CN111796201A - 接地故障检测装置 - Google Patents

接地故障检测装置 Download PDF

Info

Publication number
CN111796201A
CN111796201A CN202010157705.XA CN202010157705A CN111796201A CN 111796201 A CN111796201 A CN 111796201A CN 202010157705 A CN202010157705 A CN 202010157705A CN 111796201 A CN111796201 A CN 111796201A
Authority
CN
China
Prior art keywords
capacitor
battery
measurement
ground fault
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010157705.XA
Other languages
English (en)
Other versions
CN111796201B (zh
Inventor
河村佳浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Publication of CN111796201A publication Critical patent/CN111796201A/zh
Application granted granted Critical
Publication of CN111796201B publication Critical patent/CN111796201B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种使用飞跨电容器并且通过C触点开关切换测量路径的接地故障检测装置,其能够在保持电荷的同时暂时停止充电。连接到不接地的电池的接地故障检测装置评估设置有该电池的系统的绝缘电阻,并且检测接地故障,接地故障检测装置包括:电容器,其用作飞跨电容器;两个C触点开关,其切换V0充电路径、Vcn充电路径、Vcp充电路径和测量路径,其中,V0充电路径包括电池和电容器,Vcn充电路径包括电池、作为电池的负侧与地之间的绝缘电阻的负侧绝缘电阻和电容器,Vcp充电路径包括电池、作为电池的正侧与地之间的绝缘电阻的正侧绝缘电阻和电容器,测量路径用于第一电容器的电荷电压测量和放电两者;以及光学MOS‑FET,其能阻断电荷流入电容器以及电荷从电容器流出。

Description

接地故障检测装置
技术领域
本发明涉及一种使用飞跨电容器的接地故障检测装置。
背景技术
在配备有发动机和电动机作为驱动源的混合动力汽车和电动汽车中,安装在车身上的电池被充电,并且利用从电池供给的电能产生驱动力。通常,电池相关的电力电路被配置为处理200V以上的高压的高压电路,并且高压电路具有不接地的配置,其与作为地基准电位点的车身电绝缘以确保安全性。
在配备有不接地高压电池的车辆中,设置接地故障检测装置用以监控具有高压电池的系统,尤其是从高压电池到电机的主电力系统与车身之间的绝缘状态(接地故障)。使用作为所谓的飞跨电容器的电容器的方法被广泛用于接地故障检测装置。
图8是示出传统的飞跨电容器方法的接地故障检测装置的电路实例的图。如该图所示,接地故障检测装置400连接到不接地的高压电池300,并且检测设置有该高压电池300的系统的接地故障。这里,高压电池300的正极侧与地之间的绝缘电阻将由RLp表示,并且负极侧与地之间的绝缘电阻由RLn表示。
如该图中所示,接地故障检测装400设置有用作飞跨电容器的检测电容器C1。另外,为了切换测量路径并且控制检测电容器C1的充电和放电,在检测电容器C1周围设置由光学MOS-FET形成的四个开关元件S1至S4。
在接地故障检测装置400中,为了掌握绝缘电阻RLp和RLn,重复V0测量时间段→Vcn测量时间段→V0测量时间段→Vcp测量时间段这样的测量周期作为一个周期。在任意测量时间段,在以待测量电压为检测电容器C1充电之后,测量检测电容器C1的充电电压。然后,使检测电容器C1放电用于下一测量。
在V0测量时间段中,测量与高压电池300的电压相对应的电压。为此,开关元件S1和S2接通,开关元件S3和S4断开,并且对检测电容器C1充电。即,如图9A所示,高压电池300、电阻R1和检测电容器C1用作测量路径。
当测量检测电容器C1的充电电压时,如图9B所示,开关元件S1和S2断开,开关元件S3和S4接通,并且控制装置420进行采样。然后,通过相同的路径对检测电容器C1放电。当测量检测电容器C1的充电电压时,当检测电容器C1放电时的操作与其他测量时间段类似。
在Vcn测量时间段中,测量反映绝缘电阻RLn的影响的电压。为此,开关元件S1和S4接通,开关元件S2和S3断开,并且对检测电容器C1充电。即,如图10A所示,高压电池300、电阻R1、检测电容器C1、电阻R4、地和绝缘电阻RLn用作测量路径。
在Vcp测量时间段中,测量反映绝缘电阻RLp的影响的电压。为此,开关元件S2和S3接通,开关元件S1和S4断开,并且电容器C1充电。即,如图10B所示,高压电池300、绝缘电阻RLp、地、电阻R3、电阻R1和检测电容器C1用作测量路径。
已知能够基于在这些测量时间段期间获得的V0、Vcn、Vcp所计算的(Vcp+Vcn)/V0获得(RLp x RLn)/(RLp+RLn)。由此,接地故障检测装置400中的控制装置420能够通过测量V0、Vcn和Vcp而掌握绝缘电阻RLp和RLn。当绝缘电阻RLp和RLn变为低于预定基准水平时,发生接地故障,则输出警报。
顺便提及,如图9A、9B以及图10A和10B所示,正极侧电源线301系统的开关元件S1与开关元件S3不同时接通,并且负极侧电源线302系统的开关元件S2与开关元件S4不同时接通。即,开关元件S1与开关元件S3排他地切换,并且开关元件S2与开关元件S4排他地切换。
关注于此点,如图11所示,专利文献1公开了一种接地故障检测装置500,其中,正侧C触点开关511用作正极侧电源线301的开关元件,并且负侧C触点开关512用作负极侧电源线302的开关元件。C触点开关由例如高压小信号机械继电器或者振簧继电器构成,由于比光学MOS-FET便宜而减少了接地故障检测装置100的成本的增加。
参考列表
专利文献
专利文献1:JP-A-2018-128320
发明内容
如图8所示的具有四个光学MOS-FET的接地故障检测装置400能够形成如下状态:其中,通过断开所有开关,检测电容器C1从电池300和地两者断开。
另一方面,作为C触点开关中的共用触点的触点c连接到触点a或者连接到触点b,并且不存在中立的断开状态。由此,在如图11所示的使用C触点开关的接地故障检测装置500中,检测电容器C1的各个极或者连接到电池300(充电侧)或者连接到地侧(测量侧)。从而,不能够在保持电荷的同时暂时停止充电。C触点开关比光学MOS-FET便宜,但是另一方面反应速度更慢。
由此,使用C触点开关的接地故障检测装置500暂时不适用于停止充电和测量之后重新开始充电的过程。这是因为当重新开始充电时充入电池中的电荷的放电量增多。
临时中止充电之后的充电恢复不用在上述基本测量中,然而可以以功能扩展的方式使用,例如,在Vcn和Vcp的测量时间段的情况下,进行中间测量和测量延长。
这里,中间测量是测量原始充电时间期间检测电容器C1的充电电压的处理。当由于绝缘电阻的降低等导致中间测量的测量值超过基准值时,取消随后的充电能够避免不必要的高电压施加,并且能够及早地判定接地故障。另一方面,如果中间测量值不超过基准值,则重新开始并继续充电,直至到达原始充电时间,而后可以进行测量。
另外,测量延长是如下过程:当初始充电时间过去之后获得的测量值非常小时,根据需要通过增加充电时间而增大检测电容器C1的电荷的量。通常地,当测量值非常小(例如,100mV以下)时,绝缘电阻即被视为大的。
然而,由于依据系统,即使由于特定条件而存在绝缘故障,测量值有时也可能变为0V,有时需要区分微小的测量值是归因于大的绝缘电阻还是系统的特定条件。在此情况下,检测电容器C1的电荷量的通过测量延长的增大使得能够更加准确地掌握该情况。
因此,本发明旨在保持接地故障检测装置中的电荷的同时暂停充电,在该接地故障检测装置中使用飞跨电容器并且通过C触点开关切换测量路径。
为了解决以上问题,连接到不接地的电池的本发明的接地故障检测装置评估设置有电池的系统的绝缘电阻,并且检测接地故障,该接地故障检测装置包括:电容器,该电容器用作飞跨电容器;两个C触点开关,该两个C触点开关切换V0充电路径、Vcn充电路径、Vcp充电路径和测量路径,所述V0充电路径包括所述电池和所述电容器,所述Vcn充电路径包括所述电池、作为所述电池的负侧与地之间的绝缘电阻的负侧绝缘电阻和所述电容器,所述Vcp充电路径包括所述电池、作为所述电池的正侧与所述地之间的绝缘电阻的正侧绝缘电阻和所述电容器,所述测量路径用于所述第一电容器的充电电压测量和放电两者;以及光学MOS-FET,该光学MOS-FET能够阻断电荷流入所述电容器以及电荷从所述电容器流出。
这里,所述电容器和所述光学MOS-FET可以串联连接在所述两个C触点开关的共用触点之间。
而且,进一步设置有用于控制所述两个C触点开关和所述光学MOS-FET的控制单元。所述控制单元可以将所述Vcn充电路径或者所述Vcp充电路径切换至所述测量路径,并且断开所述光学MOS-FET,并且如果获取的所述充电电压测量的值小于或者等于预定的基准值,则所述控制单元将路径切换回所述Vcn充电路径或者所述Vcp充电路径,并且接通所述光学MOS-FET。
然后,如果获取的所述充电电压测量的值大于所述预定的基准值,则所述控制单元可以接通所述光学MOS-FET从而使所述电容器放电。
此外,所述接地故障检测装置可以包括用于控制所述两个C触点开关和所述光学MOS-FET的控制单元,并且当切换所述两个C触点开关中的任意一者或者两者时,所述控制单元刚好在切换之前断开所述光学MOS-FET,并且在完成切换之后接通回所述光学MOS-FET。
根据本发明,在使用飞跨电容器并且通过C触点开关切换测量路径的接地故障检测装置中,能够在保持电荷的同时暂停充电。
附图说明
图1是示出根据本发明的实施例的接地故障检测装置的配置的框图;
图2是基本测量操作的时序图;
图3是用于说明中间测量的流程图;
图4是用于说明中间测量的时序图;
图5是说明测量延长的流程图;
图6是说明测量延长的时序图;
图7是说明提高打开和闭合C触点开关的次数的控制的时序图;
图8是示出传统的飞跨电容器方法的接地故障检测装置的电路实例的图;
图9A和9B是示出V0测量时间段中的测量路径的图;
图10A和10B是示出Vcn测量时间段和Vcp测量时间段的测量路径的图;并且
图11是示出使用C触点开关的飞跨电容器型接地故障检测装置电路的实例的图。
参考标记列表
100 接地故障检测装置
111 正极侧C触点开关
112 负极侧C触点开关
113 光学MOS-FET
120 控制装置
300 高压电池
301 正电源线
302 负电源线
具体实施方式
将参考附图详细描述本发明的实施例。图1是示出涉及本发明的实施例的接地故障检测装置100的结构的框图。该图中示出的接地故障检测装置100是飞跨电容器型装置,其检测连接到不接地的高压电池300的系统的接地故障,并且在该系统中设置有高压电池300。接地故障检测装置100由作为主装置(未示出)的外部控制装置控制。
这里,高压电池300的正极侧与地之间的绝缘电阻表示为RLp,并且负极侧与地之间的绝缘电阻表示为RLn。高压是指比驱动车辆中的各种装置(灯、雨刷器)用的低压电池(典型地,12V)高的电压,并且高压电池300是用于驱动车辆所使用的电池。
高压电池300由诸如锂离子电池这样的可再充电的电池构成,经由高压汇流条(未示出)放电并且驱动经由逆变器等连接的电机。当再生或者连接到充电设施时,经由高压汇流条进行充电。
在高压电池300的正电源线301与地电极之间以及在负电源线302与地电极之间,连接称为Y电容器(旁路电容器)的电容器CYp和CYn,以去除电源的高频噪声或者稳定操作。然而,可以省略Y电容器。
如该附图中所示,接地故障检测装置100设置有:检测电容器C1,该检测电容器C1作为飞跨电容器运行;和控制装置120,其由微计算机等构成。控制装置120通过执行预先内置的程序而执行接地故障检测装置100所需的各种控制,例如稍后将提及的切换处理。
在接地故障检测装置100中,正极侧C触点开关111用作正电源线301系统的开关元件,并且负极侧C触点开关112用作负电源线302系统的开关元件。正极侧C触点开关111和负极侧C触点开关112能够由例如高压小信号的机械继电器或者振簧继电器构成。另外,在接地故障检测装置100中,除了两个C触点开关111之外,还使用一个光学MOS-FET113。
正极侧C触点开关111和负极侧C触点开关112具有设置在检测电容器C1侧的共用触点c。具体地,正极侧C触点开关111的共用触点c经由二极管D1和电阻R1的路径与电阻R2和二极管D2的路径的并联电路而连接到检测电容器C1,负极侧C触点开关112的共用触点c连接到检测电容器C1的另一端。用作充电路径的二极管D1以从正极侧C触点开关111向检测电容器C1为正向的方向连接,并且用作放电期间的路径的二极管D2以相反方向连接。电阻R2用作放电电阻。
光学MOS-FET113使得充电/放电路径能够以高速通电/中断,并且为了形成检测电容器C1的电荷保持状态,光学MOS-FET113串联连接在正极侧C触点开关111的共用触点c与负极侧C触点开关112的共用触点c之间。
在该附图的实例中,光学MOS-FET113连接在正极侧C触点开关111的共用触点c与二极管D1和二极管D2的并联电路之间。然而,其可以连接在二极管D1和二极管D2的并联电路与检测电容器C1之间,或者检测电容器C1与C触点开关112的共用触点c之间。
正极侧C触点开关111的触点a经由电阻Ra连接到正极侧电源线301,并且负极侧C触点开关112的触点a经由电阻Rb连接到负极侧电源线302。即,任意C触点开关的触点a均在高压电池300侧(通常是打开的)。
正极侧C触点开关111的触点b连接到电阻R3,电阻R3的另一端接地。一端接地的电容器C2连接到电阻R3,并且电阻R3中产生的电压由控制装置120测量。负极侧C触点开关112的触点b的另一端连接到电阻R4,电阻R4的另一端接地。即,任意C触点开关的触点b均在控制装置120侧(地侧)(通常是闭合的)。
然而,两个C触点开关可以在高压电池300侧通常闭合,或者高压电池300侧的一个C触点开关可以通常闭合。
如图1所示,正极侧C触点开关111、负极侧C触点开关112和光学MOS-FET113由控制装置120独立地切换和控制。控制装置120通过独立地切换和控制正极侧C触点开关111和负极侧C触点开关112而切换测量路径,使检测电容器C1充电或者放电,并且测量充电电压。而且,通过断开光学MOS-FET113,切断充电/放电路径。
具体地,在V0测量时间段→Vcn测量时间段→V0测量时间段→Vcp测量时间段被设定为一个周期的基本测量操作中,如图2中的时序图所示,光学MOS-FET113总是接通,并且进行以下切换。
在V0测量时间段期间,正极侧C触点开关111和负极侧C触点开关112均切换到触点a侧(电池侧),形成高压电池300、电阻Ra、电阻R1、检测电容器C1和电阻Rb的测量路径(附图中的V0路径)。
当测量检测电容器C1的充电电压时,正极侧C触点开关111和负极侧C触点开关112均切换到触点b侧(地侧)(附图中的测量放电)。其后,检测电容器C1通过相同的路径放电。当测量检测电容器C1的充电电压时的操作和放电时的操作在其他测量时间段中相同。
在Vcn测量时间段中,正极侧C触点开关111切换到触点a侧(电池侧),并且负极侧C触点开关112切换到触点b侧(地侧),形成高压电池300、电阻Ra、电阻R1、检测电容器C1、电阻R4、地和绝缘电阻RLn的测量路径(附图中的Vcn路径)。
在Vcp测量时间段中,正极侧C触点开关111切换到触点b侧(地侧),并且负极侧C触点开关112切换到触点a侧(电池侧),形成高压电池300、绝缘电阻RLp、地、电阻R3、电阻R1、检测电容器C1和电阻Rb的测量路径(附图中的Vcp路径)。
另一方面,当在Vcn和Vcp测量时间段期间功能性地进行中间测量和测量延长时,作为示例,可以进行以下操作。首先,当进行中间测量时,将参考图3中的流程图和图4中的时序图进行描述。
为了测量Vcn和Vcp,正极侧C触点开关111和负极侧C触点开关112切换到Vcn路径或者Vcp路径的充电路径(图3:S101;图4:t1)。
并且在充电时间期间,正极侧C触点开关111和负极侧C触点开关112切换到测量路径,并且开始中间测量(图3:S102;图4:t2)。为了保持电容器C1的电荷,在开始测量之后光学MOS-FET113断开(S104)。
如果中间测量中获得的测量值不超过基准值(S105:否),则假定不发生异常,再次切换到充电路径并且光学MOS-FET113接通(S106),并且重新开始充电。并且在预定充电时间之后,切换到测量路径(S107),并且测量Vcn和Vcp(S108)。
另一方面,当在中间测量中获得的测量值超过基准值时(S105:是),假定已经发生异常,进行异常处理而不重新开始测量(S109)。图4中的电荷量A表示当未发生异常时的电荷量的变化的实例,并且电荷量B表示当在Vcn路径中发生异常时电荷量的变化的实例。
接着,将参考图5中示出的流程图和图6中示出的时序图描述测量延长。为了测量Vcn和Vcp,正极侧C触点开关111和负极侧C触点开关112切换到Vcn路径或者Vcp路径的充电路径(图5:S201;图6:t1)。
在过去特定的充电时间之后切换到测量路径(图5:S202;图6:t2),开始Vcn或Vcp的测量。为了保持检测电容器C1的电荷,光学MOS-FET113响应于测量的开始而断开(S204)。
为了判定是否需要测量延长,判定测量值是否为能够被视作0V的微小值(例如,100mV以下)(S205)。如果为否(S205:否),则不进行测量延长,并且获得的值被设定为Vcn或者Vcp的测量值。并且光学MOS-FET接通,以使检测电容器C1放电(S209)。图6中的Vcn路径示出了当不需要测量延长时的实例,并且Vcp路径示出了当进行测量延长时的实例。
另一方面,如果测量值是微小值(S205:是),则开关被设定至充电路径,用以进行测量延长,并且光学MOS-FET接通(图5:S206;图6:t3)。结果,在维持检测电容器的电荷的状态下重新开始充电。
然后,在预定的延长时间已经过去之后,开关被设定至测量路径(图5:S207;图6:t4),并且通过测量而掌握更精确的状况(S208)。在测量之后检测电容器C1放电(图5:S209;图6:t4)。
顺便提及,因为C触点开关是机械接触结构,所以打开和闭合耐久性的次数有限制。特别地,切换时的通电电流和施加的电压越大,对切换耐久性的影响越大。因此,为了增加打开和闭合耐久性的次数,可以使用光学MOS-FET113。
在该情况下,如图7的时序图所示,当切换C触点开关中的任意一者或者两者时,MOS-FET113刚好在切换C触点开关之前断开,并且在C触点开关完成切换之后接通。
这允许当切换C触点开关时的非通电状态,抑制了电气劣化,并且提高了打开和闭合耐久性的次数。另外,减小了由于C触点开关的反应速率而引起的电荷的放电量,这提高了测量精度。
而且,在该实施例的接地故障检测装置100中,由于配备有能够切断充电和放电路径的光学MOS-FET113,所以具有在例如C触点开关故障这样的紧急情况下提高安全性的效果。
而且,由于能够暂时存储检测电容器C1的电荷,所以当采用电场电容器用于检测电容器C1时,检测电容器C1具有恢复功能等。

Claims (5)

1.一种接地故障检测装置,该接地故障检测装置连接到不接地的电池,以评估安装有电池的系统的绝缘电阻,从而检测接地故障,所述接地故障检测装置包括:
电容器,该电容器作为飞跨电容器操作;
两个C触点开关,该两个C触点开关切换V0充电路径、Vcn充电路径、Vcp充电路径和测量路径,所述V0充电路径包括所述电池和所述电容器,所述Vcn充电路径包括所述电池、作为所述电池的负侧与地之间的绝缘电阻的负侧绝缘电阻和所述电容器,所述Vcp充电路径包括所述电池、作为所述电池的正侧与所述地之间的绝缘电阻的正侧绝缘电阻和所述电容器,所述测量路径用于所述第一电容器的充电电压测量和放电这两者;以及
光学MOS-FET,该光学MOS-FET能够阻断电荷流入所述电容器以及电荷从所述电容器流出。
2.根据权利要求1所述的接地故障检测装置,其中,
所述电容器和所述光学MOS-FET串联连接在所述两个C触点开关的共用触点之间。
3.根据权利要求1或2所述的接地故障检测装置,还包括控制单元,该控制单元用于控制所述两个C触点开关和所述光学MOS-FET,其中,
所述控制单元将所述Vcn充电路径或者所述Vcp充电路径切换至所述测量路径,并且断开所述光学MOS-FET,并且
如果获取的所述充电电压测量的值小于或者等于预定的基准值,则所述控制单元将路径切换回所述Vcn充电路径或者所述Vcp充电路径,并且接通所述光学MOS-FET。
4.根据权利要求3所述的接地故障检测装置,其中,
如果获取的所述充电电压测量的值大于所述预定的基准值,则所述控制单元接通所述光学MOS-FET,从而使所述电容器放电。
5.根据权利要求1或2所述的接地故障检测装置,还包括控制单元,该控制单元用于控制所述两个C触点开关和所述光学MOS-FET,其中,
当切换所述两个C触点开关中的任意一者或者两者时,所述控制单元刚好在切换之前断开所述光学MOS-FET,并且在完成切换之后接通所述光学MOS-FET。
CN202010157705.XA 2019-04-03 2020-03-09 接地故障检测装置 Active CN111796201B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-071042 2019-04-03
JP2019071042A JP7086886B2 (ja) 2019-04-03 2019-04-03 地絡検出装置

Publications (2)

Publication Number Publication Date
CN111796201A true CN111796201A (zh) 2020-10-20
CN111796201B CN111796201B (zh) 2023-04-25

Family

ID=72518454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010157705.XA Active CN111796201B (zh) 2019-04-03 2020-03-09 接地故障检测装置

Country Status (4)

Country Link
US (1) US11047923B2 (zh)
JP (1) JP7086886B2 (zh)
CN (1) CN111796201B (zh)
DE (1) DE102020202893A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7391482B2 (ja) * 2021-05-31 2023-12-05 矢崎総業株式会社 地絡検出装置
JP7346004B2 (ja) * 2021-05-31 2023-09-19 矢崎総業株式会社 地絡検出装置
US11703535B2 (en) * 2021-06-25 2023-07-18 Rolls-Royce Corporation Insulation and fault monitoring for enhanced fault detection
US11703536B2 (en) 2021-06-25 2023-07-18 Rolls-Royce Corporation Insulation and fault monitoring for enhanced fault detection
JP7395240B2 (ja) * 2021-08-06 2023-12-11 矢崎総業株式会社 地絡検出装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977510A (zh) * 2014-04-03 2015-10-14 矢崎总业株式会社 绝缘检测装置
CN107576878A (zh) * 2016-07-04 2018-01-12 富士通天株式会社 异常检测装置以及电池组系统
CN107688132A (zh) * 2016-08-05 2018-02-13 株式会社电装 用于在规定时间段判定漏电的判定设备
US20180224494A1 (en) * 2017-02-07 2018-08-09 Yazaki Corporation Earth fault detector
US20180224493A1 (en) * 2017-02-07 2018-08-09 Yazaki Corporation Earth fault detector
CN108490302A (zh) * 2017-02-07 2018-09-04 矢崎总业株式会社 接地故障检测器
CN109416383A (zh) * 2016-07-20 2019-03-01 株式会社东芝 漏电检测装置以及漏电检测方法
US20190086464A1 (en) * 2017-09-21 2019-03-21 Yazaki Corporation Ground fault detection apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337130A (ja) * 2005-06-01 2006-12-14 Yazaki Corp フライングキャパシタ方式電圧測定装置
JP6433305B2 (ja) * 2014-04-09 2018-12-05 矢崎総業株式会社 非接地電源の絶縁検出装置及び絶縁検出方法
JP6668102B2 (ja) * 2016-02-18 2020-03-18 株式会社デンソーテン 劣化検出装置および劣化検出方法
JP6676026B2 (ja) * 2017-11-01 2020-04-08 矢崎総業株式会社 地絡検出装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977510A (zh) * 2014-04-03 2015-10-14 矢崎总业株式会社 绝缘检测装置
CN107576878A (zh) * 2016-07-04 2018-01-12 富士通天株式会社 异常检测装置以及电池组系统
CN109416383A (zh) * 2016-07-20 2019-03-01 株式会社东芝 漏电检测装置以及漏电检测方法
CN107688132A (zh) * 2016-08-05 2018-02-13 株式会社电装 用于在规定时间段判定漏电的判定设备
US20180224494A1 (en) * 2017-02-07 2018-08-09 Yazaki Corporation Earth fault detector
US20180224493A1 (en) * 2017-02-07 2018-08-09 Yazaki Corporation Earth fault detector
CN108490302A (zh) * 2017-02-07 2018-09-04 矢崎总业株式会社 接地故障检测器
US20190086464A1 (en) * 2017-09-21 2019-03-21 Yazaki Corporation Ground fault detection apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨为等: "高压动力电池组绝缘性能的实时监测研究", 《计算技术与自动化》 *

Also Published As

Publication number Publication date
US11047923B2 (en) 2021-06-29
JP2020169874A (ja) 2020-10-15
DE102020202893A1 (de) 2020-10-08
JP7086886B2 (ja) 2022-06-20
CN111796201B (zh) 2023-04-25
US20200319261A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
CN111796201B (zh) 接地故障检测装置
JP6676026B2 (ja) 地絡検出装置
CN110361597B (zh) 接地故障检测设备
JP6625586B2 (ja) 地絡検出装置
CN112557941B (zh) 接地故障检测装置
JP6633585B2 (ja) 地絡検出装置
US10962597B2 (en) Measurement apparatus, energy storage apparatus, measurement system, and offset error measurement method
JP6633560B2 (ja) 地絡検出装置
US10330716B2 (en) Earth fault detector with flying capacitor
US11555863B2 (en) Ground fault detection device
WO2014087442A1 (ja) 蓄電システム
CN115704849A (zh) 接地故障检测装置
CN110361598B (zh) 接地故障检测设备
JP2018085803A (ja) 電源システム
JP6804320B2 (ja) 地絡検出装置、電源システム
WO2024116752A1 (ja) 車載用電源装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant