TW200839330A - Low-loss optical device structure - Google Patents

Low-loss optical device structure Download PDF

Info

Publication number
TW200839330A
TW200839330A TW96141952A TW96141952A TW200839330A TW 200839330 A TW200839330 A TW 200839330A TW 96141952 A TW96141952 A TW 96141952A TW 96141952 A TW96141952 A TW 96141952A TW 200839330 A TW200839330 A TW 200839330A
Authority
TW
Taiwan
Prior art keywords
layer
optical device
region
cavity
cladding region
Prior art date
Application number
TW96141952A
Other languages
Chinese (zh)
Inventor
Thomas Keyser
Grenville Hughes
Jerry Yue
Original Assignee
Honeywell Int Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/412,738 external-priority patent/US7454102B2/en
Priority claimed from US11/557,185 external-priority patent/US20070274655A1/en
Application filed by Honeywell Int Inc filed Critical Honeywell Int Inc
Publication of TW200839330A publication Critical patent/TW200839330A/en

Links

Abstract

A method of fabrication and a structure for a low-loss optical device. The optical device structure includes a waveguide that is formed within a device layer of an SOI substrate. A cladding region is formed beneath the waveguide and a BOX layer of the SOI substrate. The cladding region may comprise an air cavity or a cavity that is filled or at least partially filled with a dielectric material. Because the cladding region is formed in the bottom side, it supplements the BOX layer cladding. Consequently, a thinner BOX layer may be used for both electronic and optical devices, which facilitates optoelectronic IC processing and design.

Description

200839330 九、發明說明: 【發明所屬之技術領域】 本發明一般係關於光電子積體電路且更特定言之係關於 一種使用一絕緣物上矽(S0I)基板的低損失光學裝置之低 、 損失光學結構及製造方法。 【先前技術】 光電子積體電路(IC)在一單一晶片内包括電子與光學元 件兩者。典型的電子元件包括場效電晶體(fet)、電容器 電阻器,典型的光學元件包括波導、濾光器、調變器及 光偵侧器。在一給定的光電子1(:内,該些電子元件的某些 π件可專用於處理諸如資料儲存與信號處理之類的任務。 其他電子元件可專用於控制或調變該等光學元件。在一單 一晶片上包括兩種類型的元件提供數個優點,其包括減低 的佈局面積、成本及操作額外負擔。此外,此類積體化產 生混合裝置’例如一光隔離器。 Φ 現今半導體處理技術的成熟已大大促進光學與電子元件 的積體化。例如,傳統處理技術可以係調適成用以產生矽 基稜鏡、波導及其他光學裝置。 一般而言,在基於SOI的基板中製造光電子Ic。有利的 " 係,S〇1基板提供一薄裝置層,其位於一埋入氧化物 (B〇X)層之頂部。可在該裝置層中或之上形成電子與光學 裝置兩者。在純電子裝置(例如FET裝置)中,該Β〇χ層可 用以從主體層電隔離該裝置層。在光學裝置中,該Β〇χ層 可用作一包覆層。一般而言,在電子與光學裝置兩者中, 126566.doc 200839330 一較厚的BOX層促進一電子裝置中的電隔離及一光學裝置 中的光學限制。然而不幸的係,厚Βοχ層(大於2500埃)亦 增加製造之前或期間的晶圓彎曲的可能性。特定言之,較 大的晶圓(例如8英吋或12英吋晶圓)更易受晶圓彎曲的影 , 響。此外,一厚B〇X層還減低電子裝置電容並改變電路的 • 運作特性’其使得需要針對積體光電子產品設計產生替代 性材料特定裝置模型與電路單元庫。 【發明内容】 因此,說明一低損失光學裝置結構。在一範例中,該結 構包括一 SOI基板與該801基板之一主體層中之一包覆區 域。該SOI基板包括一裝置層,其包含一光學裝置區域。 該包覆區域係與該SOI基板之一 B0X層相鄰形成並在該光 學裝置區域之下。此外,豸包覆區域具有一相關聯寬度, 其大於與該光學裝置區域相關聯的寬度。 可藉由在该主體層内蝕刻一腔及/或溝渠來形成該包覆 φ 區域。若形成一腔,則該腔具有一大於該光學裝置區域之 一寬度的寬度。若形成一溝渠,則該溝渠具有一延伸至該 , 光學裝置區域之寬度以外的寬度。該腔及/或溝渠可以係 一空氣腔。或者,例如可使用一介電材料(例如一氧化物) 來填充或至少部分填充該腔及/或溝渠。 —可藉由在該主體層上沈積一遮蔽層,圖案化該遮蔽層以 定義該腔及/或溝渠之一區域及使用一蝕刻程序來將與該 I及/或溝渠相關聯之一圖案轉印至該主體層中來形成該 包覆區域。例如,該遮蔽層可包括一光阻遮蔽層及/或一 126566.doc 200839330 硬遮蔽層。 在另一範例中,該光學裝置結構可包括一波導及/或一 稜鏡。該波導可位於該SO][基板之一前側上而該棱鏡可位 於該SOI基板之一底部側上。該BOX層可提供該so〗基板之 - 前側與底部側之間之一消散|禺合。 ‘ 熟習此項技術者藉由閱讀以下詳細說明並在適當處參考 附圖將明白此等及其他態樣與優點。此外,應明白此發明 内容僅係一範例而不旨在限制所主張之本發明之範疇。 β 【實施方式】 以一形式或另一形式,各種具體實施例說明一低損失光 學I置結構及製造方法。該方法包括形成一包覆區域,其 在一光學裝置之下並與一 S0I基板之一埋入氧化物區域相 鄰。所說明包覆區域補償一薄Β〇χ層。因而,例如一Β〇χ 層與該包覆區域的組合係用作一光學裝置(例如一波導)之 底部包覆之一結構。 鲁總體來說,下面說明的光學裝置結構係以各種傳統半導 體程序及其組合來實施,其包括:微影、钱刻、薄膜沈積 及抗反射塗層。 |簡單起見’以下說明及相關圖式說明—光學裝置結 構,其包括-包含單晶石夕層的石夕基波導。然而,在替代範 例中’所說明包覆區域可用於減低各種光學裝置中:光學 損失且不限於一特定類型的光學裝置或光學輕合配置。例 如’可將所說明包覆區域用於減低諸如分光器、鏡子、光 柵、共振器及調變器之類的裝置中的光學損失。 126566.doc 200839330 還::白下述所解說光學元件可包含各種材料與多個 :二針對每-個別層的特定特性(即掺雜、厚度、 ::n。例如’一波導的厚度可以係訂製以適應-傳 的一或多個模式。此外,雖然下面說明的具體實施 歹1用石夕基光學元件,但其他類型的高折射率材料(即石申 化鎵1鈮酸鐘、磷化銦等)可取切基元件。此外,除非 另外°兒月’所解說元件可具有各種形狀與大小。200839330 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to optoelectronic integrated circuits and, more particularly, to low-loss opticals for low-loss optical devices using an insulator-on-insulator (S0I) substrate. Structure and manufacturing method. [Prior Art] A photoelectron integrated circuit (IC) includes both an electron and an optical element in a single wafer. Typical electronic components include field effect transistors (fet), capacitor resistors, and typical optical components include waveguides, filters, modulators, and photodetectors. Within a given photoelectron 1 (:, some of the π pieces of the electronic components may be dedicated to tasks such as data storage and signal processing. Other electronic components may be dedicated to controlling or modulating the optical components. The inclusion of two types of components on a single wafer provides several advantages, including reduced layout area, cost, and operational overhead. In addition, such integration produces a hybrid device such as an optical isolator. Φ Current semiconductor processing The maturity of technology has greatly facilitated the integration of optical and electronic components. For example, conventional processing techniques can be adapted to produce germanium, waveguides, and other optical devices. In general, photoelectrons are fabricated in SOI-based substrates. Ic. Advantageously, the S〇1 substrate provides a thin device layer on top of a buried oxide (B〇X) layer. Both electron and optical devices can be formed in or on the device layer. In a purely electronic device, such as a FET device, the germanium layer can be used to electrically isolate the device layer from the body layer. In an optical device, the germanium layer can be used as a cladding layer. In general, in both electronic and optical devices, 126566.doc 200839330 A thicker BOX layer promotes electrical isolation in an electronic device and optical limitations in an optical device. However, unfortunately, thick Β χ layer (greater than 2500 angstroms) also increases the likelihood of wafer bowing before or during manufacturing. In particular, larger wafers (eg, 8 inch or 12 inch wafers) are more susceptible to wafer bending. A thick B〇X layer also reduces the capacitance of the electronic device and changes the operational characteristics of the circuit', which necessitates the generation of alternative material-specific device models and circuit cell libraries for integrated optoelectronic product designs. [SUMMARY] Therefore, a low loss is illustrated. Optical device structure. In one example, the structure includes a SOI substrate and a cladding region in one of the body layers of the 801 substrate. The SOI substrate includes a device layer including an optical device region. Formed adjacent to the B0X layer of the SOI substrate and below the optical device region. Further, the germanium cladding region has an associated width greater than the optical device region Associated width. The cladding φ region can be formed by etching a cavity and/or a trench in the body layer. If a cavity is formed, the cavity has a width greater than a width of one of the optical device regions. Forming a trench, the trench has a width extending beyond the width of the optical device region. The cavity and/or trench may be an air cavity. Alternatively, for example, a dielectric material (eg, an oxide) may be used. Filling or at least partially filling the cavity and/or trench. - by depositing a masking layer on the body layer, patterning the masking layer to define a region of the cavity and/or trench and using an etching process to The pattern associated with the I and/or the trench is transferred into the body layer to form the cladding region. For example, the mask layer may include a photoresist mask layer and/or a hard mask layer of 126566.doc 200839330. In another example, the optical device structure can include a waveguide and/or a turn. The waveguide may be located on the front side of the SO] [substrate and the prism may be located on one of the bottom sides of the SOI substrate. The BOX layer can provide the so-called substrate - one of the front side and the bottom side is dissipated | These and other aspects and advantages will be apparent to those skilled in the art from reading the following detailed description. In addition, it is to be understood that the invention is not intended to limit the scope of the claimed invention. [Embodiment] In one form or another, various embodiments illustrate a low loss optical I structure and a manufacturing method. The method includes forming a cladding region under an optical device and adjacent a buried oxide region of one of the SOI substrates. The illustrated cladding area compensates for a thin layer of germanium. Thus, for example, a combination of a layer of germanium and the cladding region serves as a structure for the bottom cladding of an optical device (e.g., a waveguide). In general, the optical device structures described below are implemented in a variety of conventional semiconductor programs and combinations thereof, including: lithography, engraving, thin film deposition, and anti-reflective coatings. For the sake of simplicity, the following description and related drawings illustrate an optical device structure comprising - a stone-base waveguide comprising a single crystal layer. However, in the alternative examples, the illustrated cladding regions can be used to reduce various optical devices: optical losses and are not limited to a particular type of optical device or optical light-weight configuration. For example, the illustrated cladding area can be used to reduce optical losses in devices such as beamsplitters, mirrors, gratings, resonators, and modulators. 126566.doc 200839330 Also: White As explained below, the optical element can comprise a variety of materials and a plurality of: two specific characteristics for each individual layer (ie doping, thickness, ::n. For example, the thickness of a waveguide can be Customized to adapt to one or more modes of transmission. In addition, although the specific implementation described below 歹1 uses Shi Xiji optical components, other types of high refractive index materials (ie, Shishen gallium 1 bismuth clock, phosphorus Indium, etc.) may take the cutting element. In addition, unless otherwise stated, the elements may have various shapes and sizes.

現參考圖式’圖以一光學裝置結構的長度方向斷面 圖。該光學裝置結構係形成於基板10巾,該基板包 括-裝置層12、一職層14及一主體層16。該裝置層12位 於該S〇I基板10的頂部側上而該主體層16位於該則基板 的底部側上。該的又層14實質上位於該裝置層12與該主體 層16之間。該裝置層12包括一波導18 ’其可以係訂製成各 種厚度以便實現該波導的所需光學特性(例如模式選擇卜 該BOX層14可用作各種目的。例如,該的又層丨4為微電 子裝置(例如一FET 19)提供電隔離。該Β〇χ層14還促進該 波導18内的光學限制。 此外,該BOX層14亦可用作該S0I基板1〇之一頂部侧與 一底部侧之間的消散耦合。例如,為將一光束引入該波導 18内或將光引離該波導18,該]3〇又層14用作一間隔物。作 為一間隔物’該BOX層14精確地設定一棱鏡20與該波導18 之間的距離並因此致能光進入與離開該波導18的有效率與 可重複耦合。 圖2 A與2B顯示圖1之光學耦合結構的至少兩個運作情 126566.doc 200839330 況。為將光帶入該波導18,圖2A顯示進入該稜鏡20並折射 的光束22。BOX層14辅助將光束22麵合至該波導18。為將 光f離忒波‘18,圖2B顯示從該波導18離開並透過該Β〇χ 層14傳輸至該稜鏡2〇的光束23。應注意,該波導18之至少 . 一部分與該稜鏡20可用於耦合光進入與離開該波導18。Referring now to the drawings, the drawings are taken in the length direction of an optical device structure. The optical device structure is formed on a substrate 10, the substrate comprising a device layer 12, a layer of work 14, and a body layer 16. The device layer 12 is on the top side of the S?I substrate 10 and the body layer 16 is on the bottom side of the substrate. The further layer 14 is substantially located between the device layer 12 and the body layer 16. The device layer 12 includes a waveguide 18' which can be customized to various thicknesses to achieve the desired optical characteristics of the waveguide (e.g., mode selection). The BOX layer 14 can be used for various purposes. For example, the layer 丨4 is A microelectronic device (e.g., a FET 19) provides electrical isolation. The germanium layer 14 also facilitates optical confinement within the waveguide 18. Additionally, the BOX layer 14 can also be used as one of the top sides of the SOI substrate 1 Dissipative coupling between the bottom sides. For example, to introduce a beam into the waveguide 18 or to direct light away from the waveguide 18, the layer 14 acts as a spacer. As a spacer, the BOX layer 14 The distance between a prism 20 and the waveguide 18 is precisely set and thus the efficient and reproducible coupling of light into and out of the waveguide 18 is enabled. Figures 2A and 2B show at least two operations of the optical coupling structure of Figure 1. 126566.doc 200839330. In order to bring light into the waveguide 18, Figure 2A shows a beam 22 that enters the crucible 20 and is refracted. The BOX layer 14 assists in merging the beam 22 to the waveguide 18. To separate the light f Wave '18, Figure 2B shows the exit from the waveguide 18 and through the layer 14 Beam input to the Prism 2〇 23. It should be noted that the waveguide at least a portion of the Prism 18 and 20 may be used to couple light into and out of the waveguide 18.

Keyser等人的共同讓渡美國專利申請案第11/412738號中進 一步說明光經由一 B0X層的消散耦合,其揭示内容以引用 方式併入本文中。 為用作一間隔物並還為防止製造期間的晶圓彎曲,該 BOX層14在厚度上應少於大約25〇〇埃或更少。然而,為包 覆該波導18並因而有效率地導引該光束,應藉由具有一低 折射率與足夠厚度的包覆層來包圍該波導18。為包覆該波 導18的頂部,使一氧化物層26生長或熱沈積於該波導18之 上。在一範例中該氧化物層26的厚度應為大約i um或更 多。 φ 然而,為包覆該波導18的底部,一 BOX層14可能不足以 將光束充分限制於該波導18内。因此,在該波導1 8之下 • 形成一包覆區域以。一般而言,該包覆區域24用以增加該 BOX層14的包覆厚度。較佳的係,該包覆區域24係一空氣 腔,其固有一低折射率。然而,還可使用一介電材料(例 如氧化物、氮化物、聚合物膜或其組合)來填充該包覆區 域24。將參考圖6B說明關於填充該包覆區域的更多細節。 圖1還顯示位於該波導18附近之一光學裝置28。應注 意,各種其他微電子 '微機電及/或光學元件可存在於該 126566.doc -10- 200839330 SOI基板10之内、之上或之下。例如,該光學裝置28可包 含一調變器,其調整該波導18的光學特性。 圖3A顯示一 SOI基板40的俯視圖。該基板40包括一形成 於一裝置層中的波導42與一形成於該裝置層之頂部上的光 ^ 學裝置44,其可以係(例如)一調變器。該基板40還可包括 • 笔子裝置’其一般係顯不為FET。在該基板40下面,可在 該SOI基板40之一主體層中形成一光學裝置46與一腔48。 _ 該光學裝置46可以係(例如)一稜鏡或一光柵,其可用於將 光帶入或帶離該波導42(即經由一 BOX層)。 為防止該波導42内的損失,該腔48用作一包覆區域。較 佳的係,該腔48係一空氣腔或一使用一介電材料填充或至 少部分填充的腔。該介電材料應具有少於該波導42的折射 率並少於或等於一 BOX層的折射率的連續折射率。此外, 為促進光學限制,較佳的係該腔48具有一大於該波導42之 一見度52的寬度5〇。例如,該腔48可以係圖案化並蝕刻以 φ 使得該腔48與該波導及該基板40之一部分充分重疊。 或者,可代替一腔形成一溝槽或一溝渠。圖33顯示已在 SOI基板58之底部側上,(例如)在一主體層中形成的溝 、 木56。忒溝渠56延伸至一波導60之一寬度62以外。該溝渠 6還了在其他光學裝置下面穿過,並因而還向該些裝置提 供包覆。 圖4顯不在形成該包覆區域24之前該SOI基板1〇(參見圖 1)的長度方向斷面圖。該包覆區域可以係形成於一半導體 製程之任一點,例如在該SOI基板10中產生微電子裝置之 126566.doc •11· 200839330 勒或之後。此外’可在該S 01基板1 〇中產生任何光電子裝 置之前或之後形成该包覆區域24。然而,較佳的係,若該 包覆區域24包含一空氣腔(即,不使用一介電材料填充該 包覆區域)’則在形成微電子與光電子裝置之後形成該包 覆區域。例如,晶圓之底部侧中的溝槽或溝渠可能使得難 以使此一晶圓適應各種類型的半導體工具。 圖5Α顯示已形成該包覆區域24之後該SOI基板1〇的長度 方向斷面圖。應注意’可在該主體層16中形成一稜鏡或其 他類型的光學搞合裝置(例如參見圖D。若形成一稜鏡,則 應注意可在形成該稜鏡之前或之後形成該包覆區域24。此 外,可將一稜鏡或其他類型的光學裝置安裝於一 s〇I基板 之底部侧。在此一範例中,可調整一包覆區域的大小以適 應該裝置(參考圖7至8進一步說明)。 圖5B顯不已形成該包覆區域24之後該s〇I基板1〇的寬度 方向斷面圖。應注意,該包覆區域24之一寬度64大於該波 導18之一寬度66。 一般而言,可以各種方式產生該包覆區域24,較佳的係 藉由一微影程序組合一蝕刻步驟(即一濕式或乾式蝕刻)。 圖6A係顯示用於在一 S0I基板之一主體層内形成一包覆區 域之一範例程序的流程圖。可在前端處理期間(即在一晶 圓上呈現金屬之前)’在後端處理期間或在已完成後端處 理之後應用圖6 A中之流程圖。 於步驟70,提供一 SOI基板。於步驟72,在該s〇I基板之 底邓側的主體層上沈積一硬遮蔽層。該硬遮蔽層(例如)可 126566.doc 200839330 以係氮化矽。於步驟74,在該硬遮蔽層之上沈積一光阻遮 蔽層。於步驟76,使一遮罩與該SOI基板之一前側對準並 將該遮罩用於圖案化該光阻遮蔽層。如上所述,應在要進 行包覆的光學裝置下面對準一包覆區域。此外,可對準該 包覆區域以使得該包覆區域比欲進行包覆的裝置寬。例 如’該包覆區域應係設計成比一光學裝置區域寬,其中該 光學裝置區域表示一光學裝置係或將係定位的區域。The dissipative coupling of light through a BOX layer is further illustrated in the co-pending U.S. Patent Application Serial No. 11/412,738, the disclosure of which is incorporated herein by reference. To be used as a spacer and also to prevent wafer bowing during fabrication, the BOX layer 14 should be less than about 25 angstroms or less in thickness. However, to cover the waveguide 18 and thereby efficiently direct the beam, the waveguide 18 should be surrounded by a cladding having a low index of refraction and a sufficient thickness. To coat the top of the waveguide 18, an oxide layer 26 is grown or thermally deposited onto the waveguide 18. In one example the oxide layer 26 should have a thickness of about i um or more. φ However, to cover the bottom of the waveguide 18, a BOX layer 14 may not be sufficient to adequately confine the beam within the waveguide 18. Therefore, under the waveguide 18, a cladding region is formed. In general, the cladding region 24 serves to increase the cladding thickness of the BOX layer 14. Preferably, the cladding region 24 is an air cavity that is inherently a low index of refraction. However, a dielectric material (e.g., an oxide, a nitride, a polymer film, or a combination thereof) may also be used to fill the cladding region 24. More details regarding filling the cladding area will be explained with reference to FIG. 6B. FIG. 1 also shows an optical device 28 located adjacent the waveguide 18. It should be noted that various other microelectronic 'microelectromechanical and/or optical components may be present within, above or below the 126566.doc -10- 200839330 SOI substrate 10. For example, the optical device 28 can include a modulator that adjusts the optical characteristics of the waveguide 18. Figure 3A shows a top view of an SOI substrate 40. The substrate 40 includes a waveguide 42 formed in a device layer and an optical device 44 formed on top of the device layer, which may be, for example, a modulator. The substrate 40 may also include a pen device 'which is generally not an FET. Below the substrate 40, an optical device 46 and a cavity 48 may be formed in one of the body layers of the SOI substrate 40. The optical device 46 can be, for example, a turn or a grating that can be used to carry light into or out of the waveguide 42 (i.e., via a BOX layer). To prevent loss within the waveguide 42, the cavity 48 acts as a cladding region. Preferably, the chamber 48 is an air chamber or a chamber filled with a dielectric material or at least partially filled. The dielectric material should have a continuous index of refraction that is less than the refractive index of the waveguide 42 and less than or equal to the refractive index of a BOX layer. Moreover, to facilitate optical confinement, it is preferred that the cavity 48 have a width 5 大于 greater than the visibility 52 of the waveguide 42. For example, the cavity 48 can be patterned and etched with φ such that the cavity 48 sufficiently overlaps the waveguide and a portion of the substrate 40. Alternatively, a trench or a trench may be formed instead of a cavity. Figure 33 shows the trenches, wood 56 that have been formed on the bottom side of the SOI substrate 58, for example, in a body layer. The trench 56 extends beyond a width 62 of one of the waveguides 60. The trenches 6 also pass under other optical devices and thus also provide cladding to the devices. Fig. 4 shows a longitudinal sectional view of the SOI substrate 1 (see Fig. 1) before the formation of the cladding region 24. The cladding region can be formed at any point in a semiconductor process, such as in the SOI substrate 10 to produce a microelectronic device 126566.doc • 11· 200839330 Le or later. Further, the cladding region 24 may be formed before or after any photoelectron device is produced in the S 01 substrate 1 . Preferably, however, if the cladding region 24 comprises an air cavity (i.e., the cladding region is not filled with a dielectric material), the cladding region is formed after the formation of the microelectronics and optoelectronic device. For example, trenches or trenches in the bottom side of the wafer may make it difficult to adapt the wafer to various types of semiconductor tools. Fig. 5A is a cross-sectional view showing the longitudinal direction of the SOI substrate 1A after the cladding region 24 has been formed. It should be noted that a 稜鏡 or other type of optical engagement device may be formed in the body layer 16 (see, for example, Figure D. If a ridge is formed, care should be taken to form the coating before or after the formation of the raft) Area 24. In addition, a stack or other type of optical device can be mounted on the bottom side of a substrate. In this example, the size of a cladding area can be adjusted to accommodate the device (refer to Figure 7 to 8 further illustrates.) Figure 5B shows a cross-sectional view of the width of the sI substrate 1 after the cladding region 24. It should be noted that one of the cladding regions 24 has a width 64 greater than a width 66 of the waveguide 18. In general, the cladding region 24 can be produced in a variety of ways, preferably by an etch step (ie, a wet or dry etch) by a lithography process. Figure 6A is shown for use on a SOI substrate. A flow chart of an exemplary procedure for forming a cladding region within a body layer. It can be applied during front-end processing (ie, before metal is rendered on a wafer) 'applying during back-end processing or after finished back-end processing Flow chart in A. An SOI substrate is provided at step 70. A hard masking layer is deposited on the body layer of the bottom side of the substrate of the sI substrate in step 72. The hard mask layer can be, for example, 126566.doc 200839330. A photoresist mask layer is deposited over the hard mask layer at step 74. In step 76, a mask is aligned with a front side of the SOI substrate and the mask is used to pattern the photoresist mask layer. As noted above, a cladding area should be aligned beneath the optical device to be coated. Further, the cladding area can be aligned such that the cladding area is wider than the device to be coated. For example, the package The coverage area should be designed to be wider than an optical device area, wherein the optical device area represents an optical device system or an area in which the system will be positioned.

為對準該包覆區域,一遮罩對準器(例如一步進機)可使 用一相機以(例如)使一遮罩對準該S0I基板之頂部側上的 特徵。該包覆區域可與該裝置本身或該s〇I基板之前側上 的各種其他特徵對準。除相機以外的其他對準方法包括使 用一 IR(infrared ;紅外線)源來使用一底部側遮罩偵測並對 準前側特徵。在此類範例中,可藉由該遮罩對準器辨識的 對準遮罩可以係圖案化於該裝置之一適當層内以致能一後 側圖案對一前側的配準(反之亦然)。 於步驟78 ’經由(例如)一濕式或乾式化學蝕刻將該腔及/ 或溝渠圖案轉印至該硬遮蔽層中。於步驟8〇,可使用一濕 式或乾式化學㈣程序來將該腔及/或溝渠圖案轉印至該 主體層巾。可餘刻該腔及/或溝渠直至曝露該峨層。或 者’可訂製該餘刻程序以使得一薄的石夕之部分保持於該 、層’、該[及/或溝渠之間。此剩餘的矽可以係隨後氧 化並因而使用一熱氧化物填充該腔及/或溝To align the cladding area, a mask aligner (e.g., a stepper) can use a camera to, for example, align a mask to features on the top side of the SOI substrate. The cladding region can be aligned with the device itself or various other features on the front side of the substrate. Other alignment methods other than cameras include the use of an IR (infrared) source to detect and align the front side features using a bottom side mask. In such an example, the alignment mask that can be identified by the mask aligner can be patterned into a suitable layer of the device to enable registration of a back side pattern to a front side (or vice versa). . The cavity and/or trench pattern is transferred to the hard mask layer via step 78' via, for example, a wet or dry chemical etch. In step 8, a wet or dry chemical (4) procedure can be used to transfer the cavity and/or trench pattern to the body layer. The cavity and/or trench may be left in place until the layer of germanium is exposed. Alternatively, the remainder procedure may be customized such that a thin portion of the stone is held between the layer, the [and/or the trench. This remaining helium can be subsequently oxidized and thus filled with cavities and/or trenches using a thermal oxide.

一步說明)。 A 一數百μηι的等級上), 因為該主體層可實質上較厚(即在 126566.doc -13- 200839330 故該硬遮罩可確保該光阻遮蔽層不在該圖案轉印至該 層中之期間發生故障。因而,於步驟78、 — 不的餘刻程 序可以係一連續蝕刻步驟或一兩步蝕刻程 硬遮蔽層並非必需的。例如,該光阻可足夠耐: 轉印至該主體層中期間保持完整。 " 可在於步驟78的蝕刻程序期間或之後戋 4在於步驟80的蝕One step explanation). A is on the order of hundreds of μm), since the body layer can be substantially thicker (ie, at 126566.doc -13-200839330, the hard mask ensures that the photoresist mask is not transferred to the layer in the pattern A failure occurs during the process. Therefore, it is not necessary to perform a continuous etching step or a two-step etching process hard masking layer in step 78, for example, the photoresist may be sufficiently resistant to: transfer to the body The period during the layer remains intact. " may be during the etching process of step 78 or after the etch 4 in step 80

刻程序之後移除該光阻遮蔽層。可藉由(例如)_電衆灰化 及/或一濕式清潔來移除該光阻遮蔽層。可藉由二=學 HF(氫氟酸)或熱磷蝕刻來移除該硬遮罩層。硬遮罩帶的= 型可取決於所使用的硬遮罩層的類型。 ' 如上所述,可使用一介電材料來填充或部分填充一包覆 區域。可使用該介電材料來對—特定光學裝置或應用= 製該包覆區域的折射率。圖6Β係顯示用於使用一介電材料 填充一腔或溝渠之一範例程序的流程圖。 於步驟82,提供-欲進行填充的腔或溝渠。於步驟料, 使用一介電材料來填充該腔及/或溝渠。例如,可使用一 化學汽相沈積(CVD)或一電漿增強CVD(PECVD)程序來沈 積一氧化物層並完全填充或至少部分填充該腔及/或溝 渠。 還應明白,還可使用一熱擴散程序來在該腔及/或溝渠 内生長一介電層。可使該介電層生長至一較佳厚度,其完 全填充或至少部分填充該腔及/或溝渠。而且,如上所 述,該腔及/或溝渠可包括一剩餘數量的矽。可在(例如)一 濕式或乾式氧化期間氧化此矽。在某些範例中,可能較佳 126566.doc 200839330 的係在形成微電子裝置之前執行高溫介電質沈積步驟,因 為此類溫度可能影響此等裝置的擴散輪廓。 圖6C顯示使用一介電材料86填充的圖5A之腔24。應明 白’可以各種方式進一步處理該介電材料。例如,可經由 一化學機械拋光或其他類型的拋光操作來平坦化該介電材 料8 6 〇 如上所述,可將各種光學裝置安裝於一 s〇I基板的底部 側。因而,可訂製一腔及/或溝渠以適應此一安裝。圖7顯 不一 SOI基板90的俯視圖。一光學裝置92係安裝於該8〇1基 板90的底部側。因此,設計一腔/溝渠%之一長度料以使 得光學裝置可以係安裝於該8〇1基板之— Β〇:χ^。圖8顯示 該SOI基板90與該光學裝置92的長度方向斷面圖。 一般而言,該包覆區域允許更薄的Β〇χ層係用於光電子 1C處理與設計佈局。例如,具有少於25〇〇埃之厚度的 層可用於電隔離。然而,該包覆區域確保光電子裝置係充 分包覆。 然而,應明白所解說範例及相關說明僅係範例且不應係 視為限制本發明之範疇。上述方法及結構不限於光學裝置 之一特定類型。可經由上述方法包覆其他光學裝置。、此 外,雖然該揭示内容使用_石夕基基板,但例如可代替石夕與 一氧化矽而使用各種其他半導體基板與膜,例如〇仏8、 Ga^nP。料’可訂製上面任何膜的折料。例如,可 使用-具有-較佳折射率之介電材料來填充一腔。申請專 利範圍*應理解為限於所說明料或元件,除非針對效用 126566.doc •15· 200839330 特別說明。因&amp;,在隨附申請專利範圍及其等同内容之範 轉與精神之㈣所有具體實施例均係主張為本發明。 【圖式簡單說明】 上面已結合隨附圖式說明特定範例性具體實施例,其中 在各種圖式中類似參考數字表示類似元件,且其中:/ 圖1係依據一範例的一光學裝置結構之長度方向斷面 Γη3 · 圖,The photoresist mask is removed after the program is inscribed. The photoresist mask can be removed by, for example, ashing and/or a wet cleaning. The hard mask layer can be removed by etching with HF (hydrofluoric acid) or hot phosphorous. The type of hard mask strip can depend on the type of hard mask layer used. As described above, a dielectric material can be used to fill or partially fill a cladding region. The dielectric material can be used to - the specific optical device or application = the refractive index of the cladding region. Figure 6 is a flow chart showing an exemplary procedure for filling a cavity or trench with a dielectric material. At step 82, a cavity or trench to be filled is provided. In the step, a dielectric material is used to fill the cavity and/or trench. For example, a chemical vapor deposition (CVD) or a plasma enhanced CVD (PECVD) procedure can be used to deposit an oxide layer and completely fill or at least partially fill the cavity and/or trench. It will also be appreciated that a thermal diffusion process can also be used to grow a dielectric layer within the cavity and/or trench. The dielectric layer can be grown to a preferred thickness that completely fills or at least partially fills the cavity and/or trench. Moreover, as mentioned above, the chamber and/or the trench may include a remaining number of turns. This ruthenium can be oxidized during, for example, a wet or dry oxidation. In some examples, it may be preferable to perform a high temperature dielectric deposition step prior to forming the microelectronic device, as such temperatures may affect the diffusion profile of such devices. Figure 6C shows the cavity 24 of Figure 5A filled with a dielectric material 86. It should be understood that the dielectric material can be further processed in a variety of ways. For example, the dielectric material can be planarized via a chemical mechanical polishing or other type of polishing operation. 6 As described above, various optical devices can be mounted on the bottom side of a substrate. Thus, a cavity and/or trench can be customized to accommodate this installation. Figure 7 shows a top view of the SOI substrate 90. An optical device 92 is attached to the bottom side of the 〇1 substrate 90. Therefore, one length of one cavity/ditch is designed so that the optical device can be mounted on the 〇1 substrate. Fig. 8 is a longitudinal sectional view showing the SOI substrate 90 and the optical device 92. In general, the cladding region allows for a thinner layer of germanium for photoelectron 1C processing and design layout. For example, a layer having a thickness of less than 25 angstroms can be used for electrical isolation. However, the cladding area ensures that the optoelectronic device is sufficiently coated. However, it should be understood that the illustrated examples and the description are merely exemplary and are not intended to limit the scope of the invention. The above methods and structures are not limited to a particular type of optical device. Other optical devices can be coated by the methods described above. Further, although the disclosure uses the lithographic substrate, various other semiconductor substrates and films such as 〇仏8 and Ga^nP can be used instead of, for example, shi shi and yttria. Material ' can be customized for the folding of any of the above films. For example, a cavity can be filled with a dielectric material having a preferred refractive index. The scope of application for patents* should be understood to be limited to the description or component, unless otherwise stated for utility 126566.doc •15· 200839330. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION [0012] The specific exemplary embodiments have been described with reference to the drawings, in which like reference numerals indicate like elements in the various figures, and wherein: Fig. 1 is an optical device structure according to an example Length direction section Γη3 · Figure,

圖2Α與2Β係依據一範例顯示一光束係消散地耦合至一 波導中與離開一波導的長度方向斷面圖; 圖3Α與3Β係包含該基板之頂部側上之一波導與該基板 之底部側上之一包覆區域的一 SOI基板之俯視圖; 圖4係依據一範例的一 S0I基板之長度方向斷面圖; 圖5 A係依據一範例的具有位於該主體層中之一包覆區域 的一 SOI基板之另一長度方向斷面圖; 圖5B係依據一範例的圖5之S0I基板的寬度方向斷面2 and 2 show a longitudinal cross-sectional view of a beam of light beam dissipatively coupled into and out of a waveguide according to an example; FIG. 3 and FIG. 3 contain a waveguide on the top side of the substrate and the bottom of the substrate. FIG. 4 is a longitudinal cross-sectional view of an SOI substrate according to an example; FIG. 5A has a cladding region located in the main body layer according to an example; Another lengthwise cross-sectional view of an SOI substrate; FIG. 5B is a widthwise cross section of the SOI substrate of FIG. 5 according to an example.

El · 圖, 圖6A與6B係用於在一 SOI基板之一主體層中形成一包覆 區域的流程圖; 圖6C係具有已使用一介電材料填充之一腔的一 soi基板 的長度方向斷面圖; 圖7係包含該SOI基板之頂部側上之一波導與該s〇I基板 之底部側上之一包覆區域與一光學裝置的一 SOI基板之俯 視圖; 圖8係依據一具體實施例的具有位於該SOI基板之底部側 126566.doc -16- 200839330 上之一包覆區域與一光學裝置的一 SOI基板之長度方向斷 面圖。 【主要元件符號說明】 10 SOI基板 &lt; 12 裝置層 14 BOX層 16 主體層 18 波導 • 19 FET 20 稜鏡 24 包覆區域/腔 26 氧化物層 28 光學裝置 40 SOI基板 42 波導 ⑩ 44 光學裝置 46 光學裝置 48 腔 56 溝渠 60 波導 86 介電材料 90 SOI基板 92 光學裝置 96 腔/溝渠 126566.doc -17·Figure 6A and Figure 6B are flow diagrams for forming a cladding region in a body layer of a SOI substrate; Figure 6C is a longitudinal direction of a soi substrate having a cavity filled with a dielectric material. FIG. 7 is a plan view showing an SOI substrate including a waveguide on the top side of the SOI substrate and a cladding region on the bottom side of the NMOS substrate and an optical device; FIG. 8 is based on a specific A longitudinal cross-sectional view of an SOI substrate having a cladding region on an underside 126566.doc -16 - 200839330 of the SOI substrate and an optical device. [Main component symbol description] 10 SOI substrate &lt; 12 device layer 14 BOX layer 16 body layer 18 waveguide • 19 FET 20 稜鏡 24 cladding region / cavity 26 oxide layer 28 optical device 40 SOI substrate 42 waveguide 10 44 optical device 46 Optical device 48 Cavity 56 Ditch 60 Waveguide 86 Dielectric material 90 SOI substrate 92 Optical device 96 Cavity/ditch 126566.doc -17·

Claims (1)

200839330 十、申請專利範圍: 1· 一種低損失光學裝置結構,其包含: 一絕緣物上矽基板,其包括一裝置層與一主體層,其 中一埋入氧化物層係插入該裝置層與該主體層之間,且 其中該裝置層包括一光學裝置區域;以及 該主體層中之一包覆區域,其中該包覆區域與該埋入 氧化物層相鄰並定位於該光學裝置區域之下,且其中該 包覆區域具有大於與該光學裝置區域相關聯之一寬度的 • -相關聯寬度。 2·如請求項1之光學裝置結構,其中該包覆區域係藉由包 含在該主體層内蝕刻一腔之一程序來形成,其中該腔與 該埋入氧化物層相鄰並定位於該光學裝置區域之下,且 其中該腔具有大於與該光學裝置區域相關聯之該寬度的 一寬度。 3.如請求項2之光學裝置結構,其中該程序進一步包含使 $ 用一介電材料填充該腔。 4·如請求項2之光學裝置結構,其中該程序進一步包含在 該腔中生長一介電層。 5. 如明求項1之光學裝置結構,其中該包覆區域係藉由包 含在該主體層内蝕刻一溝渠之一程序來形成,其中該溝 渠與該埋入氧化物層相鄰並定位於該光學裝置區域之 '’且其中該溝渠具有延伸至與該光學裝置區域相關聯 之該寬度以外的一寬度。 6. —種用於製造一低損失光學裝置結構的方法,該方法包 126566.doc 200839330 含: 提供—絕緣物上矽基板,其包括一裝置層與一主體 層,其中 γ 曰/、 一埋入氧化物層係插入該裝置層與該主體層之 間且其中該裝置層包括一波導區域;以及 在該主體層中形成一包覆區域,其中該包覆區域與該 埋二氧化物層相鄰並定位於該波導區域之下。 如請求項6 $ 士、+ 、之方法,其中該包覆區域具有一相關聯寬 度其大於與欲在該波導區域形成之一波導相關聯的一 寬度。200839330 X. Patent Application Range: 1. A low loss optical device structure comprising: an insulator upper substrate comprising a device layer and a body layer, wherein a buried oxide layer is inserted into the device layer and Between the body layers, and wherein the device layer includes an optical device region; and a cladding region of the body layer, wherein the cladding region is adjacent to the buried oxide layer and positioned under the optical device region And wherein the cladding region has an associated width greater than a width associated with the optical device region. 2. The optical device structure of claim 1, wherein the cladding region is formed by a process of etching a cavity in the body layer, wherein the cavity is adjacent to the buried oxide layer and positioned at the Below the optical device region, and wherein the cavity has a width that is greater than the width associated with the optical device region. 3. The optical device structure of claim 2, wherein the program further comprises causing the cavity to be filled with a dielectric material. 4. The optical device structure of claim 2, wherein the program further comprises growing a dielectric layer in the cavity. 5. The optical device structure of claim 1, wherein the cladding region is formed by a process comprising etching a trench in the body layer, wherein the trench is adjacent to the buried oxide layer and positioned The optical device region is ''and wherein the trench has a width that extends beyond the width associated with the optical device region. 6. A method for fabricating a low loss optical device structure, the method package 126566.doc 200839330 comprising: providing an insulator upper substrate comprising a device layer and a body layer, wherein gamma 曰/, a buried An oxide layer is interposed between the device layer and the body layer and wherein the device layer includes a waveguide region; and a cladding region is formed in the body layer, wherein the cladding region is opposite to the buried oxide layer Adjacent and positioned below the waveguide region. A method of claim 6 $, +, wherein the cladding region has an associated width that is greater than a width associated with a waveguide to be formed in the waveguide region. 月求項6之方法,其進一步包含於該波導區域形一 波導,复由· ”中該包覆區域具有大於與該波導相關聯之一寬 度的一相關聯寬度。 如明求項6之方法,其中形成該包覆區域包含在該主體 运中蝕亥丨腔,其中該腔與該埋入氧化物層相鄰並定位 於該波導區域之下。 如哨求項9之方法,其中在主體層中蝕刻該腔包含: 在該主體層上沈積一遮蔽層; 圖案化該遮蔽層以定義該腔之一位置;以及 使用一蝕刻程序來將與該腔相關聯之一圖案轉印至該 主體層中。 11·如明求項1G之方法,其中該遮蔽層包含—光阻遮蔽層與 一硬遮蔽層之至少一者。 12·如凊求項9之方法,其中形成該包覆區域進一步包含在 該腔中沈積一介電材料。 126566.doc -2- 200839330 13. 如請求項9之方法’纟中形成該包覆區域進一步包含在 該腔中生長一介電層。 14. 一種低損失光學裝置結構,其包含: 一絶緣物上矽基板,其包含一裝置層與一主體層,其 中埋人氧化物層係插入該裝置層與該主體層之間; 一光學裝置,其係形成於該裝置層中,其中該光學裝 置具有一相關聯寬度;以及 包覆區域,其係形成於該主體層中並與該埋入氧化 物層相郇’其中邊包覆區域具有大於該光學裝置之該寬 度的一相關聯寬度。 15·如請求項14之光學裝置結構,其中該埋入氧化物層之一 部分促進該絕緣物上矽基板之一底部側與一前侧之間的 一光學耦合。 16·如明求項14之光學裝置結構,其中該包覆區域包含一介 電材料。The method of claim 6, further comprising forming a waveguide in the waveguide region, wherein the cladding region has an associated width greater than a width associated with the waveguide. Forming the cladding region in the body of the substrate, wherein the cavity is adjacent to the buried oxide layer and positioned below the waveguide region. The method of claim 9 wherein the body Etching the cavity in the layer comprises: depositing a masking layer on the body layer; patterning the masking layer to define a location of the cavity; and using an etching process to transfer a pattern associated with the cavity to the body The method of claim 1 wherein the masking layer comprises at least one of a photoresist masking layer and a hard masking layer. 12. The method of claim 9, wherein the covering region is further formed A dielectric material is deposited in the cavity. 126566.doc -2- 200839330 13. The method of claim 9 wherein forming the cladding region further comprises growing a dielectric layer in the cavity. Loss optical device junction The method includes: an insulator upper substrate comprising a device layer and a body layer, wherein a buried oxide layer is interposed between the device layer and the body layer; an optical device is formed on the device layer Wherein the optical device has an associated width; and a cladding region formed in the body layer and opposite the buried oxide layer, wherein the edge cladding region has a width greater than the width of the optical device An associated optical device structure, wherein the optical device structure of claim 14 wherein a portion of the buried oxide layer facilitates an optical coupling between a bottom side and a front side of one of the upper substrate of the insulator. The optical device structure of claim 14, wherein the cladding region comprises a dielectric material. 如請求項14之光學裝置結構,其中該包覆區域包含形成 於該主體層中之-空氣腔,其中該空氣腔與該埋入氧化 物層相鄰並定位於該光學裝置之下,且其中該空氣腔具 有大於該光學裝置之該寬度的一相關聯寬度。 如請求項17之光學裝置結構,其進一步包含耦合至該埋 入氧化物層之一稜鏡,其中該棱鏡係定位於該空氣腔 内。 、 19.如請求項14之光學裝置結構,其中該光學裝置包含一波 126566.doc 200839330 20.如請求項19之光學裝置結構,其進一步包含已形成於該 主體層中之一稜鏡,其中該稜鏡與該包覆層相鄰。The optical device structure of claim 14, wherein the cladding region comprises an air cavity formed in the body layer, wherein the air cavity is adjacent to the buried oxide layer and positioned under the optical device, and wherein The air cavity has an associated width that is greater than the width of the optical device. The optical device structure of claim 17, further comprising a coupling to one of the buried oxide layers, wherein the prism is positioned within the air cavity. 19. The optical device structure of claim 14, wherein the optical device comprises a wave 126566.doc 200839330. 20. The optical device structure of claim 19, further comprising one of the body layers formed therein, wherein The crucible is adjacent to the cladding. 126566.doc126566.doc
TW96141952A 2006-04-26 2007-11-06 Low-loss optical device structure TW200839330A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/412,738 US7454102B2 (en) 2006-04-26 2006-04-26 Optical coupling structure
US11/557,185 US20070274655A1 (en) 2006-04-26 2006-11-07 Low-loss optical device structure

Publications (1)

Publication Number Publication Date
TW200839330A true TW200839330A (en) 2008-10-01

Family

ID=44835002

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96141952A TW200839330A (en) 2006-04-26 2007-11-06 Low-loss optical device structure

Country Status (1)

Country Link
TW (1) TW200839330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI484533B (en) * 2009-11-16 2015-05-11 United Microelectronics Corp Semiconductor optoelectronic structure and the fabricating method thereof
US11300732B2 (en) 2020-01-29 2022-04-12 Psiquantum, Corp. Low loss high efficiency photonic phase shifter with dielectric electrodes
US11391891B2 (en) 2020-03-03 2022-07-19 Psiquantum, Corp. Fabrication method for photonic devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI484533B (en) * 2009-11-16 2015-05-11 United Microelectronics Corp Semiconductor optoelectronic structure and the fabricating method thereof
US11300732B2 (en) 2020-01-29 2022-04-12 Psiquantum, Corp. Low loss high efficiency photonic phase shifter with dielectric electrodes
TWI782404B (en) * 2020-01-29 2022-11-01 美商沛思量子公司 Low loss high efficiency photonic phase shifter
US11573375B2 (en) 2020-01-29 2023-02-07 Psiquantum, Corp. Low loss high efficiency photonic phase shifter with dielectric electrodes
US11953729B2 (en) 2020-01-29 2024-04-09 Psiquantum, Corp. Low loss high efficiency photonic phase shifter with dielectric electrodes
US11391891B2 (en) 2020-03-03 2022-07-19 Psiquantum, Corp. Fabrication method for photonic devices

Similar Documents

Publication Publication Date Title
US7454102B2 (en) Optical coupling structure
US11002907B2 (en) Stepped optical bridge for connecting semiconductor waveguides
US7811844B2 (en) Method for fabricating electronic and photonic devices on a semiconductor substrate
US7927979B2 (en) Multi-thickness semiconductor with fully depleted devices and photonic integration
KR102059891B1 (en) Integrated waveguide coupler
US7738753B2 (en) CMOS compatible integrated dielectric optical waveguide coupler and fabrication
US7469084B2 (en) Structure comprising an adiabatic coupler for adiabatic coupling of light between two optical waveguides and method for manufacturing such a structure
EP3189541B1 (en) Method of bonding chips to a semiconductor wafer
US9568674B2 (en) Photonic device structure and method of manufacture
US6509139B1 (en) Method of fabricating an integrated optical component
CN112771426A (en) Method for III-V/silicon hybrid integration
US7672558B2 (en) Silicon optical device
EP1918744B1 (en) Process for manufacturing a slot waveguide
CN113176630B (en) Smooth waveguide structure and method of manufacture
KR102163885B1 (en) Electro-absorption optical modulation device and the method of fabricating the same
US20070274655A1 (en) Low-loss optical device structure
CN113534339B (en) Semiconductor structure and manufacturing method thereof
US9791621B2 (en) Integrated semiconductor optical coupler
TW200839330A (en) Low-loss optical device structure
US20080310808A1 (en) Photonic waveguide structure with planarized sidewall cladding layer
WO2002048765A1 (en) Integrated optical devices
KR100596509B1 (en) Fabrication method of ridge type waveguide integrated semiconductor optical device
CN116794771A (en) Interlayer coupling structure and preparation method thereof
CN111785678A (en) Semiconductor device and method for manufacturing the same
CN111785679A (en) Semiconductor device and method for manufacturing the same