CN111793241A - 一种苎麻骨纳米晶纤维素气凝胶及其制备方法 - Google Patents

一种苎麻骨纳米晶纤维素气凝胶及其制备方法 Download PDF

Info

Publication number
CN111793241A
CN111793241A CN202010715302.2A CN202010715302A CN111793241A CN 111793241 A CN111793241 A CN 111793241A CN 202010715302 A CN202010715302 A CN 202010715302A CN 111793241 A CN111793241 A CN 111793241A
Authority
CN
China
Prior art keywords
nanocrystalline cellulose
ramie bone
ramie
bone
aerogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010715302.2A
Other languages
English (en)
Inventor
崔永明
石从众
赵逸飞
王金凤
唐彬
陈悟
董雄伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Textile University
Original Assignee
Wuhan Textile University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Textile University filed Critical Wuhan Textile University
Priority to CN202010715302.2A priority Critical patent/CN111793241A/zh
Publication of CN111793241A publication Critical patent/CN111793241A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供了一种苎麻骨纳米晶纤维素气凝胶的制备方法,包括以下步骤:将苎麻骨纳米晶纤维素悬浮液进行渗透浓缩,再依次进行喷雾冷冻和真空冷冻干燥,得到苎麻骨纳米晶纤维素气凝胶。本发明以苎麻骨纳米晶纤维素悬浮液为原料,通过渗透浓缩得到苎麻骨纳米晶纤维素水凝胶,再通过喷雾冷冻使水凝胶瞬间凝结成微小的冰冻颗粒,防止了冰晶生长破坏凝胶结构,同时可使苎麻骨纳米晶纤维素气凝胶的孔径减小到纳米级,降低气凝胶的导热率,最后通过真空冷冻干燥使冰冻颗粒升华干燥,进而得到了导热率低的苎麻骨纳米晶纤维素气凝胶。实施例的结果显示,采用本发明提供的制备方法制得的苎麻骨纳米晶纤维素气凝胶导热系数为0.019W/(m·K)。

Description

一种苎麻骨纳米晶纤维素气凝胶及其制备方法
技术领域
本发明涉及绝热材料技术领域,尤其涉及一种苎麻骨纳米晶纤维素气凝胶及其制备方法。
背景技术
纤维素由于其可再生性、生物相容性和生物降解性,已被广泛应用制作各种材料。其中,利用纤维素及其衍生物制备生物气凝胶也被广泛研究,部分气凝胶的导热系数很低,作为绝热材料有较大的应用潜力。
现有技术中,常见的制备生物气凝胶的方法有超临界干燥法和真空冷冻干燥法。其中,采用超临界干燥法制得的生物气凝胶导热率低,绝热效果好,但需要使用专门的超临界干燥设备,成本较高。而采用传统的真空冷冻干燥法制得的生物气凝胶具有较大的孔隙结构,导热率较高,绝热效果差。
发明内容
本发明的目的在于提供一种苎麻骨纳米晶纤维素气凝胶及其制备方法,本发明提供的制备方法无需使用专门的设备,且制得的苎麻骨纳米晶纤维素气凝胶导热率低。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种苎麻骨纳米晶纤维素气凝胶的制备方法,包括以下步骤:
1)将苎麻骨纳米晶纤维素悬浮液进行渗透浓缩,得到苎麻骨纳米晶纤维素水凝胶;
2)将所述步骤1)得到的苎麻骨纳米晶纤维素水凝胶依次进行喷雾冷冻和真空冷冻干燥,得到苎麻骨纳米晶纤维素气凝胶。
优选地,所述步骤1)中渗透浓缩所用透析液包括葡聚糖水溶液、聚乙二醇或聚丙二醇中的一种。
优选地,所述步骤1)中渗透浓缩所用透析液的浓度为15~20wt%。
优选地,所述步骤1)中渗透浓缩所用透析袋的规格为12~14kDa。
优选地,所述步骤1)中苎麻骨纳米晶纤维素水凝胶的浓度为2.0~3.0wt%。
优选地,所述步骤2)中喷雾冷冻的温度为-70℃~-90℃。
优选地,所述步骤2)中喷雾冷冻的压力为1.3~1.7bar。
优选地,所述步骤2)中喷雾冷冻的喷嘴内径为0.2~0.3mm。
优选地,所述步骤2)中真空冷冻干燥的温度为-50℃~-60℃。
本发明提供了上述技术方案所述制备方法制备得到的苎麻骨纳米晶纤维素气凝胶。
本发明提供了一种苎麻骨纳米晶纤维素气凝胶的制备方法,包括以下步骤:将苎麻骨纳米晶纤维素悬浮液进行渗透浓缩,得到苎麻骨纳米晶纤维素水凝胶;将苎麻骨纳米晶纤维素水凝胶依次进行喷雾冷冻和真空冷冻干燥,得到苎麻骨纳米晶纤维素气凝胶。本发明以苎麻骨纳米晶纤维素悬浮液为原料,通过渗透浓缩得到苎麻骨纳米晶纤维素水凝胶,再通过喷雾冷冻使水凝胶瞬间凝结成微小的冰冻颗粒,防止了冰晶生长破坏凝胶结构,同时可使苎麻骨纳米晶纤维素气凝胶的孔径减小到纳米级,降低气凝胶的导热率,最后通过真空冷冻干燥使冰冻颗粒升华干燥,进而得到了导热率低的苎麻骨纳米晶纤维素气凝胶。实施例的结果显示,采用本发明提供的制备方法制得的苎麻骨纳米晶纤维素气凝胶导热系数为0.019W/(m·K)。
此外,本发明提供的苎麻骨纳米晶纤维素气凝胶的制备方法无需使用专用设备,操作简单,成本低,易于工业化应用。
附图说明
图1为本发明实施例1制得的苎麻骨纳米晶纤维素水凝胶;
图2为本发明实施例1制得的苎麻骨纳米晶纤维素气凝胶;
图3为本发明实施例1制得的苎麻骨纳米晶纤维素气凝胶的SEM图。
具体实施方式
本发明提供了一种苎麻骨纳米晶纤维素气凝胶的制备方法,包括以下步骤:
1)将苎麻骨纳米晶纤维素悬浮液进行渗透浓缩,得到苎麻骨纳米晶纤维素水凝胶;
2)将所述步骤1)得到的苎麻骨纳米晶纤维素水凝胶依次进行喷雾冷冻和真空冷冻干燥,得到苎麻骨纳米晶纤维素气凝胶。
本发明将苎麻骨纳米晶纤维素悬浮液进行渗透浓缩,得到苎麻骨纳米晶纤维素水凝胶。本发明用苎麻骨纳米晶纤维素悬浮液制备气凝胶,苎麻骨资源丰富,原料资源丰富、成本廉价,既解决了苎麻骨焚烧污染环境问题,又提高了苎麻资源综合利用价值,并且苎麻骨纳米晶纤维素本身质地柔软较轻,且具有较大的孔状网络结构和比表面积,进而有利于得到低密度、高孔隙率、大比表面积的苎麻骨纳米晶纤维素气凝胶。
本发明对所述苎麻骨纳米晶纤维素悬浮液的制备方法没有特殊的限定,采用本领域技术人员熟知的制备纳米晶纤维素悬浮液的方法即可。在本发明中,所述苎麻骨纳米晶纤维素悬浮液的制备方法优选为申请号为ZL201610861001.4一种苎麻骨纤维素纳米晶自组装结构色薄膜的制备方法中苎麻骨纳米晶纤维素悬浮液的制备方法。
在本发明中,所述渗透浓缩优选为:将苎麻骨纳米晶纤维素悬浮液置于透析袋中,再将透析袋浸没在透析液中,并且每25~35h置换一次透析液。本发明通过渗透浓缩将苎麻骨纳米晶纤维素悬浮液浓缩至所需的浓度,并通过限定透析液的浓度,保持了苎麻骨纳米晶纤维素的结构。
在本发明中,所述透析液优选包括葡聚糖水溶液、聚乙二醇或聚丙二醇中的一种,更优选为葡聚糖水溶液。本发明对所述透析液的配制方法没有特殊的限定,采用本领域技术人员熟知的配制方法配制即可。
在本发明中,所述透析液的浓度优选为15~20wt%,更优选为15~18wt%。本发明优选将所述透析液的浓度控制在上述范围内,有利于保持苎麻骨纳米晶纤维素的结构。当透析液浓度过高时,浓缩速率过快,会影响苎麻骨纳米晶纤维素的结构;而浓度过低,浓缩速率过慢,无法使苎麻骨纳米晶纤维素悬浮液浓缩至需要的浓度。
在本发明中,所述透析袋的规格优选为12~14kDa,更优选为13~14kDa。本发明优选将所述透析袋的规格控制在上述范围内,可拦截苎麻骨纳米晶纤维素,而苎麻骨纳米晶纤维素悬浮液中的水分子可以透过透析袋进入到透析液中。
在本发明中,所述苎麻骨纳米晶纤维素水凝胶的浓度优选为2.0~3.0wt%,更优选为3.0wt%。本发明优选将所述苎麻骨纳米晶纤维素水凝胶的浓度控制在上述范围内,有利于喷雾冷冻的进行。
得到苎麻骨纳米晶纤维素水凝胶后,本发明对所述苎麻骨纳米晶纤维素水凝胶依次进行喷雾冷冻和真空冷冻干燥,得到苎麻骨纳米晶纤维素气凝胶。
本发明对所述苎麻骨纳米晶纤维素水凝胶进行喷雾冷冻,可使水凝胶瞬间凝结成微小的冰冻颗粒,既防止了冰晶生长破坏凝胶结构,又可使苎麻骨纳米晶纤维素气凝胶的孔径减小到纳米级,降低气凝胶的导热率。
在本发明中,所述喷雾冷冻的温度优选为-70℃~-90℃,更优选为-70℃~-80℃。本发明优选将所述喷雾冷冻的温度控制在上述范围内,有利于使水凝胶瞬间冷冻成微小颗粒,从而使苎麻骨纳米晶纤维素结构不被影响。
在本发明中,所述喷雾冷冻的压力优选为1.3~1.7bar,更优选为1.5~1.7bar。本发明优选将所述喷雾冷冻的压力控制在上述范围内,有利于保持苎麻骨纳米晶纤维素水凝胶的结构。当压力过小时,苎麻骨纳米晶纤维素水凝胶无法喷雾出来,而压力过大,又会破坏苎麻骨纳米晶纤维素水凝胶的结构,进而影响最终苎麻骨纳米晶纤维素气凝胶的导热率。在本发明的具体实施方式中,所述喷雾冷冻具体为液氮冷冻。
在本发明中,所述喷雾冷冻的喷嘴内径优选为0.2~0.3mm,更优选为0.3mm。本发明优选将所述喷雾冷冻的喷嘴内径控制在上述范围内,有利于喷雾的形成,进而冷冻形成微小颗粒。当喷嘴内径过小,苎麻骨纳米晶纤维素水凝胶会堵塞喷嘴,而喷嘴内径过大,无法形成雾状,进而无法冷冻成微小颗粒,最终影响苎麻骨纳米晶纤维素气凝胶的导热率。在本发明的具体实施方式中,所述喷嘴的材质优选为不锈钢。
本发明对所述喷雾冷冻的时间没有特殊的限定,根据制备的苎麻骨纳米晶纤维素气凝胶的厚度确定即可。在本发明中,所述苎麻骨纳米晶纤维素气凝胶的厚度优选为1~10cm,更优选为2~6cm。
本发明对所述真空冷冻干燥的操作没有特殊的要求,采用本领域技术人员熟知的真空冷冻干燥的方法即可。本发明通过真空冷冻干燥将冰冻颗粒升华干燥,得到苎麻骨纳米晶纤维素气凝胶。在本发明的具体实施方式中,所述真空冷冻干燥的设备优选为真空冷冻干燥机。
在本发明中,所述真空冷冻干燥的温度优选为-50℃~-60℃,更优选为-50℃~-55℃。本发明优选将所述真空冷冻干燥的温度控制在上述范围内,有利于得到导热率低的苎麻骨纳米晶纤维素气凝胶。
在本发明中,所述真空冷冻干燥的时间优选为24~48h,更优选为24~36h。在本发明中,所述真空冷冻干燥的真空度优选为小于0.1mbar。
本发明以苎麻骨纳米晶纤维素悬浮液为原料,通过渗透浓缩得到苎麻骨纳米晶纤维素水凝胶,再通过喷雾冷冻使水凝胶瞬间凝结成微小的冰冻颗粒,防止了冰晶生长破坏凝胶结构,同时可使苎麻骨纳米晶纤维素气凝胶的孔径减小到纳米级,降低气凝胶的导热率,最后通过真空冷冻干燥使冰冻颗粒升华干燥,进而得到了导热率低的苎麻骨纳米晶纤维素气凝胶。
本发明还提供了上述技术方案所述制备方法制备得到的苎麻骨纳米晶纤维素气凝胶。本发明提供的苎麻骨纳米晶纤维素气凝胶孔径为20~110nm,导热系数为0.019~0.022W/(m·K),低于相同条件下空气的导热系数0.027W/(m·K),可以作为超级热绝缘材料,并且具有较低的密度0.021~0.032g/cm3、较高的孔隙率98~99%和较大的比表面积86~99m2/g。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
取100g苎麻骨粉,加入500mL蒸馏水,于121℃蒸汽爆破处理20min;取50g经预处理后的苎麻骨粉,加入1500mL 10%的NaOH溶液在75℃条件下蒸煮6h,静置12h后,抽滤,滤渣用200mL蒸馏水浸泡2h,过滤,重复操作3次,将滤渣烘干,得到苎麻骨粗纤维素;取30g苎麻骨粗纤维素,在55℃的水浴中,加入750mL 5%H2O2反应8h,然后过滤,滤渣用蒸馏水冲洗3次,干燥既得苎麻骨纤维素;取苎麻骨纤维素2.0g,加入20mL 68%的硫酸,55℃下磁力搅拌反应35min,控制搅拌转速为700rpm,反应液冷却静置5h后,在转速为5000rpm的条件下离心处理10min,除去上清液,沉淀加等量蒸馏水洗涤,重复上述离心和洗涤操作5次,将得到的悬浮液转移至透析袋中进行透析,至透析液pH值为7时结束透析,得到苎麻骨纳米晶纤维素悬浮液;使用透射电子显微镜检测纳米晶纤维素的尺寸,该纳米晶纤维素尺寸为5±0.4nm×180±6nm(直径×长度);
取上述苎麻骨纳米晶纤维素悬浮液20mL置于14kDa的透析袋中,将透析袋浸没在20wt%的葡聚糖水溶液中,每35h置换一次葡聚糖水溶液,至苎麻骨纳米晶纤维素悬浮液中苎麻骨纳米晶纤维素的浓度为3.0wt%时结束渗透浓缩,即得苎麻骨纳米晶纤维素水凝胶(见图1);
将苎麻骨纳米晶纤维素水凝胶在1.7bar的恒压下用内径为0.3mm的不锈钢喷嘴喷雾到-80℃液氮冷冻的容器中冷冻,得到厚度为1.1cm的冷冻样品,再将冷冻样品置于真空冷冻干燥机中,在-55℃、真空度小于0.1mbar的条件下干燥48h,即得苎麻骨纳米晶纤维素气凝胶(见图2);
测得苎麻骨纳米晶纤维素气凝胶的密度为0.033g/cm3,远小于聚多糖衍生物制备的气凝胶密度0.25~0.85g/cm3;BET法测得比表面积为85.63m2/g,孔隙率为98%,高于聚多糖衍生物制备的气凝胶孔隙率41~85%(参见Cellulose-based aerogels,FischerF,RigacciA,Pirard R,et al.,Polymer,2006,47(22),7636-7645);
孔径分布范围为20~110nm,主要分布在50nm左右,与用超临界干燥法制备的纤维素气凝胶孔径一致(参见Aerogels with 3D Ordered Nanofiber Skeletons of Liquid-Crystalline Nanocellulose Derivatives as Tough and Transparent Insulators,Kobayashi,K.et al.,Angewandte Chemie International Edition,2014,53(39),10394-10397),但是小于传统真空冷冻干燥法制备的纤维素气凝胶(参见Advancedthermalinsulation and absorptionproperties of recycledcellulose aerogels,Nguyen,S.T.et al.Colloids and Surfaces A:Physicochemical and EngineeringAspects,2014,445,128-134);
导热系数为0.019W/(m·K),低于相同条件下空气的导热系数0.027W/(m·K)。
实施例2
取实施例1制得的苎麻骨纳米晶纤维素悬浮液20mL置于12kDa的透析袋中,将透析袋浸没在15wt%的葡聚糖水溶液中,每25h置换一次葡聚糖水溶液,至苎麻骨纳米晶纤维素悬浮液中纳米晶纤维素浓度为2.0wt%时结束渗透浓缩,即得苎麻骨纳米晶纤维素水凝胶;
将苎麻骨纳米晶纤维素水凝胶在1.3bar的恒压下用内径为0.2mm的不锈钢喷嘴喷雾到-80℃液氮冷冻的容器中冷冻,得到厚度为1.2cm的冷冻样品,再将冷冻样品置于真空冷冻干燥机中,在-55℃、真空小于0.1mbar的条件下干燥24h,即得苎麻骨纳米晶纤维素气凝胶。
测得苎麻骨纳米晶纤维素气凝胶的密度为0.021g/cm3,采用BET法测得气凝胶的孔隙率为99%,比表面积98.65m2/g,孔径分布范围为20~110nm,主要分布在60nm左右;导热系数为0.022W/(m·K)。
实施例3
取实施例1制得的苎麻骨纳米晶纤维素悬浮液20mL置于12kDa的透析袋中,将透析袋浸没在20wt%的聚乙二醇中,每25h置换一次聚乙二醇,至苎麻骨纳米晶纤维素悬浮液中纳米晶纤维素浓度为2.6wt%时结束渗透浓缩,即得苎麻骨纳米晶纤维素水凝胶;
将苎麻骨纳米晶纤维素水凝胶在1.5bar的恒压下用内径为0.3mm的不锈钢喷嘴喷雾到-80℃液氮冷冻的容器中冷冻,得到厚度为1.1cm的冷冻样品,再将冷冻样品置于真空冷冻干燥机中,在-55℃、真空小于0.1mbar的条件下干燥36h,即得苎麻骨纳米晶纤维素气凝胶。
测得苎麻骨纳米晶纤维素气凝胶的密度为0.026g/cm3,采用BET法测的气凝胶的孔隙率为99%,比表面积91.38m2/g,孔径分布范围为20~110nm,主要分布在55nm左右;导热系数为0.021W/(m·K)。
由以上实施例可以看出,采用本发明的制备方法制备的苎麻骨纳米晶纤维素气凝胶密度小、比表面积大、孔隙率高、导热系数小、孔径小。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种苎麻骨纳米晶纤维素气凝胶的制备方法,包括以下步骤:
1)将苎麻骨纳米晶纤维素悬浮液进行渗透浓缩,得到苎麻骨纳米晶纤维素水凝胶;
2)将所述步骤1)得到的苎麻骨纳米晶纤维素水凝胶依次进行喷雾冷冻和真空冷冻干燥,得到苎麻骨纳米晶纤维素气凝胶。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤1)中渗透浓缩所用透析液包括葡聚糖水溶液、聚乙二醇或聚丙二醇中的一种。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤1)中渗透浓缩所用透析液的浓度为15~20wt%。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤1)中渗透浓缩所用透析袋的规格为12~14kDa。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤1)中苎麻骨纳米晶纤维素水凝胶的浓度为2.0~3.0wt%。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤2)中喷雾冷冻的温度为-70℃~-90℃。
7.根据权利要求1或6所述的制备方法,其特征在于,所述步骤2)中喷雾冷冻的压力为1.3~1.7bar。
8.根据权利要求1或6所述的制备方法,其特征在于,所述步骤2)中喷雾冷冻的喷嘴内径为0.2~0.3mm。
9.根据权利要求1所述的制备方法,其特征在于,所述步骤2)中真空冷冻干燥的温度为-50℃~-60℃。
10.权利要求1~9任一项所述制备方法制备得到的苎麻骨纳米晶纤维素气凝胶。
CN202010715302.2A 2020-07-23 2020-07-23 一种苎麻骨纳米晶纤维素气凝胶及其制备方法 Pending CN111793241A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010715302.2A CN111793241A (zh) 2020-07-23 2020-07-23 一种苎麻骨纳米晶纤维素气凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010715302.2A CN111793241A (zh) 2020-07-23 2020-07-23 一种苎麻骨纳米晶纤维素气凝胶及其制备方法

Publications (1)

Publication Number Publication Date
CN111793241A true CN111793241A (zh) 2020-10-20

Family

ID=72827102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010715302.2A Pending CN111793241A (zh) 2020-07-23 2020-07-23 一种苎麻骨纳米晶纤维素气凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN111793241A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174081A (zh) * 2021-04-25 2021-07-27 哈尔滨工业大学 一种超薄气凝胶薄膜的制备方法
CN114011345A (zh) * 2021-11-12 2022-02-08 清远高新华园科技协同创新研究院有限公司 一种纳米纤维素气凝胶及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155456A1 (en) * 2016-03-11 2017-09-14 Innventia Ab Method of producing shape-retaining cellulose products, and shape-retaining cellulose products therefrom
CN107199020A (zh) * 2017-06-08 2017-09-26 东北林业大学 一种超疏水吸油纳米纤维素气凝胶材料的制备方法
CN107840988A (zh) * 2017-11-24 2018-03-27 中国科学技术大学 一种纳米纤维素气凝胶的制备方法及保温隔热材料
CN107964126A (zh) * 2017-11-15 2018-04-27 中国林业科学研究院木材工业研究所 改性纤维素纳米晶体、高强水凝胶材料、制备方法及应用
CN108083253A (zh) * 2017-12-29 2018-05-29 中国林业科学研究院木材工业研究所 一种无机-纤维素复合碳气凝胶及其制备方法
CN110394150A (zh) * 2019-07-17 2019-11-01 江苏大学 一种镧改性的介孔二氧化硅气凝胶及其制备方法和用途
CN111269444A (zh) * 2020-01-22 2020-06-12 苏州新丝原生物科技有限公司 一种交联微球及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155456A1 (en) * 2016-03-11 2017-09-14 Innventia Ab Method of producing shape-retaining cellulose products, and shape-retaining cellulose products therefrom
CN107199020A (zh) * 2017-06-08 2017-09-26 东北林业大学 一种超疏水吸油纳米纤维素气凝胶材料的制备方法
CN107964126A (zh) * 2017-11-15 2018-04-27 中国林业科学研究院木材工业研究所 改性纤维素纳米晶体、高强水凝胶材料、制备方法及应用
CN107840988A (zh) * 2017-11-24 2018-03-27 中国科学技术大学 一种纳米纤维素气凝胶的制备方法及保温隔热材料
CN108083253A (zh) * 2017-12-29 2018-05-29 中国林业科学研究院木材工业研究所 一种无机-纤维素复合碳气凝胶及其制备方法
CN110394150A (zh) * 2019-07-17 2019-11-01 江苏大学 一种镧改性的介孔二氧化硅气凝胶及其制备方法和用途
CN111269444A (zh) * 2020-01-22 2020-06-12 苏州新丝原生物科技有限公司 一种交联微球及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CLARAJIMÉNEZ-SAELICES ET AL: ""Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties"", 《CARBOHYDRATE POLYMERS》, vol. 157, 22 September 2016 (2016-09-22), pages 105 - 113, XP029848586, DOI: 10.1016/j.carbpol.2016.09.068 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174081A (zh) * 2021-04-25 2021-07-27 哈尔滨工业大学 一种超薄气凝胶薄膜的制备方法
CN114011345A (zh) * 2021-11-12 2022-02-08 清远高新华园科技协同创新研究院有限公司 一种纳米纤维素气凝胶及其制备方法与应用
CN114011345B (zh) * 2021-11-12 2024-05-28 清远高新华园科技协同创新研究院有限公司 一种纳米纤维素气凝胶及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN111793241A (zh) 一种苎麻骨纳米晶纤维素气凝胶及其制备方法
Chen et al. Ultralight and highly flexible aerogels with long cellulose I nanofibers
JP5162752B2 (ja) セルロースエアロゲル及びその製造方法
CN106747572B (zh) 一种碳纳米管气凝胶的制备方法
Köhnke et al. Nanoreinforced xylan–cellulose composite foams by freeze-casting
CN101497444B (zh) 一种真空冷冻干燥法制备大比表面积纳米多孔材料的方法
KR101369681B1 (ko) 중축합 반응성 수지로 이루어진 나노다공성 중합체 발포체
CA2745479C (en) Redispersible dried nanocrystalline cellulose
CN108192129A (zh) 一种超疏水聚偏氟乙烯气凝胶材料及其制备方法
CN106750503B (zh) 一种ZnO/纤维素复合气凝胶的制备方法
KR20090030131A (ko) 영구적인 소수성을 갖는 고투광성 입상형 에어로겔제조방법 및 이로부터 제조된 입상형 에어로겔
CN114377187B (zh) 一种弹性气凝胶及其制备方法
JP2011080171A (ja) 複合多孔材料及びその製造方法
KR20090118200A (ko) 카본 에어로겔의 제조방법 및 그 제조방법에 의하여 제조된카본 에어로겔
KR20180104472A (ko) 마이크로기공과 메조기공이 공존하는 구형의 위계다공성 카본 및 그 제조방법
Wei et al. One‐step preparation of hydrogel based on different molecular weights of chitosan with citric acid
CN110157044A (zh) 一种天然纳米纤维素基复合隔热气凝胶及其制备方法
Dzyazko et al. Polysaccharides: An efficient tool for fabrication of carbon nanomaterials
Nguyen et al. Aerogel templating on functionalized fibers of nanocellulose networks
CN109046190B (zh) 一种果胶复合二氧化硅气凝胶及其制备方法与应用
CN114437389B (zh) 一种具有高表面拉曼增强效应有序纳米褶皱纤维素复合膜及其制备方法
US5190987A (en) Method for drying foams
CN114479079B (zh) 一种聚酰亚胺气凝胶及其制备方法
CN113637234B (zh) 一种弹性纤维素气凝胶及其制备方法和应用
CN111115643A (zh) 一种改性二氧化硅多孔材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201020