CN111785678A - Semiconductor device and method of making the same - Google Patents
Semiconductor device and method of making the same Download PDFInfo
- Publication number
- CN111785678A CN111785678A CN202010742808.2A CN202010742808A CN111785678A CN 111785678 A CN111785678 A CN 111785678A CN 202010742808 A CN202010742808 A CN 202010742808A CN 111785678 A CN111785678 A CN 111785678A
- Authority
- CN
- China
- Prior art keywords
- silicon
- laser
- top layer
- semiconductor device
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 143
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 143
- 239000010703 silicon Substances 0.000 claims abstract description 143
- 239000012212 insulator Substances 0.000 claims abstract description 45
- 230000003287 optical effect Effects 0.000 claims abstract description 38
- 238000002360 preparation method Methods 0.000 claims abstract description 16
- 230000000694 effects Effects 0.000 claims abstract description 13
- 239000010410 layer Substances 0.000 claims description 130
- 235000012431 wafers Nutrition 0.000 claims description 48
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 29
- 230000008719 thickening Effects 0.000 claims description 27
- 239000000377 silicon dioxide Substances 0.000 claims description 20
- 235000012239 silicon dioxide Nutrition 0.000 claims description 20
- 238000005530 etching Methods 0.000 claims description 14
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 13
- 239000011241 protective layer Substances 0.000 claims description 13
- 239000002210 silicon-based material Substances 0.000 claims description 13
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 12
- 229920005591 polysilicon Polymers 0.000 claims description 10
- 238000000231 atomic layer deposition Methods 0.000 claims description 4
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 238000005240 physical vapour deposition Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Optical Integrated Circuits (AREA)
Abstract
一种半导体器件及其制备方法,其中所述半导体器件的制备方法包括以下步骤:提供绝缘体上硅晶圆,所述绝缘体上硅晶圆包括顶层硅;在所述顶层硅中形成多个硅光器件,所述多个硅光器件包括激光器;加厚所述激光器所在区域的顶层硅,以达到模式匹配效果对顶层硅的厚度要求。
A semiconductor device and a preparation method thereof, wherein the preparation method of the semiconductor device comprises the steps of: providing a silicon-on-insulator wafer, the silicon-on-insulator wafer including a top layer silicon; forming a plurality of silicon photons in the top layer silicon The multiple silicon optical devices include lasers; the top layer silicon in the region where the lasers are located is thickened to meet the thickness requirement of the top layer silicon due to the mode matching effect.
Description
技术领域technical field
本发明涉及半导体制备领域,尤其涉及一种半导体器件及其制备方法。The invention relates to the field of semiconductor preparation, in particular to a semiconductor device and a preparation method thereof.
背景技术Background technique
绝缘体上硅晶圆上的硅光工艺本身具备一套相对完整的光学元器件系统,包括各类无源器件、电光调制器和光电探测器等。然而,硅作为间接带隙材料无法直接发光,这使得硅基光源的集成方案成为了硅基光电子技术发展的重要挑战之一。The silicon photonics process on a silicon-on-insulator wafer itself has a relatively complete set of optical components, including various passive devices, electro-optic modulators, and photodetectors. However, as an indirect bandgap material, silicon cannot directly emit light, which makes the integration of silicon-based light sources one of the important challenges for the development of silicon-based optoelectronic technology.
现有技术中,常使用绝缘体上硅晶圆上的硅光工艺来制作激光器。然而,使用绝缘体上硅晶圆来制备所述激光器时,需要较高的制备成本,这不利于激光器的推广。In the prior art, lasers are often fabricated using a silicon-on-insulator wafer photonics process. However, when a silicon-on-insulator wafer is used to manufacture the laser, a higher manufacturing cost is required, which is not conducive to the promotion of the laser.
发明内容SUMMARY OF THE INVENTION
本发明提出了一种半导体器件及其制备方法,能够降低激光器的制备成本。The invention provides a semiconductor device and a preparation method thereof, which can reduce the preparation cost of the laser.
为了解决上述问题,以下还提供了一种半导体器件,包括:绝缘体上硅晶圆;形成于所述绝缘体上硅晶圆的顶层硅的硅光器件,所述硅光器件包括激光器;加厚区域,形成于所述激光器上表面,以加厚所述激光器,使达到模式匹配效果对所述顶层硅的厚度要求。In order to solve the above problems, a semiconductor device is also provided below, comprising: a silicon-on-insulator wafer; a silicon-optical device formed on the top layer of the silicon-on-insulator wafer, the silicon-optical device comprising a laser; a thickened region , which is formed on the upper surface of the laser to thicken the laser so as to achieve the thickness requirement of the top layer silicon for the mode matching effect.
可选的,还包括:覆盖所述硅光器件和所述加厚区域的保护层。Optionally, the method further includes: a protective layer covering the silicon optical device and the thickened region.
可选的,所述保护层包括二氧化硅层。Optionally, the protective layer includes a silicon dioxide layer.
可选的,所述加厚区域的厚度至少为180nm。Optionally, the thickness of the thickened region is at least 180 nm.
可选的,所述加厚区域包括多晶硅加厚区域和非晶硅加厚区域中的至少一种。Optionally, the thickened region includes at least one of a polysilicon thickened region and an amorphous silicon thickened region.
为了解决上述问题,以下还提供了一种半导体器件的制备方法,包括以下步骤:提供绝缘体上硅晶圆,所述绝缘体上硅晶圆包括顶层硅;在所述顶层硅中形成多个硅光器件,所述多个硅光器件包括激光器;加厚所述激光器所在区域的顶层硅,以加厚所述激光器,使达到模式匹配效果对顶层硅的厚度要求。In order to solve the above problems, a method for fabricating a semiconductor device is also provided below, including the following steps: providing a silicon-on-insulator wafer, the silicon-on-insulator wafer includes a top layer silicon; forming a plurality of silicon photons in the top layer silicon The multiple silicon optical devices include lasers; the top layer silicon in the region where the lasers are located is thickened, so as to thicken the lasers so as to meet the thickness requirement of the top layer silicon for the mode matching effect.
可选的,在加厚所述激光器所在区域的顶层硅前,进一步包括形成覆盖所述多个硅光器件的上表面的介质层。Optionally, before thickening the top layer silicon in the region where the laser is located, the method further includes forming a dielectric layer covering the upper surfaces of the plurality of silicon optical devices.
可选的,在加厚所述激光器所在区域的顶层硅前,进一步包括去除需要加厚区域对应介质层的步骤。Optionally, before thickening the top layer silicon in the region where the laser is located, a step of removing the dielectric layer corresponding to the region to be thickened is further included.
可选的,所述介质层包括覆盖至所述多个硅光器件表面的二氧化硅层,在加厚所述激光器所在区域的顶层硅前,去除需要加厚区域对应的二氧化硅层。Optionally, the dielectric layer includes a silicon dioxide layer covering the surfaces of the multiple silicon optical devices, and before thickening the top silicon in the region where the laser is located, the silicon dioxide layer corresponding to the region to be thickened is removed.
可选的,加厚所述激光器所在区域的顶层硅后,对加厚区域的表面进行二次刻蚀成型。Optionally, after thickening the top layer of silicon in the region where the laser is located, secondary etching is performed on the surface of the thickened region.
可选的,所述多个硅光器件还包括调制器、波导中的一种或多种。Optionally, the multiple silicon optical devices further include one or more of a modulator and a waveguide.
可选的,所述激光器包括激光器波导以及激光器光栅。Optionally, the laser includes a laser waveguide and a laser grating.
可选的,所述加厚顶层硅的步骤,是采用多晶硅或非晶硅材料进行加厚处理。Optionally, the step of thickening the top layer silicon is to use polysilicon or amorphous silicon material for thickening.
可选的,通过化学气相沉积、物理气相沉积以及原子层沉积中的至少一种,在所述激光器所在区域的顶层硅沉积多晶硅或非晶硅材料,以实现加厚。Optionally, by at least one of chemical vapor deposition, physical vapor deposition and atomic layer deposition, polysilicon or amorphous silicon material is deposited on the top layer of silicon in the region where the laser is located, so as to achieve thickening.
可选的,对加厚区域的表面进行二次刻蚀成型后,还包括以下步骤:形成覆盖所述硅光器件的保护层。Optionally, after the secondary etching is performed on the surface of the thickened region, the following step is further included: forming a protective layer covering the silicon optical device.
本发明的半导体器件及其制备方法中,对所述激光器所在区域的顶层硅进行了加厚,这样,可以使用薄层的顶层硅制备所述激光器,而无需特地去制备具有较厚的顶层硅的绝缘体上硅晶圆,降低了所述绝缘体上硅晶圆的制备难度,以及降低了激光器的制备成本。并且,该制备方法也可以减少制备激光器的过程中对除激光器以外的其他硅光器件的刻蚀次数,保证了其他硅光器件的表面光滑度,防止其他硅光器件的粗糙表面导致传输损耗。In the semiconductor device and the manufacturing method thereof of the present invention, the top layer of silicon in the region where the laser is located is thickened, so that the laser can be prepared by using a thin layer of top layer silicon without the need to specially prepare a thicker layer of top layer silicon. The silicon-on-insulator wafer reduces the difficulty of preparing the silicon-on-insulator wafer and reduces the manufacturing cost of the laser. In addition, the preparation method can also reduce the etching times of other silicon optical devices except the laser in the process of laser preparation, ensure the surface smoothness of other silicon optical devices, and prevent the rough surface of other silicon optical devices from causing transmission loss.
附图说明Description of drawings
图1为本发明的一种具体实施方式中所述半导体器件的制备方法的步骤流程示意图。FIG. 1 is a schematic flow chart of steps of a method for fabricating a semiconductor device according to an embodiment of the present invention.
图2至图8为一种具体实施方式中所述半导体器件的制备方法的各个步骤对应形成的结构示意图。FIG. 2 to FIG. 8 are schematic structural diagrams corresponding to each step of the manufacturing method of the semiconductor device in one embodiment.
具体实施方式Detailed ways
研究发现,使用绝缘体上硅晶圆制备激光器时制备成本较高的原因在于,激光器所用的硅光器件具有较大的厚度,通常在400nm左右,以达到模式匹配的效果,而现有技术中常用的绝缘体上硅晶圆的顶层硅厚度通常在200nm左右,因此需要额外制备绝缘体上硅晶圆,用以制备激光器,这增加了制备所述激光器所需的生产成本。The study found that the reason for the higher fabrication cost when using a silicon-on-insulator wafer to fabricate a laser is that the silicon optical device used in the laser has a large thickness, usually around 400nm, to achieve the effect of mode matching. The thickness of the top layer of the silicon-on-insulator wafer is usually around 200 nm, so an additional silicon-on-insulator wafer needs to be prepared to prepare the laser, which increases the production cost required for preparing the laser.
并且,绝缘体上硅晶圆的制造难度会随着顶层硅厚度的增加而增加,因此制备用于激光相关器件的硅光设备时,会由于顶层硅厚度的增加,导致生产难度的增加,从而导致生产良率的下降,这进一步的导致了激光器生产成本的增加。Moreover, the manufacturing difficulty of silicon-on-insulator wafers will increase with the increase of the thickness of the top layer silicon. Therefore, when preparing silicon photonics devices for laser-related devices, the increase in the thickness of the top layer silicon will lead to an increase in the difficulty of production, resulting in The decline in production yield, which further leads to an increase in the cost of laser production.
以下提出了一种半导体器件及其制备方法,并结合图示对半导体器件及其制备方法进行了进一步的解释和阐述。A semiconductor device and a preparation method thereof are proposed below, and the semiconductor device and its preparation method are further explained and elaborated with reference to the drawings.
请看图1至图8,其中图1为本发明的一种具体实施方式中所述半导体器件的制备方法的步骤流程示意图,图2至图8为一种具体实施方式中所述半导体器件的制备方法的各个步骤对应形成的结构示意图。Please refer to FIGS. 1 to 8 , wherein FIG. 1 is a schematic flow chart of the steps of a method for manufacturing a semiconductor device in an embodiment of the present invention, and FIGS. 2 to 8 are schematic diagrams of the semiconductor device in an embodiment of the present invention. Each step of the preparation method corresponds to a schematic diagram of the structure formed.
在该具体实施方式中,提供了一种半导体器件,包括:绝缘体上硅晶圆100;形成于所述绝缘体上硅晶圆100的顶层硅101的硅光器件(所述硅光器件包括标号104、105、106所示的所有部件),所述硅光器件包括激光器106;加厚区域109,形成于所述激光器106上表面,以加厚所述激光器106,使达到模式匹配效果对所述顶层硅101的厚度要求。In this specific embodiment, a semiconductor device is provided, comprising: a silicon-on-
在该具体实施方式中,由于采用加厚区域109对所述激光器106所在区域的顶层硅101进行了加厚,因此可以使用薄层的顶层硅101制备所述激光器106,无需特地去制备具有较厚的顶层硅101的绝缘体上硅晶圆100,这能够有效降低使用该半导体器件制备激光器时所需的制备成本,并且降低制备激光器用的绝缘体上硅晶圆100的成本。In this specific implementation manner, since the
实际上,除了激光器106以外,调制器、探测器等其他有源器件也对所述顶层硅101具有较高的厚度需求,因此,在一些具体实施方式中,所述硅光器件中还包括调制器、探测器等,所述加厚区域也形成至所述调制器、探测器的上表面,以实现对所述调制器、探测器等的加厚。In fact, in addition to the
在一种具体实施方式中,所述绝缘体上硅晶圆100的顶层硅101是一层单晶硅,用于形成硅光器件,中间层是一层绝缘的二氧化硅,支撑衬底103用于为所述顶层硅101和中间层提供机械支撑。在其他的具体实施方式中,也可以设置其他材质的绝缘层102。In a specific implementation manner, the
在一种具体实施方式中,还包括:覆盖所述硅光器件和所述加厚区域的保护层110。在一种具体实施方式中,所述保护层110包括二氧化硅层。实际上,也可根据需要选择所述保护层110的具体材料。In a specific embodiment, the method further includes: a
在一种具体实施方式中,所述加厚区域的厚度至少为180nm。这是因为,一般的绝缘体上硅晶圆的顶层硅厚度在220nm左右,而一般激光器的厚度需求在400nm以上。要使用一般的绝缘体上硅晶圆制备包含激光器的硅光器件时,就需要所述单晶硅材料加厚区域在180nm以上,以达到模式匹配的效果。In a specific embodiment, the thickened region has a thickness of at least 180 nm. This is because the thickness of the top layer of a general silicon-on-insulator wafer is about 220nm, while the thickness of a general laser needs to be above 400nm. When a general silicon-on-insulator wafer is used to prepare a silicon optical device including a laser, the thickened area of the single-crystal silicon material needs to be above 180 nm to achieve the effect of mode matching.
在一种具体实施方式中,所述加厚区域包括多晶硅加厚区域和非晶硅加厚区域中的至少一种。需要注意的是,这里使用的多晶硅材料或非晶硅材料需要与单晶硅的折射率匹配,并且,这里使用的多晶硅材料或非晶硅材料可通过化学气相沉积、物理气相沉积或原子层沉积中的至少一种来制备。In a specific embodiment, the thickened region includes at least one of a thickened region of polysilicon and a thickened region of amorphous silicon. It should be noted that the polycrystalline silicon material or amorphous silicon material used here needs to match the refractive index of single crystal silicon, and the polycrystalline silicon material or amorphous silicon material used here can be deposited by chemical vapor deposition, physical vapor deposition or atomic layer deposition. at least one of them.
在该具体实施方式中,提供了一种半导体器件的制备方法,包括以下步骤:S11提供绝缘体上硅晶圆100,所述绝缘体上硅晶圆100包括顶层硅101,此处请参阅图2;S12在所述顶层硅101中形成多个硅光器件(所述硅光器件包括标号104、105、106所示的所有部件),所述硅光器件包括激光器106,此处请参阅图3;S13加厚所述激光器所在区域的顶层硅101,以达到模式匹配效果对所述顶层硅101的厚度要求,此处请参阅图7。In this specific embodiment, a method for preparing a semiconductor device is provided, including the following steps: S11 providing a silicon-on-
在该具体实施方式中,所述的半导体器件的制备方法中,对所述激光器106所在区域的顶层硅101进行了加厚,在保证所述激光器106能达到模式匹配的效果的前提下,还可以使用薄层的顶层硅101制备所述激光器106,而无需特地去制备具有较厚的顶层硅101的绝缘体上硅晶圆100,这能够有效降低使用该半导体器件制备激光器时所需的制备成本,并且降低制备激光器用的绝缘体上硅晶圆100的成本。In this specific embodiment, in the preparation method of the semiconductor device, the
并且,研究发现,硅光器件表面的光滑度是非常影响硅光器件的光传输效率的。硅光器件的2nm的表面粗糙度,将导致2至3dB/cm的波导传输损耗。在该具体实施方式中,由于使用了具有较薄顶层硅101的绝缘体上硅晶圆100来制备激光器,因此在实现刻蚀实现激光器106时,可以减少对除激光器106以外的其他硅光器件的刻蚀次数,保证了其他硅光器件的表面光滑度,防止其他硅光器件的粗糙表面导致传输损。Moreover, the study found that the smoothness of the surface of the silicon optical device greatly affects the light transmission efficiency of the silicon optical device. A surface roughness of 2 nm for a silicon photonics device will result in a waveguide transmission loss of 2 to 3 dB/cm. In this specific embodiment, since a silicon-on-insulator wafer 100 with a thinner
在一种更优的具体实施方式中,在加厚所述激光器所在区域的顶层硅101前,进一步包括形成覆盖所述多个硅光器件的上表面的介质层107。所述介质层107能够起到保护其他硅光器件的作用,防止加厚所述硅光器件时,使用到的材料层也覆盖在其他的硅光器件上表面,使在形成其他硅光器件的过程中仍需要使用多次刻蚀,影响其他硅光器件表面的光滑度。In a more preferred embodiment, before thickening the
请看图2,所述绝缘体上硅晶圆100的顶层硅101和支撑衬底103紧密键合,中间形成了绝缘层102用于分隔所述顶层硅101和支撑衬底103。该绝缘层102可以实现顶层硅101和支撑衬底103的全介质隔离,以减小寄生电容,提升运行速度。并且,由于减小了寄生电容,还可以降低漏电,减小实现在该顶层硅101上的器件的功耗。另外,使用所述绝缘体上硅晶圆100来实现硅光工艺,还可以消除闩锁效应、抑制支撑衬底103中脉冲电流对顶层硅101的干扰,减少软错误等,并且,还可以与现有的硅工艺兼容。Referring to FIG. 2 , the
在一种具体实施方式中,所述绝缘体上硅晶圆100的顶层硅101是一层单晶硅,用于形成硅光器件,中间层是一层绝缘的二氧化硅,支撑衬底103用于为所述顶层硅101和中间层提供机械支撑。在其他的具体实施方式中,也可以设置其他材质的绝缘层102。In a specific implementation manner, the
在一种具体实施方式中,所述顶层硅101的厚度小于230nm。这可以有效降低绝缘体上硅晶圆100的制备难度。实际上,现有技术中常规生产的绝缘体上硅晶圆100的顶层硅101的厚度为220nm,符合该需求,因此可以直接采用现有技术中常用的绝缘体上硅晶圆100来制备所述半导体器件,而无需特地制备一些具有特厚的顶层硅101的绝缘体上硅晶圆100。In a specific embodiment, the thickness of the
在该具体实施方式中,加厚后,所述激光器106能够达到模式匹配效果所需的厚度,激光在所述激光器106内传输时具有更好的传输效果,如传输损耗更小等。通常来说,激光器要达到模式匹配,需要400nm左右的厚度,这里所说的厚度,指的是垂直所述顶层硅101表面方向上的厚度。在请看图2和图3,图2中顶层硅101的厚度为d1,在加厚前,所述激光器106的厚度为d2,d2小于等于d1。在加厚后,所述激光器106的厚度能够达到所述激光器106模式匹配的要求。In this specific embodiment, after thickening, the
在该具体实施方式中,由于加厚了所述激光器所在区域的顶层硅101,因此在制备所述激光器时,无需使用具有较厚顶层硅101的绝缘体上硅晶圆100,也无需对这种具有较厚顶层硅101的绝缘体上硅晶圆100的顶层硅101进行多次刻蚀,来实现所述激光器的制备,因此,可以保证其他厚度较小的硅光器件表面的光滑度。In this specific embodiment, since the
在该具体实施方式中,所述加厚顶层硅101的步骤之前,进一步包括去除需要加厚的区域对应的介质层107的步骤。这是因为,加厚后形成的结构形状很有可能与所述激光器实际需要的形状不一致。In this specific implementation manner, before the step of thickening the
在一种具体实施方式中,加厚所述激光器所在区域的顶层硅101后,对加厚区域109的表面进行二次刻蚀成型。In a specific implementation manner, after thickening the
在一种具体实施方式中,所述二次刻蚀成型的步骤包括干法刻蚀或湿法刻蚀中的至少一种。In a specific embodiment, the step of secondary etching and forming includes at least one of dry etching or wet etching.
在一种具体实施方式中,对加厚区域109的表面进行二次刻蚀成型后,还包括以下步骤:形成覆盖所述硅光器件的保护层。此处请参阅图8。在图8所示的具体实施方式中,使用所述二氧化硅层作为所述保护层110,这样,所述保护层110与所述介质层107材质相同,光线在所述保护层110与介质层107之间传播时,不会产生折射。In a specific implementation manner, after the secondary etching is performed on the surface of the thickened
在一种具体实施方式中,所述介质层107包括覆盖至所述多个硅光器件表面的二氧化硅层,在加厚所述激光器所在区域的顶层硅101前,去除需要加厚区域109对应的二氧化硅层。在一种具体实施方式中,通过刻蚀去除需要加厚区域对应的所述二氧化硅层。In a specific implementation manner, the
具体的,在刻蚀去除所述二氧化硅层时,先在所述二氧化硅层上表面形成掩膜层,并图形化所述掩膜层,使需要加厚的区域外露于所述掩膜层,之后就能够对该区域的二氧化硅层进行干法或湿法刻蚀,直至所述需要加厚的区域的上表面外露。Specifically, when the silicon dioxide layer is removed by etching, a mask layer is first formed on the upper surface of the silicon dioxide layer, and the mask layer is patterned so that the area that needs to be thickened is exposed to the mask. After that, dry or wet etching can be performed on the silicon dioxide layer in the region until the upper surface of the region that needs to be thickened is exposed.
在一些其他的具体实施方式中,也可以根据需要设置其他的材料来作为所述介质层107。In some other specific implementation manners, other materials may also be provided as the
请看图4和图5,在图4中,描述的是所述多个硅光器件的上表面覆盖有介质层107的情景。所述介质层107覆盖在所有所述硅光器件的上表面,可以有效的保护所述硅光器件。在图5中,描述的是对所述需要加厚区域109对应的所述二氧化硅层进行去除的情景。这里,在所述二氧化硅层的上表面开设了通孔,所述激光器的上表面外露于所述通孔。所述通孔的尺寸与所述激光器需要加厚的区域的尺寸相关。Please refer to FIG. 4 and FIG. 5 . In FIG. 4 , the situation in which the upper surfaces of the plurality of silicon optical devices are covered with a
请看图6到图7,其中图6描述了对所述激光器对应的区域的顶层硅101加厚后,所形成的器件的结构示意图。图7描述了对加厚后形成的结构进行二次刻蚀成型后所形成的器件的结构示意图。Please refer to FIG. 6 to FIG. 7 , wherein FIG. 6 depicts a schematic structural diagram of a device formed after thickening the
在一种具体实施方式中,所述激光器包括激光器波导以及激光器光栅。实际上,所述激光器也可以包括其他的结构。In a specific embodiment, the laser includes a laser waveguide and a laser grating. In fact, the laser may also comprise other structures.
在一种具体实施方式中,所述激光器波导以及激光器光栅在垂直所述顶层硅101表面方向上的厚度相同,在一些其他的具体实施方式中,所述激光器波导以及激光器光栅在垂直所述顶层硅101表面方向上的厚度不同。这可以根据实际需要进行设置。In a specific embodiment, the laser waveguide and the laser grating have the same thickness in a direction perpendicular to the surface of the
在一种具体实施方式中,所述加厚顶层硅101的步骤,是采用多晶硅或非晶硅材料进行加厚处理。需要注意的是,这里使用的多晶硅材料或非晶硅材料需要与单晶硅的折射率匹配。实际上,也可以根据具体的需求,采用不同的材料来加厚所述顶层硅101。In a specific implementation manner, the step of thickening the
在一种具体实施方式中,通过化学气相沉积、物理气相沉积以及原子层沉积中的至少一种,在所述激光器所在区域的顶层硅101沉积多晶硅或非晶硅材料,以实现加厚。In a specific embodiment, polysilicon or amorphous silicon material is deposited on the
在一种具体实施方式中,所述多个硅光器件还包括调制器、波导中的一种或多种。除所述激光器以外的其他硅光器件在垂直所述顶层硅101表面方向上的厚度小于或等于所述顶层硅101的厚度。请看图2。在图2所示的具体实施方式中,所述调制器105和所述波导104的厚度小于220nm,与常规的厚度为220nm的顶层硅101厚度相适应,因此无需额外对所述调制器105以及波导104对应的区域进行加厚。In a specific embodiment, the plurality of silicon optical devices further include one or more of a modulator and a waveguide. The thickness of other silicon optical devices other than the laser in the direction perpendicular to the surface of the
请看以下实施例,是使用该具体实施方式中的半导体器件形成硅基的Ⅲ-Ⅴ激光器时的步骤。该具体实施方式中形成的半导体器件能够用于制备Ⅲ-Ⅴ激光器。Please see the following examples for steps in forming a silicon-based III-V laser using the semiconductor device in this embodiment. The semiconductor devices formed in this embodiment can be used to fabricate III-V lasers.
Ⅲ-Ⅴ族化合物作为传统的光电应用材料,发光性能优越,然而Ⅲ-Ⅴ材料与硅的晶格常数失配较大,硅上直接外延生长获得的Ⅲ-Ⅴ材料缺陷多质量差,难制备出符合要求的高性能激光器。因此,目前市场上的主流手段仍是通过异质键合和片外封装方法来实现Ⅲ-Ⅴ激光器与硅片的集成。然而,片外光源封装需要高精度的对准耦合,相比之下,异质键合集成能有效降低封装成本,提高良率和可靠性,是近年来各公司研发的重点方向。其中Ⅲ-Ⅴ激光器的背向异质键合集成方法以CEA-Leti公司为代表,能够很好地与原有硅光前后段工艺兼容。As traditional optoelectronic application materials, III-V compounds have excellent luminescence properties. However, the lattice constant mismatch between III-V materials and silicon is large, and the III-V materials obtained by direct epitaxial growth on silicon have many defects and poor quality, which is difficult to prepare. A high-performance laser that meets the requirements. Therefore, the mainstream method in the market is still to realize the integration of III-V lasers and silicon wafers through hetero-bonding and off-chip packaging methods. However, off-chip light source packaging requires high-precision alignment coupling. In contrast, hetero-bonding integration can effectively reduce packaging costs, improve yield and reliability, and has been the focus of research and development by companies in recent years. Among them, CEA-Leti is the representative of the back-side hetero-bonding integration method of III-V lasers, which is well compatible with the original silicon photonics front and rear processes.
该实施例中,包括以下步骤:In this embodiment, the following steps are included:
(1)使用本发明的具体实施方式中的制备方法在绝缘体上硅晶圆100上完成硅光器件的制备;(1) using the preparation method in the specific embodiment of the present invention to complete the preparation of the silicon photonics device on the silicon-on-
(2)将完成硅光器件的制备的绝缘体上硅晶圆100与一硅片载体晶圆的正面直接键合,将所述绝缘体上硅晶圆100的背面减薄至硅光器件所在的顶层硅101;(2) Directly bonding the silicon-on-
(3)将减薄后的所述绝缘体上硅晶圆100的背面与Ⅲ-Ⅴ材料外延片直接键合,对Ⅲ-Ⅴ材料外延片进行图形化处理,形成激光器电极;(3) directly bonding the backside of the thinned silicon-on-
(4)通过背部通孔的方式连接绝缘体上硅晶圆100上的硅光器件。(4) Connecting the silicon optical device on the silicon-on-
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can use the methods and technical contents disclosed above to improve the present invention without departing from the spirit and scope of the present invention. The technical solutions are subject to possible changes and modifications. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention without departing from the content of the technical solutions of the present invention belong to the technical solutions of the present invention. protected range.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010742808.2A CN111785678A (en) | 2020-07-29 | 2020-07-29 | Semiconductor device and method of making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010742808.2A CN111785678A (en) | 2020-07-29 | 2020-07-29 | Semiconductor device and method of making the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111785678A true CN111785678A (en) | 2020-10-16 |
Family
ID=72765384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010742808.2A Pending CN111785678A (en) | 2020-07-29 | 2020-07-29 | Semiconductor device and method of making the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111785678A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160233641A1 (en) * | 2015-02-09 | 2016-08-11 | Stmicroelectronics Sa | Integrated hybrid laser source compatible with a silicon technology platform, and fabrication process |
US20200026105A1 (en) * | 2018-07-23 | 2020-01-23 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Photonic transmitter |
-
2020
- 2020-07-29 CN CN202010742808.2A patent/CN111785678A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160233641A1 (en) * | 2015-02-09 | 2016-08-11 | Stmicroelectronics Sa | Integrated hybrid laser source compatible with a silicon technology platform, and fabrication process |
US20200026105A1 (en) * | 2018-07-23 | 2020-01-23 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Photonic transmitter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106953234B (en) | Silicon-based monolithic integrated laser and manufacturing method thereof | |
US10197733B2 (en) | Edge coupling device fabrication | |
JP2012256869A (en) | Co-integration of photonic device on silicon/photonic platform | |
CN110854017B (en) | A method for integrating germanium-based detectors | |
CN105180917A (en) | Silica-based hybrid integrated homotaxial fiber-optic gyroscope optical chip and preparing method thereof | |
CN102323646A (en) | Grating coupler and making method thereof | |
CN111509078B (en) | Silicon-based photoelectric detector and manufacturing method thereof | |
US6812059B2 (en) | Method of manufacturing a photodiode to have an active region with a convex-lens-shaped surface | |
CN111244227A (en) | Silicon-based photonic integrated module and preparation method thereof | |
KR20150062231A (en) | A semiconductor laser and method of forming the same | |
CN206322721U (en) | Tensile strain germanium MSM photoelectric detector | |
CN112285827A (en) | Preparation method of multilayer silicon photonic device | |
CN206931836U (en) | Silicon-based monolithic integration laser | |
CN111785678A (en) | Semiconductor device and method of making the same | |
CN111785679A (en) | Semiconductor device and method of making the same | |
CN111816733A (en) | Pretreatment method for selective germanium epitaxy in the fabrication process of waveguide germanium detector | |
CN222259620U (en) | Selective epitaxial silicon-based ridge optical waveguide | |
TW200839330A (en) | Low-loss optical device structure | |
CN115548038A (en) | Method for forming backside illuminated CMOS image sensor | |
CN110133800B (en) | Waveguide type photonic crystal heterostructure capable of realizing wide-band unidirectional high transmission | |
CN102749680A (en) | Manufacturing method for grating coupler and semiconductor device | |
CN109683354B (en) | A kind of mid-infrared band modulator and preparation method thereof | |
CN106653940B (en) | Tensile strain germanium MSM photoelectric detector and preparation method thereof | |
CN111077607A (en) | Manufacturing method of silicon-based optical waveguide device | |
CN117741860A (en) | Selective epitaxial silicon-based ridge type optical waveguide and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201016 |
|
RJ01 | Rejection of invention patent application after publication |