CN111796014B - 一种二氧化铈修饰氢氧化铜复合电极及在葡萄糖传感器中的应用 - Google Patents

一种二氧化铈修饰氢氧化铜复合电极及在葡萄糖传感器中的应用 Download PDF

Info

Publication number
CN111796014B
CN111796014B CN202010596093.4A CN202010596093A CN111796014B CN 111796014 B CN111796014 B CN 111796014B CN 202010596093 A CN202010596093 A CN 202010596093A CN 111796014 B CN111796014 B CN 111796014B
Authority
CN
China
Prior art keywords
nano
copper
ceo
electrode
cerium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010596093.4A
Other languages
English (en)
Other versions
CN111796014A (zh
Inventor
姜敏
赵杰
崔国峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinlu Electronic Technology Co ltd
South China University of Technology SCUT
Original Assignee
Jinlu Electronic Technology Co ltd
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinlu Electronic Technology Co ltd, South China University of Technology SCUT filed Critical Jinlu Electronic Technology Co ltd
Priority to CN202010596093.4A priority Critical patent/CN111796014B/zh
Publication of CN111796014A publication Critical patent/CN111796014A/zh
Application granted granted Critical
Publication of CN111796014B publication Critical patent/CN111796014B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种二氧化铈修饰氢氧化铜复合电极及在葡萄糖传感器中的应用,该复合电极由内到外依次包括电极基底、保护层,和纳米CeO2‑Cu(OH)2复合物修饰层;所述纳米CeO2‑Cu(OH)2复合物具有三维纳米草阵列结构。本发明采用简易可行的电化学沉积和氧化方法制备了纳米CeO2‑Cu(OH)2纳米草阵列结构,大幅提升了电极性能,制备成本较低,无需特别环境和大型仪器。本发明的电极用于葡萄糖时,拥有较低的检出限,较高的灵敏度、良好的抗干扰性能。

Description

一种二氧化铈修饰氢氧化铜复合电极及在葡萄糖传感器中的 应用
技术领域
本发明属于生物化学传感器领域,涉及一种二氧化铈修饰氢氧化铜(CeO2-Cu(OH)2)复合电极及在葡萄糖传感器中的应用。
背景技术
铜及其氧化物具有较好的催化活性,因此是非酶法葡萄糖传感器的优良材料。许多报道的基于铜及其氧化物纳米材料的非酶法葡萄糖传感器已证实可用于葡萄糖传感。
电化学葡萄糖传感器的传感性能不仅需要电极/电解质界面处的有效氧化还原反应,还需要的快速电子传输。但是,纳米铜材料容易氧化,而铜的氧化物导电性能较差,从而使电极不够灵敏。
发明内容
本发明的首要目的在于提供一种纳米CeO2-Cu(OH)2复合电极。
本发明的另一目的在于提供上述纳米CeO2-Cu(OH)2复合电极在葡萄糖检测传感器中的应用。
本发明的目的通过下述技术方案实现:
一种纳米CeO2-Cu(OH)2复合电极,其由内到外依次包括电极基底、保护层,和纳米CeO2-Cu(OH)2复合物修饰层;
所述纳米CeO2-Cu(OH)2复合物具有三维纳米草阵列结构,这种结构有助于充分利用CeO2的高电导率和Cu(OH)2的强催化活性,从而可以增强检测中的电流响应;
所述保护层为铜层;在电极基底表面电镀铜层作为保护层与缓冲层,可有效提升纳米CeO2-Cu(OH)2复合物和基底的结合力,提高电极的稳定性;
所述的电极基底可以是黄铜片。
上述纳米CeO2-Cu(OH)2复合电极的制备方法,包括以下步骤:
S1、二氧化铈-铜锡合金的制备:在电极基底表面电沉积铜层后置入二氧化铈-铜锡镀液中进行电沉积;
S2、二氧化铈-纳米多孔铜的制备:将经过S1得到的铜锡合金置于稀硫酸中浸泡去除锡成分,得到三维多孔的纳米二氧化铈-多孔铜;
S3、纳米CeO2-Cu(OH)2复合电极的制备:采用电氧化的方法直接将S2得到的纳米二氧化铈-多孔铜在碱性溶液中氧化成CeO2-Cu(OH)2纳米阵列,制得纳米CeO2-Cu(OH)2复合电极;
进一步地,所述步骤S1中,使用前对电极基底进行预先清洗以及干燥,所述清洗包括依次用丙酮、去离子水、酸性混合溶液、去离子水清洗。
进一步地,所述步骤S1中,二氧化铈-铜锡镀液成分为0.8-1.0g/L CeO2、18-20g/LCu2P2O7·3H2O、15-17g/L Sn2P2O7、260-290g/L K4P2O7·3H2O、70-90g/L K2HPO4·3H2O和3-5g/L H3PO4
进一步地,所述步骤S1中,二氧化铈-铜锡镀液电沉积的条件为:电流密度为0.5~2ASD,优选1ASD;时间为3~25min,优选15min。
进一步地,所述步骤S2中,所述稀硫酸浓度为10%。
进一步地,所述步骤S2中,所述浸泡条件为:温度为60~80℃,优选为70℃;浸泡时间为10~20h,优选为15h。
进一步地,所述步骤S3中,所述碱性溶液为1M KOH溶液。
进一步地,所述步骤S3中,所述电氧化条件为:电势区间-0.4~0.4V;扫速为1~5mV s-1,优选3mV s-1
上述纳米CeO2-Cu(OH)2复合电极对葡萄糖具有良好的电化学响应性能,可应用于葡萄糖检测传感器中。
采用线性伏安扫描、计时电流检测等方法对本发明制备的纳米CeO2-Cu(OH)2复合电极对葡萄糖响应性能测试。
本发明相对于现有技术具有如下的优点及效果:
1、本发明采用简易可行的电化学沉积和氧化方法制备了纳米CeO2-Cu(OH)2纳米草阵列结构,大幅提升了电极性能,制备成本较低,无需特别环境和大型仪器。
2、本发明的电极用于葡萄糖时,拥有较低的检出限,较高的灵敏度、良好的抗干扰性能。
附图说明
图1是本发明实施例2制备的二氧化铈-铜锡合金的扫描电镜图。
图2是本发明实施例3制备的二氧化铈-纳米多孔铜的扫描电镜图。
图3是本发明实施例1制备的纳米CeO2-Cu(OH)2复合电极的扫描电镜图。
图4是本发明实施例1采用控制变量法在不同扫速下制备的纳米CeO2-Cu(OH)2复合电极的扫描电镜图。
图5是本发明制备的纳米CeO2-Cu(OH)2复合电极在0.1M KOH溶液中加入不同浓度葡萄糖前后的线性伏安扫描曲线图。
图6是本发明制备的纳米CeO2-Cu(OH)2复合电极对不同浓度葡萄糖溶液的计时电流检测图。
图7是本发明制备的纳米CeO2-Cu(OH)2复合电极对连续等浓度葡萄糖溶液滴加的响应电流密度与葡萄糖浓度的线性拟合图。
图8是本发明制备的纳米CeO2-Cu(OH)2复合电极对葡萄糖的选择性测试。
图9是本发明制备的纳米CeO2-Cu(OH)2复合电极对葡萄糖的长时间测试稳定性测试。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
纳米CeO2-Cu(OH)2复合电极的制备:
S1、二氧化铈-铜锡合金的制备:将黄铜片在丙酮中超声震荡30min除油,用去离子水将除油后的基底清洗干净,浸泡于0.4M Na2S2O8和0.4M H2SO4的混合溶液中除去表层的氧化膜,然后用去离子水清洗并烘干。
在黄铜片的待镀区域上电沉积铜层,之后以黄铜片为工作电极,铂片为对电极,在1g/L CeO2、19g/L Cu2P2O7·3H2O、15.6g/L Sn2P2O7、280g/L K4P2O7·3H2O、80g/L K2HPO4·3H2O和3.95g/L H3PO4的二氧化铈-铜锡镀液中,以电流密度1ASD,时间为15min电镀二氧化铈-铜锡合金。
S2、二氧化铈-纳米多孔铜的制备:将步骤S1得到的铜锡合金置于10%稀硫酸中,在温度70℃下浸泡15h去除锡成分,得到三维多孔的纳米二氧化铈-多孔铜;
S3、纳米CeO2-Cu(OH)2复合电极的制备:采用电氧化的方法直接将步骤S2得到的纳米二氧化铈-多孔铜在0.1M KOH溶液中,在电势区间-0.4~0.4V;扫速为3mV s-1,氧化成CeO2-Cu(OH)2纳米阵列。
待电氧化结束后将电极取出并用去离子水冲洗干净后于烘箱中烘干得到纳米CeO2-Cu(OH)2复合电极。
实施例2
纳米CeO2-Cu(OH)2复合电极的制备,其原料和方法同实施例1;
所不同的是:
步骤S1中,二氧化铈-铜锡镀液成分为0.8g/L CeO2、18g/L Cu2P2O7·3H2O、15g/LSn2P2O7、260g/L K4P2O7·3H2O、70g/L K2HPO4·3H2O和3g/L H3PO4
步骤S3中,扫速为1mV s-1
实施例3
纳米CeO2-Cu(OH)2复合电极的制备,其原料和方法同实施例1;
所不同的是:
步骤S1中,二氧化铈-铜锡镀液成分为0.9g/L CeO2、20g/L Cu2P2O7·3H2O、17g/LSn2P2O7、290g/L K4P2O7·3H2O、90g/L K2HPO4·3H2O和5g/L H3PO4
步骤S3中,扫速为5mV s-1
采用SEM电镜扫描观察本发明制备的纳米CeO2-Cu(OH)2复合电极。
如图1所示,对本发明实施例2制备的二氧化铈-铜锡合金进行SEM检测后得到扫描电镜图。可以观察到合金表面紧密有序,含有清晰的二氧化铈纳米微粒,直径约为20~50nm。
如图2所示,是本发明实施例3制备的二氧化铈-纳米多孔铜的不同倍数的扫描电镜图。其中(A)图为低倍,从图中可以观察到均匀有序的多孔结构,其中多孔铜的韧带约为500nm;(B)图为高倍,可以观察清晰的二氧化铈纳米微粒,直径约为20~50nm。
如图3所示,是本发明制备实施例1的纳米CeO2-Cu(OH)2复合电极的扫描电镜图。可以观察到纳米CeO2-Cu(OH)2呈纳米草阵列排布,二氧化铈在草底部。这样的结构有利于氢氧化铜的催化活性,同时二氧化铈的导电性能会以进一步增强复合电极的传感性能。
如图4所示,是本发明实施例1中采用控制变量法采用1mV s-1、2mV s-1、3mV s-1、4mV s-1和5mV s-1五个速率对CeO2-NPC/Cu电极进行线性伏安扫描五种扫描速度条件下制作的纳米CeO2-Cu(OH)2复合电极的不同倍率SEM图。其中,(A)-(E)分别对应1mV s-1、2mV s-1、3mV s-1、4mV s-1和5mV s-1扫速下的低倍电镜图,(F)-(L)分别对应1mV s-1、2mV s-1、3mV s-1、4mV s-1和5mV s-1扫速下的高倍电镜图。通过观察图中形貌,发现当扫描速度为3mV s-1时,氢氧化铜纳米草生长状态最好且均匀分布在电极表面上。
如图5所示,将本发明实施例1制备的纳米CeO2-Cu(OH)2复合电极置入0.1M KOH溶液,加入不同浓度葡萄糖,并进行线性伏安扫描测试。从图中可看出,当葡萄糖浓度为0时,在0.5V左右处出现一个氧化峰,在0.4V左右处出现一个还原峰,这表明在碱性环境下多孔CeO2-Cu(OH)2发生氧化还原反应,分别对应着Cu(Ⅱ)的氧化和Cu(Ⅲ)的还原。当溶液中加入一定浓度的葡萄糖后,阳极电流递增,这表明纳米CeO2-Cu(OH)2复合电极可以电催化氧化葡萄糖。
如图6所示,将本发明实施例1制备的纳米CeO2-Cu(OH)2复合电极置入0.1M KOH溶液中逐步滴加葡萄糖溶液,选定测试电位0.6V,进行计时电流检测。从图中可看出,随着葡萄糖浓度的增加,电流迅速提高并保持稳定,提交趋势呈阶梯状。内插图为电极在低浓度葡萄糖溶液中的电流响应,滴加200nM葡萄糖依然可以观察到电流明显的上升台阶。
如图7所示,将本发明实施例1制备的纳米CeO2-Cu(OH)2复合电极对连续等浓度葡萄糖溶液滴加的响应电流密度数据与葡萄糖浓度进行线性拟合。从图中可看出,在葡萄糖浓度范围为0.00~2.50mM时,纳米CeO2-Cu(OH)2复合电极对葡萄糖有良好的线性响应,线性拟合方程相关系数为0.9919,可计算电极检测葡萄糖的灵敏度为2.3mA mM-1cm-2
以上说明本发明制备的纳米CeO2-Cu(OH)2复合电极对葡萄糖检测的检出限较低且灵敏度高。
如图8所示,将本发明实施例1制备的纳米CeO2-Cu(OH)2复合电极置入0.1M KOH溶液中,依次加入0.5mM葡萄糖,0.05mM尿素(Urea),0.05mM尿酸(UA),0.05mM抗坏血酸(AA),0.05mM多巴胺(DA)和0.5mM葡萄糖,并进行计时电流测试。从图中可看出,加入葡萄糖后产生明显的电流响应,而加入干扰物质的电流变化远远小于葡萄糖的电流响应,说明本发明制备的纳米CeO2-Cu(OH)2复合电极多葡萄糖具备良好的抗干扰性能,可以在复杂测试环境下进行葡萄糖的检测。
如图9所示,将本发明实施例1制备的纳米CeO2-Cu(OH)2复合电极置入0.1M KOH溶液中,测定其对加入0.5M葡萄糖的长期稳定性,从图中可以看出经过4000s长期测试,电极对葡萄糖的响应几乎不变。说明此复合电极对葡萄糖测试具有很好的稳定性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.纳米CeO2-Cu(OH)2复合电极的制备方法,其特征在于包括以下步骤:
S1、二氧化铈-铜锡合金的制备:在电极基底表面电沉积铜层后置入二氧化铈-铜锡镀液中进行电沉积;
S2、二氧化铈-纳米多孔铜的制备:将经过S1得到的铜锡合金置于稀硫酸中浸泡去除锡成分,得到三维多孔的纳米二氧化铈-多孔铜;
S3、纳米CeO2-Cu(OH)2复合电极的制备:采用电氧化方法将S2得到的纳米二氧化铈-多孔铜在碱性溶液中氧化成CeO2-Cu(OH)2纳米阵列,制得纳米CeO2-Cu(OH)2复合电极;
步骤S1中,所述二氧化铈-铜锡镀液成分为0.8-1.0g/L CeO2、18-20g/L Cu2P2O7·3H2O、15-17g/L Sn2P2O7、260-290g/L K4P2O7·3H2O、70-90g/L K2HPO4·3H2O和3-5g/L H3PO4
步骤S3中,所述电氧化方法的扫速为1~5mV s-1
2.根据权利要求1所述的制备方法,其特征在于:所述纳米CeO2-Cu(OH)2复合物具有三维纳米草阵列结构,由内到外依次包括电极基底、保护层,和纳米CeO2-Cu(OH)2复合物修饰层。
3.根据权利要求2所述的制备方法,其特征在于:所述保护层为铜层;所述的电极基底是黄铜片。
4.根据权利要求3所述的制备方法,其特征在于:步骤S1中,所述二氧化铈-铜锡镀液电沉积的条件为:电流密度为0.5~2ASD,时间为3~25min。
5.根据权利要求3所述的制备方法,其特征在于:步骤S2中,所述稀硫酸浓度为10%。
6.根据权利要求3所述的制备方法,其特征在于:步骤S2中,所述浸泡条件为:温度为60~80℃,浸泡时间为10~20h。
7.根据权利要求3所述的制备方法,其特征在于:步骤S3中,所述碱性溶液为1M KOH溶液。
8.根据权利要求3所述的制备方法,其特征在于:步骤S3中,所述电氧化条件为:电势区间-0.4~0.4V,扫速3mV s-1
CN202010596093.4A 2020-06-28 2020-06-28 一种二氧化铈修饰氢氧化铜复合电极及在葡萄糖传感器中的应用 Active CN111796014B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010596093.4A CN111796014B (zh) 2020-06-28 2020-06-28 一种二氧化铈修饰氢氧化铜复合电极及在葡萄糖传感器中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010596093.4A CN111796014B (zh) 2020-06-28 2020-06-28 一种二氧化铈修饰氢氧化铜复合电极及在葡萄糖传感器中的应用

Publications (2)

Publication Number Publication Date
CN111796014A CN111796014A (zh) 2020-10-20
CN111796014B true CN111796014B (zh) 2021-07-16

Family

ID=72803180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010596093.4A Active CN111796014B (zh) 2020-06-28 2020-06-28 一种二氧化铈修饰氢氧化铜复合电极及在葡萄糖传感器中的应用

Country Status (1)

Country Link
CN (1) CN111796014B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112578010A (zh) * 2020-12-02 2021-03-30 广州钰芯智能科技研究院有限公司 一种纳米多孔铜复合微电极及其制备方法与在无酶检测葡萄糖中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106996953A (zh) * 2017-04-18 2017-08-01 清华大学 一种用于葡萄糖检测的纳米氢氧化铜电极及其制备方法
WO2018184018A1 (en) * 2017-03-31 2018-10-04 The Johns Hopkins University Preparation and pretreatment techniques of cu/ceo2 catalysts for low temperature direct decomposition of nox exhaust gas
CN110530944A (zh) * 2019-08-19 2019-12-03 广州钰芯传感科技有限公司 一种基于铜基纳米复合结构的便携式微型葡萄糖无酶传感电极及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018184018A1 (en) * 2017-03-31 2018-10-04 The Johns Hopkins University Preparation and pretreatment techniques of cu/ceo2 catalysts for low temperature direct decomposition of nox exhaust gas
CN106996953A (zh) * 2017-04-18 2017-08-01 清华大学 一种用于葡萄糖检测的纳米氢氧化铜电极及其制备方法
CN110530944A (zh) * 2019-08-19 2019-12-03 广州钰芯传感科技有限公司 一种基于铜基纳米复合结构的便携式微型葡萄糖无酶传感电极及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A Flexible Portable Glucose Sensor Based on Hierarchical Arrays of Au@Cu(OH)2 Nanograss;Min Jiang 等;《sensors》;20191119;第19卷;第1-13页 *
Non-Enzymatic Glucose Biosensor Based on CuO-Decorated CeO2 Nanoparticles;Panpan Guan 等;《nanomaterials》;20160826;第6卷(第9期);第1-6页 *
Non-enzymatic sensing of glucose using screen-printed electrode modified with novel synthesized CeO2@CuO core shell nanostructure;Dayakar T.等;《Biosensors and Bioelectronics》;20180328;第111卷;第166-173页 *

Also Published As

Publication number Publication date
CN111796014A (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
Yuan et al. Highly ordered platinum‐nanotubule arrays for amperometric glucose sensing
Leonardi et al. In-situ grown flower-like nanostructured CuO on screen printed carbon electrodes for non-enzymatic amperometric sensing of glucose
Suneesh et al. Co–Cu alloy nanoparticles decorated TiO2 nanotube arrays for highly sensitive and selective nonenzymatic sensing of glucose
Bai et al. Facile synthesis of porous tubular palladium nanostructures and their application in a nonenzymatic glucose sensor
Weina et al. A novel β-MnO2 micro/nanorod arrays directly grown on flexible carbon fiber fabric for high-performance enzymeless glucose sensing
Chen et al. A portable micro glucose sensor based on copper-based nanocomposite structure
Noorbakhsh et al. Amperometric detection of hydrogen peroxide at nano-nickel oxide/thionine and celestine blue nanocomposite-modified glassy carbon electrodes
US11280015B2 (en) Non-enzyme sensor, non-enzyme sensor element and fabricating method thereof
Maghsoudi et al. Reduced graphene oxide nanosheets decorated with cobalt oxide nanoparticles: A nonenzymatic electrochemical approach for glucose detection
Meng et al. A sensitive non-enzymatic glucose sensor in alkaline media based on cu/MnO 2-modified glassy carbon electrode
Wang et al. Electrochemical performance and biosensor application of TiO 2 nanotube arrays with mesoporous structures constructed by chemical etching
CN108414599B (zh) 铜纳米颗粒无酶电化学葡萄糖传感器的制备方法
Naderi et al. Metal-organic framework-assisted Co3O4/CuO@ CoMnP with core-shell nanostructured architecture on Cu fibers for fabrication of flexible wire-typed enzyme-free micro-sensors
CN111796014B (zh) 一种二氧化铈修饰氢氧化铜复合电极及在葡萄糖传感器中的应用
CN113030210B (zh) 一种碳点/铋膜修饰玻碳电极的制备及检测镉和铅离子的方法
Stanley et al. Vertically aligned TiO2 nanotube arrays decorated with CuO mesoclusters for the nonenzymatic sensing of glucose
CN111272843B (zh) 一种纳米线构建的FeCo网状结构纳米材料及其制备方法与应用
KR101284509B1 (ko) Cu-Co 합금 덴드라이트 전극 및 이를 포함하는 바이오 센서
Solangi et al. Phytochemicals of mustard (Brassica Campestris) leaves tuned the nickel‐cobalt bimetallic oxide properties for enzyme‐free sensing of glucose
Miao et al. Graphene/nano-ZnO hybrid materials modify Ni-foam for high-performance electrochemical glucose sensors
CN109187698B (zh) 一种基于硫化镍纳米酶的双氧水电化学传感器
Wei et al. Porous nitrogen-doped reduced graphene oxide-supported CuO@ Cu2O hybrid electrodes for highly sensitive enzyme-free glucose biosensor
CN115561293A (zh) 一种氧化锌修饰纳米多孔金及其制备方法和应用
Ji et al. Direct growth of copper oxide films on Ti substrate for nonenzymatic glucose sensors
Kamyabi et al. A promising sensitive electrochemiluminescence hydrogen peroxide sensor based on incorporated CuO nanostructures on 3-D Ni foam

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant