可包含其上存储有指令的机器可读媒体的计算机程序产品或软件,所述指令可用于编程计算机系统(或其它电子装置)以执行根据本发明的过程。机器可读媒体包含用于存储呈可通过机器(例如,计算机)读取的形式的信息的任何机构。在一些实施方案中,机器可读(例如,计算机可读)媒体包含机器(例如,计算机)可读存储媒体,例如只读存储器(“ROM”)、随机存取存储器(“RAM”)、磁盘存储媒体、光学存储媒体、闪存系统等。
在前文说明书中,本发明的实施方案已参考其特定实例实施方案进行描述。很显然,可在不脱离如所附权利要求书中所阐述的本发明的实施方案的更广精神及范围的情况下对所述实施方案进行各种修改。因此,说明书及图式应被视为具阐释性意义而非限制性意义。
实例
标的物(例如,系统)的实例(例如,“实例1”)可包含一种存储器系统,其包括:易失性存储器单元群组;非易失性存储器单元群组;及处理装置,其可操作地耦合到所述易失性存储器单元群组及所述非易失性存储器单元群组,所述处理装置经配置以响应于触发事件执行内部备份操作,所述内部备份操作包括:响应于所述触发事件确定所述存储器系统是否在自刷新模式中;响应于确定所述存储器系统并不在自刷新模式中,在时间段之后在未使内部备份操作失败的情况下重新确定所述存储器系统是否在自刷新模式中;及响应于重新确定所述存储器系统是在自刷新模式中,执行包括将存储于所述易失性存储器单元群组上的数据的至少一部分保存到所述非易失性存储器单元群组的所述内部备份操作。
在实例2中,实例1的标的物可任选地经配置使得所述触发事件包括定时器的期满。
在实例3中,实例1到2中任一或多者的标的物可任选地经配置使得所述处理装置经配置以从主机接收命令,且所述定时器可通过所述主机复位。
在实例4中,实例1到3中任一或多者的标的物可任选地经配置使得所述处理装置经配置以从所述主机接收主机电力,且所述触发事件包括在所述主机电力有效时所述定时器的期满。
在实例5中,实例1到4中任一或多者的标的物可任选地经配置使得所述触发事件包括保存命令。
在实例6中,实例1到5中任一或多者的标的物可任选地经配置使得所述内部备份操作包括:将可通过主机读取的所述存储器系统能够执行所述内部备份操作的指示存储于第一寄存器中;及在响应于所述触发事件执行所述内部备份操作之后,将可通过所述主机读取的所述存储器系统已执行所述内部备份操作的指示存储于第二寄存器中。
在实例7中,实例1到6中任一或多者的标的物可任选地经配置使得作为对响应于所述触发事件确定所述存储器系统并不在自刷新模式中的响应,所述内部备份操作包括:在所述时间段之后在使所述内部备份操作失败之前第一次重新确定所述存储器系统是否在自刷新模式中,其中所述时间段包括预定或可选择时间段。
在实例8中,实例1到7中任一或多者的标的物可任选地经配置使得响应于所述存储器系统使所述内部备份操作失败,所述内部备份操作包括将可通过主机读取的所述存储器系统由于未在自刷新模式中而使所述内部备份操作失败的指示存储于第三寄存器中。
在实例9中,实例1到8中任一或多者的标的物可任选地经配置使得确定所述存储器是否在自刷新模式中包括确定所述易失性存储器单元群组是否在自刷新模式中。
标的物(例如,方法)的实例(例如,“实例10”)可包括:响应于触发事件在存储器系统中执行内部备份操作,所述内部备份操作包括:使用所述存储器系统的处理装置响应于所述触发事件确定所述存储器系统是否在自刷新模式中;响应于确定所述存储器系统并不在自刷新模式中,使用所述处理装置并在一时间段之后在未使内部备份操作失败的情况下重新确定所述存储器系统是否在自刷新模式中;及响应于重新确定所述存储器系统是在自刷新模式中,使用所述处理装置执行包括将存储于所述存储器系统的易失性存储器单元群组上的数据的至少一部分保存到所述存储器系统的非易失性存储器单元群组的所述内部备份操作。
在实例11中,实例10的标的物可任选地经配置使得所述触发事件包括定时器的期满。
在实例12中,实例10到11中任一或多者的标的物可任选地经配置以包括使用所述处理装置从主机接收命令,其中所述定时器可通过所述主机复位。
在实例13中,实例10到12中任一或多者的标的物可任选地经配置以包括从所述主机接收主机电力,其中所述触发事件包括在所述主机电力有效时所述定时器的期满。
在实例14中,实例10到13中任一或多者的标的物可任选地经配置使得所述触发事件包括保存命令。
在实例15中,实例10到14中任一或多者的标的物可任选地经配置以包括:使用所述处理装置将可通过主机读取的所述存储器系统能够执行所述内部备份操作的指示存储于第一寄存器中;及使用所述处理装置在响应于所述触发事件执行所述内部备份操作之后将可通过所述主机读取的所述存储器系统已执行所述内部备份操作的指示存储于第二寄存器中。
在实例16中,实例10到15中任一或多者的标的物可任选地经配置使得响应于确定所述存储器系统并不在自刷新模式中,重新确定所述存储器系统是否在自刷新模式中包括在所述时间段之后在使所述内部备份操作失败之前第一次重新确定所述存储器系统是否在自刷新模式中。
在实例17中,实例10到16中任一或多者的标的物可任选地经配置使得使所述备份操作失败包括将所述存储器系统由于未在自刷新模式中而使所述内部备份操作失败的指示存储于第三寄存器中。
在实例18中,实例10到17中任一或多者的标的物可任选地经配置使得确定所述存储器系统是否在自刷新模式中包括确定所述易失性存储器单元群组是否在自刷新模式中。
标的物(例如,非暂时性计算机可读存储媒体)的实例(例如,“实例19”)可包括在通过处理装置执行时引起所述处理装置执行以下操作的指令:响应于触发事件在存储器系统中执行内部备份操作,所述内部备份操作包括:响应于所述触发事件确定所述存储器系统是否在自刷新模式中;响应于确定所述存储器系统并不在自刷新模式中,在一时间段之后在未使内部备份操作失败的情况下重新确定所述存储器系统是否在自刷新模式中;及响应于重新确定所述存储器系统是在自刷新模式中,使用所述处理装置执行包括将存储于所述存储器系统的易失性存储器单元群组上的数据的至少一部分保存到所述存储器系统的非易失性存储器单元群组的所述内部备份操作。
在实例20中,实例19的标的物可任选地经配置使得重新确定所述存储器系统是否在自刷新模式中的指令包括在通过所述处理装置执行时引起所述处理装置执行以下操作的指令:在所述时间段之后在使所述备份操作失败之前第一次重新确定所述存储器系统是否在自刷新模式中。
标的物(例如,系统或设备)的实例(例如,“实例21”)可任选地组合实例1到20中任一或多者的任何部分或任何部分的组合以包括“用于”执行实例1到20的功能或方法中的任一或多者的任何部分的“构件”,或包括在通过机器执行时引起所述机器执行实例1到20的功能或方法中的任一或多者的任何部分的指令的“机器可读媒体”(例如,非暂时性等)。
上文描述希望具阐释性而非限制性。举例来说,上述所述的实例(或其一或多个方面)可彼此组合使用。在检视上文描述后,例如所属领域的一般技术人员可使用其它实施例。主张了解其并非用于解释或限制权利要求书的范围或含义。此外,在上文具体实施方式中,各种特征可集合在一起以简化本发明。此不应被解释为期望未主张的揭示特征是任何权利要求的关键。而是,本发明标的物可能在于少于特定揭示实施例的全部特征。因此,所附权利要求书在此并入具体实施方式中,其中每一权利要求自身作为单独实施例,且预期此类实施例可以各种组合或排列彼此组合。应参考所附权利要求书连同此类权利要求书所授权的等效物的全范围来确定本发明的范围。

Claims (15)

1.一种存储器系统,其包括:
用于响应于触发事件而在存储器系统中执行内部备份操作的构件,所述内部备份操作包括:
响应于所述触发事件而使用所述存储器系统的处理装置来确定所述存储器系统是否在自刷新模式中;
响应于确定所述存储器系统并不在自刷新模式中,使用所述处理装置并且在一时间段之后在未使内部备份操作失败的情况下重新确定所述存储器系统是否在自刷新模式中;及
响应于重新确定所述存储器系统是在自刷新模式中,使用所述处理装置执行包括将存储于所述存储器系统的易失性存储器单元群组上的数据的至少一部分保存到所述存储器系统的非易失性存储器单元群组的所述内部备份操作。
2.根据权利要求1所述的存储器系统,其包括:
易失性存储器单元群组;及
非易失性存储器单元群组;
其中所述用于执行内部备份操作的构件包括:
处理装置,其可操作地耦合到所述易失性存储器单元群组及所述非易失性存储器单元群组,所述处理装置经配置以响应于所述触发事件执行所述内部备份操作。
3.根据权利要求1到2中任一权利要求所述的存储器系统,其中所述触发事件包括定时器的期满。
4.根据权利要求3所述的存储器系统,其中所述处理装置经配置以从主机接收命令,且
其中所述定时器能够通过所述主机复位。
5.根据权利要求4所述的存储器系统,其中所述处理装置经配置以从所述主机接收主机电力,且
其中所述触发事件包括在所述主机电力有效时所述定时器的期满。
6.根据权利要求1到5中任一权利要求所述的存储器系统,其中所述触发事件包括保存命令。
7.根据权利要求1到6中任一权利要求所述的存储器系统,其中所述内部备份操作包括:
将能够通过主机读取的所述存储器系统能够执行所述内部备份操作的指示存储于第一寄存器中;及
在响应于所述触发事件执行所述内部备份操作之后,将能够通过所述主机读取的所述存储器系统已执行所述内部备份操作的指示存储于第二寄存器中。
8.根据权利要求1到7中任一权利要求所述的存储器系统,其中作为对响应于所述触发事件确定所述存储器系统并不在自刷新模式中的响应,所述内部备份操作包括:
在所述时间段之后在使所述内部备份操作失败之前第一次重新确定所述存储器系统是否在自刷新模式中,
其中所述时间段包括预定或可选择时间段。
9.根据权利要求8所述的存储器系统,其中响应于所述存储器系统使所述内部备份操作失败,所述内部备份操作包括将能够通过主机读取的所述存储器系统由于未在自刷新模式中而使所述内部备份操作失败的指示存储于第三寄存器中。
10.根据权利要求1到9中任一权利要求所述的存储器系统,其中确定所述存储器是否在自刷新模式中包括确定所述易失性存储器单元群组是否在自刷新模式中。
11.一种方法,其包括:
用于响应于触发事件而在存储器系统中执行内部备份操作的构件,所述内部备份操作包括:
响应于所述触发事件而使用所述存储器系统的处理装置来确定所述存储器系统是否在自刷新模式中;
响应于确定所述存储器系统并不在自刷新模式中,使用所述处理装置并且在一时间段之后在未使内部备份操作失败的情况下重新确定所述存储器系统是否在自刷新模式中;及
响应于重新确定所述存储器系统是在自刷新模式中,使用所述处理装置执行包括将存储于所述存储器系统的易失性存储器单元群组上的数据的至少一部分保存到所述存储器系统的非易失性存储器单元群组的所述内部备份操作。
12.根据权利要求11所述的方法,其包括:
从主机接收主机电力,
其中所述触发事件包括在所述主机电力有效时所述定时器的期满,其中所述定时器能够通过所述主机复位。
13.根据权利要求11所述的方法,其中所述触发事件包括保存命令。
14.根据权利要求11所述的方法,其包括:
使用所述处理装置将能够通过主机读取的所述存储器系统能够执行所述内部备份操作的指示存储于第一寄存器中;及
使用所述处理装置在响应于所述触发事件执行所述内部备份操作之后,将能够通过所述主机读取的所述存储器系统已执行所述内部备份操作的指示存储于第二寄存器中。
15.根据权利要求11所述的方法,其中响应于确定所述存储器系统并不在自刷新模式中,重新确定所述存储器系统是否在自刷新模式中包括在所述时间段之后在使所述内部备份操作失败之前第一次重新确定所述存储器系统是否在自刷新模式中。
CN201980017288.4A 2018-02-08 2019-02-06 从易失性到非易失性存储器的备份操作 Pending CN111819549A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862628089P 2018-02-08 2018-02-08
US62/628,089 2018-02-08
US16/123,512 2018-09-06
US16/123,512 US20190243721A1 (en) 2018-02-08 2018-09-06 Backup operations from volatile to non-volatile memory
PCT/US2019/016831 WO2019157044A1 (en) 2018-02-08 2019-02-06 Backup operations from volatile to non-volatile memory

Publications (1)

Publication Number Publication Date
CN111819549A true CN111819549A (zh) 2020-10-23

Family

ID=67475133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980017288.4A Pending CN111819549A (zh) 2018-02-08 2019-02-06 从易失性到非易失性存储器的备份操作

Country Status (4)

Country Link
US (1) US20190243721A1 (zh)
CN (1) CN111819549A (zh)
TW (1) TWI715925B (zh)
WO (1) WO2019157044A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886584A (zh) * 2018-02-08 2020-11-03 美光科技公司 从易失性到非易失性存储器的备份操作

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11257527B2 (en) 2015-05-06 2022-02-22 SK Hynix Inc. Memory module with battery and electronic system having the memory module
US10198204B2 (en) * 2016-06-01 2019-02-05 Advanced Micro Devices, Inc. Self refresh state machine MOP array
EP4078587A4 (en) * 2019-12-20 2024-01-24 Rambus Inc REFRESH TIME CONTROL FOR PARTIAL ARRAY
US20220076726A1 (en) * 2020-09-04 2022-03-10 Micron Technology, Inc. Methods and apparatus for probabilistic refresh in volatile memory devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110246713A1 (en) * 2010-04-01 2011-10-06 Bains Kuljit S Fast exit from self-refresh state of a memory device
CN104798060A (zh) * 2013-01-30 2015-07-22 惠普发展公司,有限责任合伙企业 存储器模块中数据的运行时备份
US20150378841A1 (en) * 2014-06-30 2015-12-31 Sarathy Jayakumar Techniques to Communicate with a Controller for a Non-Volatile Dual In-Line Memory Module

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210866A (en) * 1990-09-12 1993-05-11 Storage Technology Corporation Incremental disk backup system for a dynamically mapped data storage subsystem
US6944708B2 (en) * 2002-03-22 2005-09-13 Intel Corporation Method of self-refresh in large memory arrays
US8908443B1 (en) * 2014-05-27 2014-12-09 Sandisk Technologies Inc. Storage device and method for performing a self-refresh operation
US9910775B2 (en) * 2014-06-16 2018-03-06 Samsung Electronics Co., Ltd. Computing system with adaptive back-up mechanism and method of operation thereof
US10191681B2 (en) * 2014-10-31 2019-01-29 Hewlett Packard Enterprise Development Lp Shared backup power self-refresh mode
US9721640B2 (en) * 2015-12-09 2017-08-01 Intel Corporation Performance of additional refresh operations during self-refresh mode
US20180246643A1 (en) * 2017-02-28 2018-08-30 Dell Products, Lp System and Method to Perform Runtime Saves on Dual Data Rate NVDIMMs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110246713A1 (en) * 2010-04-01 2011-10-06 Bains Kuljit S Fast exit from self-refresh state of a memory device
CN104798060A (zh) * 2013-01-30 2015-07-22 惠普发展公司,有限责任合伙企业 存储器模块中数据的运行时备份
US20150261672A1 (en) * 2013-01-30 2015-09-17 Hewlett-Packard Development Company, L.P. Runtime backup of data in a memory module
US20150378841A1 (en) * 2014-06-30 2015-12-31 Sarathy Jayakumar Techniques to Communicate with a Controller for a Non-Volatile Dual In-Line Memory Module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886584A (zh) * 2018-02-08 2020-11-03 美光科技公司 从易失性到非易失性存储器的备份操作

Also Published As

Publication number Publication date
WO2019157044A1 (en) 2019-08-15
US20190243721A1 (en) 2019-08-08
TWI715925B (zh) 2021-01-11
TW201944238A (zh) 2019-11-16

Similar Documents

Publication Publication Date Title
CN111819549A (zh) 从易失性到非易失性存储器的备份操作
CN111886584A (zh) 从易失性到非易失性存储器的备份操作
CN106462520B (zh) 用于与非易失性双列直插式存储器模块的控制器通信的技术
US10846008B2 (en) Apparatuses and methods for single level cell caching
US9087562B2 (en) Non-volatile storage module having magnetic random access memory (MRAM) with a buffer window
US11347429B2 (en) Live firmware activation in a memory system
US11604710B2 (en) Detailed failure notifications in memory sub-systems
TWI731302B (zh) 記憶體之部分儲存
CN111837107A (zh) 从易失性到非易失性存储器的备份操作
US20190347196A1 (en) Memory system, operating method thereof, and electronic device
WO2022205332A1 (en) Recording and decoding of information related to memory errors identified by microprocessors
CN111801735B (zh) 存储备份存储器封装保存触发器
US11650925B2 (en) Memory interface management
US20220171706A1 (en) Memory system and operating method thereof
US11966303B2 (en) Memory system failure detection and self recovery of memory dice
CN209746537U (zh) 一种兼容nvdimm-p功能的nvdimm-n
CN115858253A (zh) 跨互连的存储器镜像的技术
CN115774886A (zh) 用于存储器系统的安全文件系统
JPH04145558A (ja) 電源断回復時の面データ転送方式

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination