CN111781164A - 一种同时分析天然气中酸性组分含量的激光检测方法 - Google Patents

一种同时分析天然气中酸性组分含量的激光检测方法 Download PDF

Info

Publication number
CN111781164A
CN111781164A CN201910272648.7A CN201910272648A CN111781164A CN 111781164 A CN111781164 A CN 111781164A CN 201910272648 A CN201910272648 A CN 201910272648A CN 111781164 A CN111781164 A CN 111781164A
Authority
CN
China
Prior art keywords
gas
acid
detected
establishing
variable group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910272648.7A
Other languages
English (en)
Other versions
CN111781164B (zh
Inventor
胡雪蛟
向柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Mizi Energy Technology Co ltd
Original Assignee
Shenzhen Mizi Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Mizi Technology Development Co ltd filed Critical Shenzhen Mizi Technology Development Co ltd
Priority to CN201910272648.7A priority Critical patent/CN111781164B/zh
Publication of CN111781164A publication Critical patent/CN111781164A/zh
Application granted granted Critical
Publication of CN111781164B publication Critical patent/CN111781164B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种同时分析天然气中酸性组分含量的激光检测方法,本方法选取天然气中酸性气体组份吸收光谱重合的光谱波段,通过化学计量学算法实现酸性气体组分的同时测量,解决了传统的激光吸收光谱技术往往选取没有干扰的吸收波段只能测量一种气体的问题,也解决了使用多台分析仪表占地面积更大而且增加了分析仪表的投入和维护成本的问题。

Description

一种同时分析天然气中酸性组分含量的激光检测方法
技术领域
本发明涉及气体分析领域,具体涉及一种基于激光技术同时分析天然气 中酸性组分含量的激光检测方法。
背景技术
天然气中除了可燃烷烃组分外,往往还含有微量硫化氢(H2S)和二氧化 碳(CO2)等酸性气体。其中,H2S作为一种有毒腐蚀性气体,可能与管道中 的水结合成酸,腐蚀管道,导致设备损坏或气体泄露,严重时可能导致人员 伤亡;而CO2除了与H2O结合成碳酸,对管道产生腐蚀作用外,还会降低天 然气的发热量,影响气体燃烧价值。因此,《天然气》国家标准对天然气中的 H2S和CO2含量有明确规定,要求一、二类天然气中H2S含量分别低于6mg/m3和20mg/m3,CO2含量分别低于2%和3%。
目前,在天然气净化过程分析和加压运输过程中,根据H2S和CO2的物 理和化学特性,需要配备独立的H2S分析仪和CO2分析仪进行气体浓度测量。 通常情况下,测H2S一般采用醋酸铅试纸法和紫外法。醋酸铅试纸法存在耗 材,而且纸带易受污染,且故障率较高。而紫外法使用的光源寿命短、价格 高,且存在滤光轮等转动部件,损耗率高,设备维护量大。而分析CO2含量 通常使用红外技术进行测量。然而,红外技术使用广谱光源,覆盖的波段较广,容易覆盖其他组分吸收光谱,导致测量易受背景气体干扰,而且红外采 用差分算法,分析精度不高。
此外,检测H2S和CO2的气体浓度还可以使用激光吸收光谱技术进行测 量,根据待测组分的特征吸收光谱,选取窄线宽的半导体激光光源,即可不 受干扰地对目标组分进行快速测量,测量精度可以达到10-6(ppm)甚至是10-9 (ppb)级别。虽然使用激光技术分析H2S和CO2技术原理保持一致,但往往 为了避免干扰,在选取H2S和CO2的吸收波段时相隔较远,因此,同一个激 光器波段无法覆盖到两种组分的测量,迫使天然气净化厂及门站中往往需要 购置两台甚至多台分析仪,不仅占地面积更大,而且增加了分析仪表的投入 和维护成本。
发明内容
基于此,有必要针对上述技术问题,提供一种同时分析天然气中酸性组 分含量的激光检测方法,本方法选取天然气中酸性气体吸收光谱重合的光谱 波段,通过化学计量学算法实现酸性气体组分的同时测量,解决了传统的激 光吸收光谱技术往往选取没有干扰的吸收波段只能测量一种气体的问题,也 解决了使用多台分析仪表占地面积更大而且增加了分析仪表的投入和维护成 本的问题。
为了解决上述技术问题,本发明提供一种同时分析天然气中酸性组分含 量的激光检测方法,采用了如下所述的技术方案:
一种同时分析天然气中酸性组分含量的激光检测方法,其包括以下步骤:
(1)建立i组酸性气体的自变量组,每一组自变量组对应一种酸性气 体;每组自变量组建立过程如下:向检测池中通入预设浓度的一酸性气体, 所述检测池中的背景气与待测天然气的背景气相同或为对待测酸性气体的吸 收光谱无干扰的气体,记录下预设波段内的吸收光谱,将预设波段分割成n 个波长,每个波长对应的光谱强度建立自变量组Xi=(xi1,xi2,...,xin),i 代表第i种酸性气体,i≥2,Xi代表第i种酸性气体的自变量组;
(2)建立j组混合气的因变量组,每一组因变量组对应一种由i种酸 性气体按配比混合的混合气,每种混合气的第i种酸性气体的浓度Ci是不同 的;每组因变量组建立过程如下:向检测池中通入混合气,所述检测池中的 背景气与待测天然气的背景气相同或为对待测酸性气体的吸收光谱无干扰的 气体,记录下预设波段内的吸收光谱,将预设波段分割成n个波长,每个波 长对应的光谱强度建立因变量组Yj=(yj1,yj2,...,yjn),j代表代表第j种混 合气,j≥2,Yj代表第j种混合气的因变量组;
(3)建立线性回归方程:
Yj=∑ikjiXi+kj0 (1),其中,
kji代表在第j组混合气的因变量组中第i种酸性气体吸收曲线的影响系 数,kj0代表在第j组混合气的因变量组中一个偏移量;
根据上述每一组线性回归方程,通过多元线性回归算法得到影响系数kj1、 kj2…kji和常数kj0的最优解;
(4)影响系数kji与第j种混合气中的第i种酸性气体浓度Cji呈正比, 即第j种混合气中第i种酸性气体浓度Cji与影响系数kji为线性关系,通过一 元线性回归算法拟合求解得到回归系数ai和常数bi,以建立浓度Ci与影响系 数ki的线性函数:
Ci=aiki+bi (2),其中,
Ci代表混合气中第i种酸性气体的浓度,ki代表对第i种酸性气体吸收曲线
的影响系数,ai代表回归系数,bi为常数;
(5)根据待测天然气建立一组待测天然气的因变量组Y’,建立过程 如下:向检测池中通入待测天然气,所述检测池中的背景气与待测天然气的 背景气相同或为对待测酸性气体的吸收光谱无干扰的气体,记录下预设波段 内的吸收光谱,将预设波段分割成n个波长,每个波长对应的光谱强度建立 因变量组Y’=(y’1,y’2,...,y’n);根据方程(1)建立Y’=∑ik’iXi+k’0,通 过多元线性回归算法得到影响系数k’i和k’0;将得到的影响系数k’i代入方程 (2),则可求得待测天然气中第i种酸性气体的浓度含量。
一种同时分析天然气中酸性组分含量的激光检测方法,当所述待测天然 气中具有在预设波段内对酸性气体的吸收曲线存在干扰的干扰气,则检测方 法包括以下步骤:
(1)建立i组酸性气体的自变量组,每一组自变量组对应一种酸性气 体;每组自变量组建立过程如下:向检测池中通入预设浓度的一酸性气体, 所述检测池中的背景气与待测天然气的背景气相同或为对待测酸性气体的吸 收光谱无干扰的气体,记录下预设波段内的吸收光谱,将预设波段分割成n 个波长,每个波长对应的光谱强度建立自变量组Xi=(xi1,xi2,...,xin),i 代表第i种酸性气体,i≥2,Xi代表第i种酸性气体的自变量组;
(2)建立m组干扰气的自变量组,过程如下:向检测池中通入预设 浓度的一干扰气,所述检测池中的背景气与待测天然气的背景气相同或为对 待测酸性气体的吸收光谱无干扰的气体,记录下预设波段内的吸收光谱,将 预设波段分割成n个波长,每个波长对应的光谱强度建立自变量组X’m=(x’m1, x’m2,...,x’mn),m代表不同的干扰气,m≥1,X’m代表第m种干扰气的自变 量组;
(3)建立j组混合气的因变量组,每一组因变量组对应一种由i种酸 性气体和m种干扰气按配比混合的混合气,每种混合气的第i种酸性气体的 浓度Ci和第m种干扰气的浓度Cm均是不同的;每组混合气的因变量组建立 过程如下:向检测池中通入混合气,所述检测池中的背景气与待测天然气的 背景气相同或为对待测酸性气体的吸收光谱无干扰的气体,记录下预设波段 内的吸收光谱,将预设波段分割成n个波长,每个波长对应的光谱强度建立 因变量组Yj=(yj1,yj2,...,yjn),j代表代表第j种混合气,j≥3,Yj代表第 j种混合气的因变量组;
(4)建立线性回归方程:
Yj=∑ikjiXi+∑mKjmX’m+kj0 (3),其中,
kji、Kjm分别代表在第j组混合气的因变量组中第i种酸性气体吸收曲线 和第m种干扰气的影响系数,kj0代表在第j组混合气的因变量组中一个偏移 量;
根据上述每一组线性回归方程,通过多元线性回归算法得到影响系数kj1、 kj2…kji、Kj1、Kj2…Kjm和常数kj0的最优解;
(5)影响系数kji、Kjm分别与第j种混合气中的第i种酸性气体浓度Cji和第m种干扰气浓度C’m呈正比,即:
(5.1)第j种混合气中第i种酸性气体浓度Cji与影响系数kji为线性关系, 通过一元线性回归算法拟合求解得到回归系数ai和常数bi,以建立浓度Ci与 影响系数ki的线性函数:
Ci=aiki+bi (2),其中,
Ci代表混合气中第i种酸性气体的浓度,ki代表对第i种酸性气体吸收曲 线的影响系数,ai代表回归系数,bi为常数;
(5.2)第j种混合气中第m种干扰气浓度C’jm与影响系数Kjm为线性关 系,通过一元线性回归算法拟合求解得到回归系数a’m和常数b’m,以建立浓 度C’m与影响系数Km的线性函数:
C’m=a’mKm+b’m (4),其中,
C’m代表混合气中第m种干扰气的浓度,k’i代表对第m种干扰气吸收曲 线的影响系数,a’m代表回归系数,b’m为常数;
(6)根据待测天然气建立一组待测天然气的因变量组Y’,建立过程 如下:向检测池中通入待测天然气,所述检测池中的背景气与待测天然气的 背景气相同或为对待测酸性气体的吸收光谱无干扰的气体,记录下预设波段 内的吸收光谱,将预设波段分割成n个波长,每个波长对应的光谱强度建立 因变量组Y’=(y’1,y’2,...,y’n);根据方程(3)建立Y’=∑ik’iXi+∑mK’mXm+k’0,通过多元线性回归算法得到影响系数k’i、K’m和k’0;将得到的影响系数k’i代入步骤(5.1)中的方程(2),则可求得待测 天然气中第i种酸性气体的浓度含量。
作为本发明提供的同时分析天然气中酸性组分含量的激光检测方法的一 种改进,所述酸性气体至少包括硫化氢和二氧化碳。
作为本发明提供的同时分析天然气中酸性组分含量的激光检测方法的一 种改进,所述预设波段内的硫化氢和二氧化碳吸收特征峰相隔不超过0.1nm。
作为本发明提供的同时分析天然气中酸性组分含量的激光检测方法的一 种改进,所述干扰气为甲烷、乙烷的至少一种。
作为本发明提供的同时分析天然气中酸性组分含量的激光检测方法的一 种改进,所述预设波段为激光器输出波长控制在1569-1571nm,1571-1573nm, 1572-1574nm,1574-1575nm,1576-1577nm和1577-1579nm中的任一个波段 范围。
作为本发明提供的同时分析天然气中酸性组分含量的激光检测方法的一 种改进,所述激光器为窄波段可调谐激光光源。
作为本发明提供的同时分析天然气中酸性组分含量的激光检测方法的一 种改进,所述窄波段可调谐激光光源为分布式反馈激光器、垂直腔面发射激 光器或量子级联激光器。
作为本发明提供的同时分析天然气中酸性组分含量的激光检测方法的一 种改进,所述检测池中的背景气为与待测天然气的背景气相同或为对待测酸 性气体吸收光谱无干扰的气体。
作为本发明提供的同时分析天然气中酸性组分含量的激光检测方法的一 种改进,建立自变量组(Xi,X’m)和建立因变量组(Yj,Y’)步骤中的检测 池的压力相同。
与现有技术相比,本发明有以下有益效果:
1、本发明选取天然气中H2S和CO2等酸性气体吸收光谱重合的光谱波 段,通过化学计量学算法实现酸性气体组分的同时测量,解决了传统的激光 吸收光谱技术往往选取没有干扰的吸收波段只能测量一种气体的问题,也解 决了使用多台分析仪表占地面积更大而且增加了分析仪表的投入和维护成本 的问题。。
2、本发明的检测方法具有检测速度快、准确度较高、非接触、免维护、 寿命长等优点。
3、本方法能够使用一套分析技术、一个激光光源解决两种组分的在线测 量,减少了气体在线分析仪器数量,降低了投入成本。
4、相较于传统激光吸收光谱技术采用的差分算法或二次谐波高度算法, 利用多元线性回归算法能够分解复杂背景气条件下混叠的吸收峰,抗干扰能 力强;此外,由于个别位置上的波动对线型整体影响较小,可以减小随机误 差对浓度测量结果的影响,具有更高的稳定性。
附图说明
为了更清楚地说明本申请或现有技术中的方案,下面将对实施例或现有 技术描述中所需要使用的附图作一个简单介绍,显而易见地,下面描述中的 附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造 性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为1570-1580nm波段内H2S、CO2和CH4的吸收光谱;
图2为本发明实施例中浓度20ppmv的H2S吸收谱线;
图3为本发明实施例中浓度1%的CO2吸收谱线;
图4为本发明实施例中三组混合气的吸收光谱。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实 施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于 本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例,都应当属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长 度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、 “顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指 示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述 本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方 位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相 对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第 二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多 个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、 “固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接, 或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相 连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件 的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言, 可以根据具体情况理解上述术语在本发明中的具体含义。
如背景技术所描述的,传统的激光吸收光谱技术往往选取没有干扰的吸 收波段,故只能测量一种气体。这就造成了H2S和CO2分析仪无法合并测量 的现状,使得天然气净化厂及门站中往往需要购置两台甚至多台分析仪,不 仅占地面积更大,而且增加了分析仪表的投入和维护成本。
为了解决上述问题,本发明提出了基于激光技术同时对天然气国标要求 的H2S和CO2等酸性气体进行测量,具体地,选取酸性气体吸收光谱重合的 光谱波段,通过化学计量学算法实现酸性气体组分的同时测量。
更优选地,是选取H2S和CO2吸收光谱重合的光谱波段,通过化学计量 学算法实现H2S和CO2组分的同时测量。下面以此为例进一步说明,即i=2 (H2S和CO2这2种酸性气体)的情况。
当背景气对H2S和CO2吸收光谱无干扰时,将H2S和CO2重叠的吸收光 谱分解为已知单组份,即H2S和CO2独立吸收光谱分量的加权和形式。
在HITRAN数据库中查阅H2S和CO2吸收光谱,主要集中在1570-1580nm 之间,如图1所示。根据混合气体组分的浓度配比、测量量程要求,考虑可能 存在的背景气干扰等因素,选择合适的激光器波长。在本发明中H2S和CO2同时测量激光波长选取范围包括:1569-1571nm,1571-1573nm,1572-1574nm, 1574-1575nm,1576-1577nm,1577-1579nm等的任一个,但不局限于此。其中, 上述激光器应为窄波段可调谐激光光源,如分布式反馈激光器(DFB, Distributed Feedback Laser)、垂直腔面发射激光器(VCSEL,Vertical CavitySurface Emitting Laser)或量子级联激光器(QCL,Quantum Cascade Laser) 等。
由于半导体激光器属于窄线宽光源,通过控制激光器的驱动电流,可以 改变激光器的发光频率,一般而言驱动电流为锯齿波,最大电流与最小电流 之差为10mA,可以将激光器发光频率改变0.1nm。控制激光器的温度,通过 调整激光器锯齿波驱动电流的高低位电流,使得激光器发出的激光波长正好 完整扫过选取的吸收光谱波段,为了能够同时覆盖到H2S和CO2的吸收光谱, H2S和CO2吸收特征峰相隔最好不超过0.1nm。
确定激光器的波段后,则可对天然气中H2S和CO2进行同步分析。
本发明提供了一种同时分析天然气中H2S和CO2含量的激光检测方法, 其包括以下步骤:
(1.1)建立2组酸性气体的自变量组,分别对应H2S和CO2;每组酸性 气体的自变量组建立过程如下:
(1.1.1)向检测池中通入参考气a:浓度为α的H2S,背景气应与待测天 然气的背景气相同或为N2、H2等对待测酸性气体气体光谱无干扰的气体,记 录下预设波段内的吸收光谱,将预设波段分割成n个波长,每个波长对应的 光谱强度建立自变量组X1=(x11,x12,...,x1n),n为大于1的自然数;
(1.1.2)向检测池中通入参考气b:浓度为β的CO2,背景气应与待测天 然气的背景气相同或为N2、H2等对待测酸性气体气体光谱无干扰的气体,记 录下预设波段内的吸收光谱,将预设波段分割成n个波长,每个波长对应的 光谱强度建立自变量组X2=(x21,x22,...,x2n),n为大于1的自然数;
(1.2)建立j组混合气的因变量组,每一组因变量组对应一种由H2S和 CO2按配比混合的混合气,每种混合气的H2S和CO2的浓度配比是不同的; 每组混合气的因变量组建立过程如下:向检测池中通入混合气,背景气应与 待测天然气的背景气相同或为N2、H2等对待测酸性气体气体光谱无干扰的气 体,记录下所述预设波段内的吸收光谱,将预设波段分割成n个波长,每个 波长对应的光谱强度建立因变量组Yj=(yj1,yj2,...,yjn),j代表第j种混合 气,每种混合气具有不同浓度配比,j为大于1的自然数,Yj代表第j种混合 气的因变量组;
(1.3)建立线性回归方程:
Yj=kj1X1+kj2X2+kj0 (5),其中,
kj1、kj2分别代表在第j组混合气的因变量组中H2S和CO2气体吸收曲线 的影响系数,kj0代表在第j组混合气的因变量组中一个偏移量;
根据上述每一组线性回归方程,通过多元线性回归算法得到影响系数kj1、 kj2和常数kj0的最优解;
(1.4)影响系数kj1、kj2分别与第j种混合气中的H2S和CO2气体浓度 Cj1和Cj2呈正比,即第j种混合气中H2S和CO2气体浓度Cj1和Cj2分别与影 响系数kj1、kj2为线性关系,通过一元线性回归算法拟合求解得到回归系数a1、 a2和常数b1、b2,以建立浓度与影响系数的线性函数:
C1=a1k1+b1 (6),
C2=a2k2+b2 (7);其中,
C1代表混合气中H2S气体的浓度,k1代表对H2S气体吸收曲线的影响系数,
C2代表混合气中CO2气体的浓度,k2代表对CO2气体吸收曲线的影响系数;
(1.5)根据待测天然气建立一组待测天然气的因变量组Y’,建立过程如 下:向检测池中通入待测天然气,所述检测池中的背景气与待测天然气的背 景气相同或为对待测酸性气体的吸收光谱无干扰的气体,记录下预设波段内 的吸收光谱,将预设波段分割成n个波长,每个波长对应的光谱强度建立因 变量组Y’=(y’1,y’2,...,y’n);根据线性回归方程(5)建立Y’=k’1X1+k’2X2+k’0, 通过多元线性回归算法得到影响系数k’1、k’2和k’0;将得到的影响系数k’1、 k’2分别代入方程(6)、(7),则可求得待测天然气中H2S和CO2的实际浓度 含量。
值得注意的是,本发明涉及到的多元线性回归算法、一元线性回归算法 可采用现有的标准算法,也可采用其他回归算法,在此不再赘述。
优选地,本发明中,吸收光谱曲线优选进行归一化处理后再分割建立自 变量组,其中,归一化处理可采用现有常规的归一处理方法,在此不再详述。
在具体实现中,如果背景气体中某些组分在所选波段内对H2S和CO2等 酸性气体的吸收曲线存在干扰,即所述待测气体中具有在预设波段内对H2S 和CO2等酸性气体的吸收曲线存在干扰的干扰气,如甲烷、乙烷等。为了避 免背景气中干扰气波动带来的误差,在检测方法中增设干扰气的自变量组X’, 再建立因变量组与自变量组的函数关系Y=F(X,X’),通过多元线性回归算 法求得影响系数和常数的最优解。具体地,以m=1(1种干扰气如甲烷)为例 进一步说明,所述检测方法包括以下步骤:
(2.1)建立2组酸性气体的自变量组,分别对应H2S和CO2;每组酸性 气体的自变量组建立过程如下:
(2.1.1)向检测池中通入参考气a:浓度为α的H2S,背景气应与待测天 然气的背景气相同或为N2、H2等对待测酸性气体气体光谱无干扰的气体,记 录下预设波段内的吸收光谱,将预设波段分割成n个波长,每个波长对应的 光谱强度建立自变量组X1=(x11,x12,...,x1n),n为大于1的自然数;
(2.1.2)向检测池中通入参考气b:浓度为β的CO2,背景气应与待测天 然气的背景气相同或为N2、H2等对待测酸性气体气体光谱无干扰的气体,记 录下预设波段内的吸收光谱,将预设波段分割成n个波长,每个波长对应的 光谱强度建立自变量组X2=(x21,x22,...,x2n),n为大于1的自然数;
(2.2)建立1组干扰气的自变量组,过程如下:向检测池中通入参考气 c:浓度为ν的干扰气,背景气应与待测天然气的背景气相同或为N2、H2等对 待测酸性气体气体光谱无干扰的气体,记录下所述预设波段内的吸收光谱, 将预设波段分割成n个波长,每个波长对应的光谱强度建立自变量组X’1= (x’11,x’12,...,x’1n),n为大于1的自然数;
(2.3)建立j组混合气的因变量组,每一组混合气的因变量组对应一种 由H2S、CO2和干扰气按配比混合的混合气,每种混合气中H2S、CO2和干扰 气的浓度配比是不同的;每组混合气的因变量组建立过程如下:向检测池中 通入混合气,所述检测池中的背景气与待测天然气的背景气相同或为对待测 酸性气体的吸收光谱无干扰的气体,记录下预设波段内的吸收光谱,将预设 波段分割成n个波长,每个波长对应的光谱强度建立因变量组Yj=(yj1,yj2,..., yjn),j代表具有不同配比的混合气,j为大于2的自然数,Yj代表第j种混合气的因变量组;
(2.4)建立线性回归方程:
Yj=kj1X1+kj2X2+Kj1X’1+kj0 (8),其中,
kj1、kj2和Kj1分别代表在第j组混合气的因变量组中H2S、CO2和干扰气 的影响系数,kj0代表在第j组混合气的因变量组中一个偏移量;
根据上述每一组线性回归方程,通过多元线性回归算法得到影响系数kj1、 kj2、Kj1和常数kj0的最优解;
(2.5)影响系数kj1、kj2和Kj1分别与第j种混合气中的H2S浓度Cj1、CO2浓度Cj2和干扰气浓度C’j1呈正比;具体地,
(2.5.1)第j种混合气中H2S和CO2气体浓度Cj1和Cj2分别与影响系数 kj1、kj2为线性关系,通过一元线性回归算法拟合求解得到回归系数a1、a2和 常数b1、b2,以建立浓度与影响系数的线性函数:
C1=a1k1+b1 (9),
C2=a2k2+b2 (10);其中,
C1代表混合气中H2S气体的浓度,k1代表对H2S气体吸收曲线的影响系数,
C2代表混合气中CO2气体的浓度,k2代表对CO2气体吸收曲线的影响系数;
(2.5.2)第j种混合气中干扰气气体浓度C’j1与影响系数Kj1为线性关系, 通过一元线性回归算法拟合求解得到回归系数a’1和常数b’1,以建立浓度与 影响系数的线性函数:
C’1=a’1K1+b’1 (11);
C’1代表混合气中干扰气气体的浓度,K1代表对干扰气吸收曲线的影响系 数;
(2.6)根据待测天然气建立一组待测天然气的因变量组Y’,建立过程如 下:向检测池中通入待测天然气,所述检测池中的背景气与待测天然气的背 景气相同或为对待测酸性气体的吸收光谱无干扰的气体,记录下预设波段内 的吸收光谱,将预设波段分割成n个波长,每个波长对应的光谱强度建立因 变量组Y’=(y’1,y’2,...,y’n);根据方程(8)建立Y’=k’1X1+k’2X2+K’1X’1+k’0, 通过多元线性回归算法得到影响系数k’1、k’2、K’1和k’0;将得到的影响系 数k’1、k’2分别代入方程(9)、(10),则可求得待测天然气中H2S和CO2的 实际浓度含量。
需要说明的是,改变检测池的压力,吸收光谱也会随之发生变化,可以 记录不同压力下的自变量组曲线,即,在建立自变量组时,事先记录多种压 力下的自变量组曲线,建立不同压力下的线性回归方程。当实际测量过程中, 检测池压力改变时,选取同种压力下的自变量曲线进行拟合运算。
为了使本技术领域的人员更好地理解本申请方案,下面将结合附图,对 本申请实施例中的技术方案进行清楚、完整地描述。
实施例1
以天然气中H2S和CO2同时分析测量为例,假设二类管道天然气内H2S 含量为20ppmv(同μL/L、mg/m3),CO2含量为1%。
预设波段选取1574.5-1574.7nm范围,即记录此波段范围的吸收光谱。
以下是在相同的检测池压力下进行测量。
(1)向检测池中通入20ppmv的H2S气体,背景气为N2,记录下归一后 的吸收光谱曲线如
图1所示,按照
图1的吸收光谱曲线,将光谱强度分割成80个独立的波长与相对吸收光 谱强度的关系,建立自变量组X1=(x11,x12,...,x180),x11,x12,...,x180 分别与表1中编号1到80的相对吸收光谱强度相对应。
表1 20ppmv的H2S吸收强度与波长的对应关系
Figure BDA0002018914210000141
Figure BDA0002018914210000151
(2)向检测池中通入1%的CO2气体,背景气为N2,记录下归一后的吸 收光谱曲线如
图2所示;按照
图2的吸收光谱曲线,将光谱强度分割成80个独立的波长与相对吸收光 谱强度的关系,建立自变量组X2=(x21,x22,...,x280),x21,x22,...,x280 分别与
表2中编号1到80的相对吸收光谱强度相对应。
表2 1%的CO2吸收强度与波长的对应关系
Figure BDA0002018914210000161
Figure BDA0002018914210000171
Figure BDA0002018914210000181
(3)以j=3为例,调配三种同时含有不同浓度配比的H2S和CO2的 混合气,三种混合气中H2S和CO2浓度配比分别为20ppmvH2S和1%CO2、 15ppmvH2S和1.5%CO2以及10ppmvH2S和2%CO2
分别向检测池中通入三种混合气,记录下归一后的吸收光谱曲线如图4所 示;按照图4的吸收光谱曲线,将每一组光谱强度分割成80个独立的波长与 相对吸收光谱强度的关系,建立因变量组Y1=(y11,y12,...,y180)、Y2=(y21, y22,...,y280)、Y3=(y31,y32,...,y380)。
(4)建立线性回归方程:
Y1=k11X1+k12X2+k10,通过多元线性回归算法得到影响系数k11、k12和常数 k10的最优解;
Y2=k21X1+k22X2+k20,通过多元线性回归算法得到影响系数k21、k22和常数 k20的最优解;
Y3=k31X1+k32X2+k30,通过多元线性回归算法得到影响系数k31、k32和常数 k30的最优解。
(5)影响系数kj1(k11、k12和k13)分别与三种混合气中的H2S气体浓度 Cj1(20ppmv、15ppmv和10ppmv)呈正比,即混合气中H2S气体浓度Cj1与 影响系数kj1为线性关系,通过一元线性回归算法拟合求解得到回归系数a1和 常数b1,以建立H2S气体浓度C1与影响系数k1的线性函数:
C1=a1k1+b1 (12),其中,
C1代表混合气中H2S气体的浓度,k1代表对H2S气体吸收曲线的影响系 数,a1代表回归系数,b1为常数;
(6)影响系数k21(k21、k22和k23)分别与三种混合气中的CO2气体浓度 Cj2(1%、1.5%和2%)呈正比,即混合气中CO2气体浓度Cj2与影响系数kj2为线性关系,通过一元线性回归算法拟合求解得到回归系数a2和常数b2,以 建立CO2气体浓度C2与影响系数k2的线性函数:
C2=a2k2+b2 (13),其中,
C2代表混合气中CO2气体的浓度,k2代表对CO2气体吸收曲线的影响系 数,a2代表回归系数,b2为常数;
(7)在实际分析待测天然气时,根据待测天然气建立一组待测天然气的 因变量组Y’,建立过程如下:向检测池中通入待测天然气,背景气为N2,记 录下归一后预设波段内的吸收光谱,将预设波段分割成n个波长,每个波长 对应的光谱强度建立因变量组Y’=(y’1,y’2,...,y’n);建立方程 Y’=k’1X1+’k2X2+’k,0通过多元线性回归算法得到影响系数k’1、k’2和k’0; 将得到的影响系数k’1、k’2分别代入方程(12)、(13),则可求得待测天然气 中H2S和CO2的实际浓度含量C1和C2
需要注意的是,本实施例1中的步骤(5)(6)属于标定过程,其只是建 立影响系数ki与浓度的线性Ci关系,在量程范围内至少2组配气就能够完成 标定,但为了在量程内保证更高的线性度和准确性,标定时配越多不同浓度 配比的混合气,越能够消除偶然误差的影响,标定效果更好。
显然,以上所描述的实施例仅仅是本申请一部分实施例,而不是全部的 实施例,附图中给出了本申请的较佳实施例,但并不限制本申请的专利范围。 本申请可以以许多不同的形式来实现,相反地,提供这些实施例的目的是使 对本申请的公开内容的理解更加透彻全面。尽管参照前述实施例对本申请进 行了详细的说明,对于本领域的技术人员来而言,其依然可以对前述各具体 实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替 换。凡是利用本申请说明书及附图内容所做的等效结构,直接或间接运用在 其他相关的技术领域,均同理在本申请专利保护范围之内。

Claims (9)

1.一种同时分析天然气中酸性组分含量的激光检测方法,其特征在于,其包括以下步骤:
(1)建立i组酸性气体的自变量组,每一组酸性气体的自变量组对应一种酸性气体;每组酸性气体的自变量组建立过程如下:向检测池中通入预设浓度的一酸性气体,所述检测池中的背景气与待测天然气的背景气相同或为对待测酸性气体的吸收光谱无干扰的气体,记录下预设波段内的吸收光谱,将预设波段分割成n个波长,每个波长对应的光谱强度建立酸性气体的自变量组Xi=(xi1,xi2,...,xin),i代表第i种酸性气体,i≥2,Xi代表第i种酸性气体的自变量组;
(2)建立j组混合气的因变量组,每一组混合气的因变量组对应一种由i种酸性气体按配比混合的混合气,每种混合气的第i种酸性气体的浓度Ci是不同的;每组混合气的因变量组建立过程如下:向检测池中通入混合气,所述检测池中的背景气与待测天然气的背景气相同或为对待测酸性气体的吸收光谱无干扰的气体,记录下预设波段内的吸收光谱,将预设波段分割成n个波长,每个波长对应的光谱强度建立混合气的因变量组Yj=(yj1,yj2,...,yjn),j代表第j种混合气,j≥2,Yj代表第j种混合气的因变量组;
(3)基于所述酸性气体的自变量组Xi和混合气的因变量组Yj,建立酸性气体的线性回归方程:
Yj=∑ikjiXi+kj0 (1),其中,
kji代表在第j组混合气的因变量组中第i种酸性气体吸收曲线的影响系数,kj0代表在第j组混合气的因变量组中一个偏移量;
根据所述酸性气体的线性回归方程,通过多元线性回归算法得到酸性气体的影响系数kji和常数kj0的最优解;
(4)第j种混合气中第i种酸性气体浓度Cji与影响系数kji为线性关系,通过一元线性回归算法拟合求解得到回归系数ai和常数bi,以建立浓度Ci与影响系数ki的线性函数:
Ci=aiki+bi (2),其中,
Ci代表混合气中第i种酸性气体的浓度,ki代表对第i种酸性气体吸收曲线的影响系数,ai代表回归系数,bi为常数;
(5)根据待测天然气建立一组待测天然气的因变量组Y’,建立过程如下:向检测池中通入待测天然气,所述检测池中的背景气与待测天然气的背景气相同或为对待测酸性气体的吸收光谱无干扰的气体,记录下预设波段内的吸收光谱,将预设波段分割成n个波长,每个波长对应的光谱强度建立待测天然气的因变量组Y’=(y’1,y’2,...,y’n);基于所述酸性气体的自变量组Xi和待测天然气的因变量组Y’建立线性回归方程Y’=∑ik’iXi+k’0,通过多元线性回归算法得到影响系数k’i和k’0;根据影响系数k’i和酸性气体的线性函数方程(2),获得待测天然气中第i种酸性气体的浓度含量。
2.一种同时分析天然气中酸性组分含量的激光检测方法,用于检测待测天然气中具有在预设波段内对酸性气体的吸收曲线存在干扰的干扰气,其特征在于,包括以下步骤:
(1)建立至少i组酸性气体的自变量组,每一组酸性气体的自变量组对应一种酸性气体;每组酸性气体的自变量组建立过程如下:向检测池中通入预设浓度的一酸性气体,所述检测池中的背景气与待测天然气的背景气相同或为对待测酸性气体的吸收光谱无干扰的气体,记录下预设波段内的吸收光谱,将预设波段分割成n个波长,每个波长对应的光谱强度建立酸性气体的自变量组Xi=(xi1,xi2,...,xin),i代表第i种酸性气体,i≥2,Xi代表第i种酸性气体的自变量组;
(2)建立对应干扰气的自变量组:向检测池中通入预设浓度的一干扰气,所述检测池中的背景气与待测天然气的背景气相同或为对待测酸性气体的吸收光谱无干扰的气体,记录下预设波段内的吸收光谱,将预设波段分割成n个波长,每个波长对应的光谱强度建立干扰气的自变量组X’m=(x’m1,x’m2,...,x’mn),m代表不同的干扰气,m≥1,X’m代表第m种干扰气的自变量组;
(3)建立j组混合气的因变量组,每一组混合气的因变量组对应一种由i种酸性气体和m种干扰气按配比混合的混合气,每种混合气的第i种酸性气体的浓度Ci和第m种干扰气的浓度Cm均是不同的;每组混合气的因变量组建立过程如下:向检测池中通入混合气,所述检测池中的背景气与待测天然气的背景气相同或为对待测酸性气体的吸收光谱无干扰的气体,记录下预设波段内的吸收光谱,将预设波段分割成n个波长,每个波长对应的光谱强度建立混合气的因变量组Yj=(yj1,yj2,...,yjn),j代表第j种混合气,j≥3,Yj代表第j种混合气的因变量组;
(4)基于所述酸性气体的自变量组Xi、干扰气的自变量组X’m、混合气的因变量组Yj,建立线性回归方程:
Yj=∑ikjiXi+∑mKjmX’m+kj0 (3),其中,
kji、Kjm分别代表在第j组混合气的因变量组中第i种酸性气体吸收曲线和第m种干扰气的影响系数,kj0代表在第j组混合气的因变量组中一个偏移量;
根据线性回归方程,通过多元线性回归算法得到影响系数kji、Kjm和常数kj0的最优解;
(5)第j种混合气中第i种酸性气体浓度Cji与影响系数kji为线性关系,通过一元线性回归算法拟合求解得到回归系数ai和常数bi,以建立浓度Ci与影响系数ki的线性函数:
Ci=aiki+bi (2),其中,
Ci代表混合气中第i种酸性气体的浓度,ki代表对第i种酸性气体吸收曲线的影响系数,所述回归系数ai和常数bi通过一元线性回归算法获得;
(6)根据待测天然气建立一组待测天然气的因变量组Y’,建立过程如下:向检测池中通入待测天然气,所述检测池中的背景气与待测天然气的背景气相同或为对待测酸性气体的吸收光谱无干扰的气体,记录下预设波段内的吸收光谱,将预设波段分割成n个波长,每个波长对应的光谱强度建立待测天然气的因变量组Y’=(y’1,y’2,...,y’n);基于所述酸性气体的自变量组Xi、干扰气的自变量组X’m和待测天然气的因变量组Y’建立线性回归方程Y’=∑ik’iXi+∑mK’mXm+k’0,通过多元线性回归算法得到影响系数k’i、K’m和k’0;根据影响系数k’i和线性函数方程(2),
获得待测天然气中第i种酸性气体的浓度含量。
3.根据权利要求1或2所述的同时分析天然气中酸性组分含量的激光检测方法,其特征在于,所述酸性气体至少包括硫化氢和二氧化碳。
4.根据权利要求3所述的同时分析天然气中酸性组分含量的激光检测方法,其特征在于,所述预设波段内的硫化氢和二氧化碳吸收特征峰相隔不超过0.1nm。
5.根据权利要求2所述的同时分析天然气中酸性组分含量的激光检测方法,其特征在于,所述干扰气为甲烷、乙烷的至少一种。
6.根据权利要求1或2所述的同时分析天然气中酸性组分含量的激光检测方法,其特征在于,所述预设波段为激光器输出波长控制在1569-1571nm,1571-1573nm,1572-1574nm,1574-1575nm,1576-1577nm和1577-1579nm中的任一个波段范围。
7.根据权利要求6所述的同时分析天然气中酸性组分含量的激光检测方法,其特征在于,所述激光器为窄波段可调谐激光光源。
8.根据权利要求7所述的同时分析天然气中酸性组分含量的激光检测方法,其特征在于,所述窄波段可调谐激光光源为分布式反馈激光器、垂直腔面发射激光器或量子级联激光器。
9.根据权利要求1或2所述的同时分析天然气中酸性组分含量的激光检测方法,其特征在于,建立自变量组和建立因变量组步骤中的检测池的压力相同。
CN201910272648.7A 2019-04-04 2019-04-04 一种同时分析天然气中酸性组分含量的激光检测方法 Active CN111781164B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910272648.7A CN111781164B (zh) 2019-04-04 2019-04-04 一种同时分析天然气中酸性组分含量的激光检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910272648.7A CN111781164B (zh) 2019-04-04 2019-04-04 一种同时分析天然气中酸性组分含量的激光检测方法

Publications (2)

Publication Number Publication Date
CN111781164A true CN111781164A (zh) 2020-10-16
CN111781164B CN111781164B (zh) 2023-04-25

Family

ID=72755019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910272648.7A Active CN111781164B (zh) 2019-04-04 2019-04-04 一种同时分析天然气中酸性组分含量的激光检测方法

Country Status (1)

Country Link
CN (1) CN111781164B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147351A (en) * 1996-12-30 2000-11-14 Instrumentarium Corp. Accurate measurement for the concentration of a gas component in a gas mixture, wherein other components influence the concentration analysis
US20040000643A1 (en) * 2002-06-28 2004-01-01 Kai Karlsson Method and arrangement for determining the concentration of a gas component in a gas mixture
CN101290289A (zh) * 2008-05-30 2008-10-22 天津市蓝宇科工贸有限公司 紫外差分烟气浓度测量系统校准方法及实施装置
CN102435567A (zh) * 2011-11-22 2012-05-02 杭州微兰科技有限公司 基于差分吸收光谱的气体组分浓度反演算测定方法
CN102539377A (zh) * 2012-01-19 2012-07-04 广州昂昇环境分析仪器有限公司 基于中红外吸收光谱的多组分混合气体定性定量分析方法及系统
CN103267577A (zh) * 2013-04-23 2013-08-28 华中科技大学 高温烟气温度和气体组分浓度的检测方法
CN105806825A (zh) * 2016-05-17 2016-07-27 浙江大学 一种天然气组分在线气体拉曼分析方法
CN107014774A (zh) * 2017-06-08 2017-08-04 武汉米字能源科技有限公司 一种并联双气室痕量气体分析系统及气体浓度计算方法
CN107091818A (zh) * 2017-06-28 2017-08-25 武汉米字能源科技有限公司 一种多气室复杂组分气体分析系统及方法
CN107478593A (zh) * 2017-09-26 2017-12-15 重庆大学 一种低浓度no和so2混合气体的浓度检测方法
CN107843575A (zh) * 2017-10-28 2018-03-27 李岩 混合气体激光探测方法
CN108007901A (zh) * 2017-11-30 2018-05-08 南昌航空大学 一种检测多组分痕量气体浓度的方法与装置
CN108287141A (zh) * 2017-12-21 2018-07-17 北京遥测技术研究所 一种基于光谱法的多组分气体浓度分析方法
CN108426832A (zh) * 2018-03-16 2018-08-21 山东省科学院激光研究所 多组分气体的浓度检测方法、装置及系统

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147351A (en) * 1996-12-30 2000-11-14 Instrumentarium Corp. Accurate measurement for the concentration of a gas component in a gas mixture, wherein other components influence the concentration analysis
US20040000643A1 (en) * 2002-06-28 2004-01-01 Kai Karlsson Method and arrangement for determining the concentration of a gas component in a gas mixture
CN101290289A (zh) * 2008-05-30 2008-10-22 天津市蓝宇科工贸有限公司 紫外差分烟气浓度测量系统校准方法及实施装置
CN102435567A (zh) * 2011-11-22 2012-05-02 杭州微兰科技有限公司 基于差分吸收光谱的气体组分浓度反演算测定方法
CN102539377A (zh) * 2012-01-19 2012-07-04 广州昂昇环境分析仪器有限公司 基于中红外吸收光谱的多组分混合气体定性定量分析方法及系统
CN103267577A (zh) * 2013-04-23 2013-08-28 华中科技大学 高温烟气温度和气体组分浓度的检测方法
CN105806825A (zh) * 2016-05-17 2016-07-27 浙江大学 一种天然气组分在线气体拉曼分析方法
CN107014774A (zh) * 2017-06-08 2017-08-04 武汉米字能源科技有限公司 一种并联双气室痕量气体分析系统及气体浓度计算方法
CN107091818A (zh) * 2017-06-28 2017-08-25 武汉米字能源科技有限公司 一种多气室复杂组分气体分析系统及方法
CN107478593A (zh) * 2017-09-26 2017-12-15 重庆大学 一种低浓度no和so2混合气体的浓度检测方法
CN107843575A (zh) * 2017-10-28 2018-03-27 李岩 混合气体激光探测方法
CN108007901A (zh) * 2017-11-30 2018-05-08 南昌航空大学 一种检测多组分痕量气体浓度的方法与装置
CN108287141A (zh) * 2017-12-21 2018-07-17 北京遥测技术研究所 一种基于光谱法的多组分气体浓度分析方法
CN108426832A (zh) * 2018-03-16 2018-08-21 山东省科学院激光研究所 多组分气体的浓度检测方法、装置及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HU XUE-JIAO等: "On-line analysis of hydrogen sulfide in natural gas by laser absorption spectroscopy", 《NATURAL GAS INDUSTRY》 *
陈珂等: "基于激光光声光谱超高灵敏度检测SF_6分解组分H_2S", 《中国激光》 *

Also Published As

Publication number Publication date
CN111781164B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
US10495570B2 (en) Measurement of hydrocarbon fuel gas composition and properties from tunable diode laser absorption spectrometry
TWI453397B (zh) 用於吸光光譜式氣體感測的多峰測量背景補償方法及裝置
AU2015346386A1 (en) Target analyte detection and quantification in sample gases with complex background compositions
CN108287141A (zh) 一种基于光谱法的多组分气体浓度分析方法
WO2015095315A1 (en) Method and system for detecting moisture in a process gas involving cross interference
CN108037084B (zh) 一种适用于光度法原理水质自动分析仪的抗干扰测量方法
DE3510052C2 (zh)
JP2015184018A (ja) 赤外吸収スペクトル作成方法、検量線作成方法、ならびにこれらを用いた溶液濃度定量方法および溶液濃度測定装置
Meuzelaar et al. Trace level analysis of reactive ISO 14687 impurities in hydrogen fuel using laser-based spectroscopic detection methods
CN111781166B (zh) 一种同时分析天然气中h2o和h2s含量的激光检测方法
CN114813633A (zh) 一种激光多气体混叠光谱解调和非线性补偿的浓度检测方法
DE102009017932B4 (de) Verfahren zur kontinuierlichen quantitativen Bestimmung einer oxidierbaren chemischen Verbindung in einem Untersuchungsmedium
CN114113213A (zh) 用于确定含碳氢化合物的燃料气体的总热值或净热值的测量装置
CN111781164A (zh) 一种同时分析天然气中酸性组分含量的激光检测方法
JP3817517B2 (ja) 光学フィルターを使用する非分散赤外線ガス測定法
CN111781165B (zh) 一种同时分析天然气中h2o和co2含量的激光检测方法
Fabian et al. N2, O2, and air broadening of NH3 in ν2 band measured by FTIR spectroscopy
Nørgaard et al. Principal component analysis and near infrared spectroscopy
CN111912805B (zh) 一种高炉烟气中微量硫化氢监测的紫外光谱检测方法及装置
CN111912804B (zh) 一种高炉烟气中微量二氧化硫监测的紫外光谱检测方法及装置
WO2022199928A1 (de) Online- oder in-situ-messeinrichtung für eine konzentrationsmessung eines gases
JP6446457B2 (ja) ガスのシロキサン含有量を求めるための方法および装置
Kim et al. Comparison of near-infrared and Raman spectroscopy for on-line monitoring of etchant solutions directly through a Teflon tube
CN112881318A (zh) 一种检测变压器绝缘纸中甲醇含量的方法
EP4296652A1 (en) Enhancements to laser spectroscopy modeling by measurement of hydrocarbon fuel gas compositions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210107

Address after: 214000 a-303, No.2 Qingyan Road, Huishan Economic Development Zone, Wuxi City, Jiangsu Province

Applicant after: Wuxi Mizi Technology Co.,Ltd.

Address before: 518000 1st floor, building 60, Dayun software Town, 8288 Longgang Avenue, Yuanshan street, Longgang District, Shenzhen City, Guangdong Province

Applicant before: SHENZHEN MIZI TECHNOLOGY DEVELOPMENT Co.,Ltd.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20211118

Address after: 430000 No. 999, Gaoxin Avenue, Donghu high tech Development Zone, Wuhan City, Hubei Province (Wuhan area of free trade zone)

Applicant after: WUHAN MIZI ENERGY TECHNOLOGY Co.,Ltd.

Address before: 214000 a-303, No.2 Qingyan Road, Huishan Economic Development Zone, Wuxi City, Jiangsu Province

Applicant before: Wuxi Mizi Technology Co.,Ltd.

GR01 Patent grant
GR01 Patent grant