CN111774037B - 一种zif-67-硒化银纳米复合材料的制备方法 - Google Patents
一种zif-67-硒化银纳米复合材料的制备方法 Download PDFInfo
- Publication number
- CN111774037B CN111774037B CN202010676476.2A CN202010676476A CN111774037B CN 111774037 B CN111774037 B CN 111774037B CN 202010676476 A CN202010676476 A CN 202010676476A CN 111774037 B CN111774037 B CN 111774037B
- Authority
- CN
- China
- Prior art keywords
- solution
- zif
- dissolving
- weighing
- silver selenide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/223—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
- B01J20/226—Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0052—Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0274—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
- B01J20/0288—Halides of compounds other than those provided for in B01J20/046
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/285—Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Engineering & Computer Science (AREA)
- Hydrology & Water Resources (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Toxicology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
本发明公开了一种ZIF‑67‑硒化银纳米复合材料的制备方法,包括以下步骤:将硝酸钴溶于甲醇溶液中,超声分散均匀,得溶液A,将2‑甲基咪唑溶于甲醇溶液中,超声分散均匀,得溶液B。将溶液B缓慢滴加入A中,静置、离心、甲醇洗涤得ZIF。称取适量ZIF‑67于20ml水中分散得溶液a,称取适量硒粉溶于水合肼溶液中得溶液b,将ab溶液装入三口瓶中,加入磁石,油浴,称取适量硝酸银溶于水中,加入三口瓶中,继续反应2h,将所得溶液离心、洗涤制得成品。所制得的纳米复合离子成立方体型,大小均一,分散性好,毒性小,且在近红外光的照射下,可表现出高效的光热转化性能,可应用于肿瘤的光热治疗等生物医用领域。此外本方法工艺简单,能耗低,设备数量少,便于推广。
Description
技术领域
本发明涉及纳米复合材料技术领域,具体涉及一种ZIF-67-硒化银纳米复合材料的制备方法。
背景技术
硒化银作为一种非磁性窄带隙的半导体,不仅具有较高的热电系数和电导率,还具有显著的红外电导性质,可作为光敏剂广泛的应用于光电材料研究、海水淡化、肿瘤的光热治疗、污水处理等多个领域,已然成为国内外研究的热点之一。目前,制备硒化银纳米复合材料的方法被报道的主要有机械球磨法、化学法,微乳液法等,运用这些方法所制备的纳米复合材料通常具有纳米颗粒大小不均一,部分处于无定形态等缺点,且这些方法所需要的工艺条件也相对严苛。
ZIF是一种沸石咪唑酯骨架结构材料,是金属离子与咪唑及其衍生物配体自组装形成的金属有机框架材料。ZIF-67作为ZIFs的一种,是由Co2+与有机咪唑酯在有机溶剂下交联形成的多孔材料,具有较高的比表面积和孔隙率,尺寸可调及易修饰,无毒且生物相容性好等优点,可被广泛应用于生物医药、氢气储存、气体吸附、光催化等多个领域。
现有制备硒化银纳米复合材料不仅在工艺上比较复杂,如需要惰性气氛保护,或需要配置复杂,毒性较大的前驱体溶液,或设备复杂,成本高昂,且难以规模化生产,此外所得到的纳米粒子的分散性能较差,存在团聚现象。
发明内容
为克服现有技术的不足,本发明于提供了一种ZIF-67-硒化银纳米复合材料的制备方法,本将ZIF-67和硒化银各自的独特特点结合起来,制备了一种ZIF-67-硒化银纳米复合材料。该法所制得的纳米复合离子成立方体型,大小均一,分散性好,毒性小,且在近红外光的照射下,可表现出高效的光热转化性能,可应用于肿瘤的光热治疗等生物医用领域。此外本方法工艺简单,能耗低,设备数量少,便于推广。
为实现以上目的,本发明通过以下技术方案予以实现:
一种ZIF-67-硒化银纳米复合材料的制备方法,包括以下步骤:
一、ZIF前体制备:
(1)取2mmol的硝酸钴溶于20ml的甲醇溶液中,超声分散均匀,得溶液A;
(2)10mmol的2-甲基咪唑溶于8ml的甲醇溶液中,超声分散均匀,得溶液B;
(3)将溶液B缓慢滴加入A中,静置12h,8000r/min离心5min,用甲醇洗涤1-2次得蓝色纳米颗粒。
二、硒化银纳米复合材料的制备:
(1)称取约0.2mmol的ZIF-67于20ml水中分散得溶液a;
(2)称取约0.6mmol的硒粉溶于1ml的水合肼溶液中得溶液b;
(3)将ab装入50ml三口瓶中,加入磁石,在70℃~150℃的恒温油浴锅中反应2h;
(4)随后称取0.3mmol的硝酸银溶于1ml的水中,加入三口瓶中,继续反应2h;
(5)反应结束后,将所得溶液8000r/min离心5min,用水洗涤1-2次即可得所需硒化银纳米复合材料(ZIF-67@Ag2Se)。
与现有技术相比,本发明具有以下优点和有益效果:
本发明将ZIF-67和硒化银各自的独特特点结合起来,制备了一种ZIF-67-硒化银纳米复合材料。本发明提供的ZIF-67-硒化银纳米复合材料的制备方法,工艺简单,环境污染小,毒性小,生物相容性好,产品分散性能好的一种的硒化银复合纳米粒子的制备方法,所制备的ZIF-67-硒化银纳米颗粒呈立方体型,在近红外光的照射下,可表现出高效的光热转化性能,可广泛应用在海水淡化、肿瘤治疗、污水处理等领域。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为ZIF-67-硒化银纳米颗粒的扫描电镜图。
图2为5Wcm-2的808nm的近红外照射10min下不同浓度的ZIF-67@Ag2Se的温度随时间的变化图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种ZIF-67-硒化银纳米复合材料的制备方法,包括以下步骤:
一、ZIF前体制备:
(1)取2mmol的硝酸钴溶于20ml的甲醇溶液中,超声分散均匀,得溶液A;
(2)10mmol的2-甲基咪唑溶于8ml的甲醇溶液中,超声分散均匀,得溶液B;
(3)将溶液B缓慢滴加入A中,静置12h,8000r/min离心5min,用甲醇洗涤1-2次得蓝色纳米颗粒。
二、硒化银纳米复合材料的制备:
(1)称取约0.2mmol的ZIF-67于20ml水中分散得溶液a;
(2)称取约0.6mmol的硒粉溶于1ml的水合肼溶液中得溶液b;
(3)将ab装入50ml三口瓶中,加入磁石,在70℃的恒温油浴锅中反应2h;
(4)随后称取0.3mmol的硝酸银溶于1ml的水中,加入三口瓶中,继续反应2h;
(5)反应结束后,将所得溶液8000r/min离心5min,用水洗涤1-2次即可得所需硒化银纳米复合材料(ZIF-67@Ag2Se)。
实施例2:
一种ZIF-67-硒化银纳米复合材料的制备方法,包括以下步骤:
一、ZIF前体制备:
(1)取2mmol的硝酸钴溶于20ml的甲醇溶液中,超声分散均匀,得溶液A;
(2)10mmol的2-甲基咪唑溶于8ml的甲醇溶液中,超声分散均匀,得溶液B;
(3)将溶液B缓慢滴加入A中,静置12h,8000r/min离心5min,用甲醇洗涤1-2次得蓝色纳米颗粒。
二、硒化银纳米复合材料的制备:
(1)称取约0.2mmol的ZIF-67于20ml水中分散得溶液a;
(2)称取约0.6mmol的硒粉溶于1ml的水合肼溶液中得溶液b;
(3)将ab装入50ml三口瓶中,加入磁石,在80℃的恒温油浴锅中反应2h;
(4)随后称取0.3mmol的硝酸银溶于1ml的水中,加入三口瓶中,继续反应2h;
(5)反应结束后,将所得溶液8000r/min离心5min,用水洗涤1-2次即可得所需硒化银纳米复合材料(ZIF-67@Ag2Se)。
实施例3:
一种ZIF-67-硒化银纳米复合材料的制备方法,包括以下步骤:
一、ZIF前体制备:
(1)取2mmol的硝酸钴溶于20ml的甲醇溶液中,超声分散均匀,得溶液A;
(2)10mmol的2-甲基咪唑溶于8ml的甲醇溶液中,超声分散均匀,得溶液B;
(3)将溶液B缓慢滴加入A中,静置12h,8000r/min离心5min,用甲醇洗涤1-2次得蓝色纳米颗粒。
二、硒化银纳米复合材料的制备:
(1)称取约0.2mmol的ZIF-67于20ml水中分散得溶液a;
(2)称取约0.6mmol的硒粉溶于1ml的水合肼溶液中得溶液b;
(3)将ab装入50ml三口瓶中,加入磁石,在150℃的恒温油浴锅中反应2h;
(4)随后称取0.3mmol的硝酸银溶于1ml的水中,加入三口瓶中,继续反应2h;
(5)反应结束后,将所得溶液8000r/min离心5min,用水洗涤1-2次即可得所需硒化银纳米复合材料(ZIF-67@Ag2Se)。
实施例4:
一种ZIF-67-硒化银纳米复合材料的制备方法,包括以下步骤:
一、ZIF前体制备:
(1)取2mmol的硝酸钴溶于20ml的甲醇溶液中,超声分散均匀,得溶液A;
(2)10mmol的2-甲基咪唑溶于8ml的甲醇溶液中,超声分散均匀,得溶液B;
(3)将溶液B缓慢滴加入A中,静置12h,8000r/min离心5min,用甲醇洗涤1-2次得蓝色纳米颗粒。
二、硒化银纳米复合材料的制备:
(1)称取约0.2mmol的ZIF-67于20ml水中分散得溶液a;
(2)称取约0.6mmol的硒粉溶于1ml的水合肼溶液中得溶液b;
(3)将ab装入50ml三口瓶中,加入磁石,在90℃的恒温油浴锅中反应2h;
(4)随后称取0.3mmol的硝酸银溶于1ml的水中,加入三口瓶中,继续反应2h;
(5)反应结束后,将所得溶液8000r/min离心5min,用水洗涤1-2次即可得所需硒化银纳米复合材料(ZIF-67@Ag2Se)。
实施例5:
将所制得的硒化银纳米复合材料(ZIF-67@Ag2Se)置于扫描电子显微镜下观察(图1),可知ZIF-67-硒化银纳米颗粒呈立方体型;
实施例6:
将所制得的不同浓度的硒化银纳米复合材料(ZIF-67@Ag2Se)用5W cm-2的808nm的近红外照射10min,探索不同温度和时间的变化情况,得图2,可知ZIF-67@Ag2Se可表现出高效的光热转化性能。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (1)
1.一种ZIF-67-硒化银纳米复合材料的制备方法,其特征在于,包括以下步骤:
I.ZIF前体制备:
(1)取2mmol的硝酸钴溶于20mL的甲醇溶液中,超声分散均匀,得溶液A;
(2)10mmol的2-甲基咪唑溶于8mL的甲醇溶液中,超声分散均匀,得溶液B;
(3)将溶液B缓慢滴加入A中,静置12h,8000r/min离心5min,用甲醇洗涤1-2次得蓝色纳米颗粒;
II.硒化银纳米复合材料的制备:
(1)称取0.2mmol的ZIF-67于20mL水中分散得溶液a;
(2)称取0.6mmol的硒粉溶于1mL的水合肼溶液中得溶液b;
(3)将ab装入50mL三口瓶中,加入磁石,在70℃~150℃的恒温油浴锅中反应2h;
(4)随后称取0.3mmol的硝酸银溶于1mL的水中,加入三口瓶中,继续反应2h;
(5)反应结束后,将所得溶液8000r/min离心5min,用水洗涤1-2次即得ZIF-67-硒化银纳米复合材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010676476.2A CN111774037B (zh) | 2020-07-14 | 2020-07-14 | 一种zif-67-硒化银纳米复合材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010676476.2A CN111774037B (zh) | 2020-07-14 | 2020-07-14 | 一种zif-67-硒化银纳米复合材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111774037A CN111774037A (zh) | 2020-10-16 |
CN111774037B true CN111774037B (zh) | 2022-11-29 |
Family
ID=72767563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010676476.2A Active CN111774037B (zh) | 2020-07-14 | 2020-07-14 | 一种zif-67-硒化银纳米复合材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111774037B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114920210B (zh) * | 2022-05-25 | 2023-05-23 | 芜湖天弋能源科技有限公司 | 一种钠离子电池负极材料及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101274751B (zh) * | 2007-03-30 | 2010-04-14 | 清华大学 | 单分散银、硫化银及硒化银纳米晶的制备方法 |
JP2018525304A (ja) * | 2015-06-01 | 2018-09-06 | 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. | 金属カルコゲナイドナノ材料を調製するための水性ベースの方法 |
CN105036092B (zh) * | 2015-08-07 | 2017-05-24 | 中南大学 | 一种球形硒化银粒子的制备方法 |
KR101905862B1 (ko) * | 2017-03-24 | 2018-10-08 | 고려대학교 산학협력단 | 위치 선택적 다공성 분리막의 제조방법 및 상기 제조된 다공성 분리막을 이용한 가스분리방법 |
CN109037700A (zh) * | 2018-06-30 | 2018-12-18 | 河南师范大学 | 一种具有双壳结构锌空电池催化剂的制备方法及其应用 |
CN108963274A (zh) * | 2018-06-30 | 2018-12-07 | 河南师范大学 | 一种新型双功能电催化剂的制备方法及其在锌空电池中的应用 |
-
2020
- 2020-07-14 CN CN202010676476.2A patent/CN111774037B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN111774037A (zh) | 2020-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hussain et al. | Recent advances in metal–organic frameworks derived nanocomposites for photocatalytic applications in energy and environment | |
Zhao et al. | The synthesis and electrochemical applications of core–shell MOFs and their derivatives | |
Li et al. | Branch-like CdxZn1-xSe/Cu2O@ Cu step-scheme heterojunction for CO2 photoreduction | |
Wang et al. | Metal–organic framework hybrid‐assisted formation of Co3O4/Co‐Fe oxide double‐shelled nanoboxes for enhanced oxygen evolution | |
Shen et al. | Bifunctional Cu3P decorated g-C3N4 nanosheets as a highly active and robust visible-light photocatalyst for H2 production | |
Liu et al. | A microwave-assisted synthesis of CoO@ Co core–shell structures coupled with N-doped reduced graphene oxide used as a superior multi-functional electrocatalyst for hydrogen evolution, oxygen reduction and oxygen evolution reactions | |
Zhang et al. | PtPdAg hollow nanodendrites: template‐free synthesis and high electrocatalytic activity for methanol oxidation reaction | |
Kumari et al. | Sol–gel synthesis of Pd@ PdO core–shell nanoparticles and effect of precursor chemistry on their structural and optical properties | |
Li et al. | Engineering of bimetallic Au–Pd alloyed particles on nitrogen defects riched g-C3N4 for efficient photocatalytic hydrogen production | |
CN110023236A (zh) | 基于金属/碳材料的多层纳米结构 | |
CN106591878A (zh) | 一种多级结构ZnO@Au@ZIF‑8复合光电极的构筑及应用 | |
CN104307512A (zh) | 一种负载型钯催化剂及其制备方法和应用 | |
Sreedhar et al. | Facile growth of novel morphology correlated Ag/Co-doped ZnO nanowire/flake-like composites for superior photoelectrochemical water splitting activity | |
Ji et al. | One‐step hydrothermal synthesis of a porous Cu2O film and its photoelectrochemical properties | |
CN111437884A (zh) | 一种复合光催化剂及其制备方法 | |
Sun et al. | Efficient photothermal-assisted photocatalytic H2 production using carbon dots-infused g-C3N4 nanoreactors synthesized via one-step template-free thermal polymerization | |
CN111774037B (zh) | 一种zif-67-硒化银纳米复合材料的制备方法 | |
Yu et al. | Construction of CoS/CeO2 heterostructure nanocages with enhanced photocatalytic performance under visible light | |
Ji et al. | Significantly boosted photoelectrochemical water splitting performance by plasmonic enhanced Hematite@ MOF composite photoelectrodes | |
Zhang et al. | Size effect of Cu nanoparticles in Cu/g-C3N4 composites on properties for highly efficient photocatalytic reduction of CO2 to methanol | |
CN103579639A (zh) | 一种燃料电池用阴极催化剂及制备方法 | |
Wang et al. | Synthesis of Fe-MOFs/h-CeO2 hollow micro-spheres and their highly efficient photocatalytic degradation of RhB | |
CN117919442A (zh) | 金属有机框架衍生二硒化铁/氮掺杂碳复合纳米酶的制备方法及应用 | |
Chandran et al. | Facile synthesis and characterization of PtCu core–shell and alloy nanoparticles | |
CN109100405A (zh) | 一种氧空位浓度可调的氮掺杂多孔C@CeO2-x纳米复合材料的制备方法及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |