CN111763684A - Ghd7基因在调节和筛选稻米中蛋白质含量的应用 - Google Patents

Ghd7基因在调节和筛选稻米中蛋白质含量的应用 Download PDF

Info

Publication number
CN111763684A
CN111763684A CN202010677778.1A CN202010677778A CN111763684A CN 111763684 A CN111763684 A CN 111763684A CN 202010677778 A CN202010677778 A CN 202010677778A CN 111763684 A CN111763684 A CN 111763684A
Authority
CN
China
Prior art keywords
rice
ghd7
ghd7 gene
gene
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010677778.1A
Other languages
English (en)
Other versions
CN111763684B (zh
Inventor
何予卿
楼光明
陈平丽
李平波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN202010677778.1A priority Critical patent/CN111763684B/zh
Publication of CN111763684A publication Critical patent/CN111763684A/zh
Application granted granted Critical
Publication of CN111763684B publication Critical patent/CN111763684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/04Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8251Amino acid content, e.g. synthetic storage proteins, altering amino acid biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Cereal-Derived Products (AREA)

Abstract

本发明涉及Ghd7基因在调节稻米中蛋白质含量(同时改良稻米外观品质、营养品质、蒸煮食味品质和氮素利用效率)的应用和在水稻育种中作为稻米蛋白质含量(还包括稻米外观品质、营养品质、蒸煮食味品质和氮素利用效率)的筛选标志的应用,本发明还涉及通过对Ghd7基因进行遗传操作来调节稻米中蛋白质含量(同时改良稻米外观品质、营养品质、蒸煮食味品质和氮素利用效率)的方法,以及以Ghd7基因或其突变体作为筛选标记的水稻杂交育种方法。

Description

Ghd7基因在调节和筛选稻米中蛋白质含量的应用
技术领域
本发明涉及水稻分子育种领域,更特别地,涉及Ghd7基因在调节和筛选稻米中蛋白质含量以及各储藏蛋白组分含量的应用,以及Ghd7基因(尤其是Hap2这种单倍型)在调节和筛选稻米品质上的应用。
背景技术
水稻(Oryza sativa L.)是世界一半以上人口的主食。精米(去除稻壳和糊粉层以及胚之后的稻米)是人们消费的主要形式,主要由淀粉(干重高达90%)和蛋白质(8-10%)两大组分组成,并且淀粉和蛋白质共同决定着稻米的营养品质、外观品质、蒸煮食用品质和加工品质。因此,研究淀粉和蛋白质的遗传基础及其对稻米品质的影响,对水稻育种具有重要意义。在这两种主要成分中,淀粉一直被认为是影响稻米品质的最重要因素。然而,蛋白质对稻米品质的影响尚未引起足够的重视。虽然已从突变体中鉴定出一些基因,但仅克隆到两个表现水稻品种自然变异的基因(OsAAP6和GluA2),它们都是水稻籽粒蛋白质含量的正调控基因。
因此,有待于挖掘更多与籽粒蛋白质含量有关的基因,用于在稻米品质评价和育种。
发明内容
在本发明的发明人通过图位克隆以及全基因组关联分析发现了一个产量和抽穗期的主效基因Ghd7的新功能,该基因能够显著降低水稻籽粒中的蛋白质含量以及四种主要储藏蛋白(谷蛋白、醇溶蛋白、清蛋白、球蛋白)组成成分的含量,而且一些单倍型在具有上述效果的同时不影响该基因对产量的增益效果。该基因的表达或增强表达除了降低籽粒蛋白质含量,还增加直链淀粉和胶稠度,并且改变稻米中脂肪酸各组分的相对含量,此外还降低了稻米垩白,并显著提高了米饭的食味值,即Ghd7能够提高米饭的外观和蒸煮食味品质。并且本研究中还发现了Ghd7基因先前一种未知功能的单倍型Hap2(氨基酸序列:SEQ IDNO:2)属于强功能的单倍型,该单倍型能够在显著降低稻米蛋白质含量的同时不引起产量上的损失,即该单倍型能够同时提高水稻的产量和品质,对于育种而言具有极大的应用价值。另外本研究中还发现Ghd7能够通过促进水稻对外源氮素的吸收和转运从而提高水稻的氮素利用效率,进而提高了水稻的产量。
基于以上研究,本发明提供了Ghd7基因在调节稻米中物质组成的应用。
在一个具体实施方案中,所述物质组成为蛋白质含量(例如,总蛋白质含量、谷蛋白含量、醇溶蛋白含量、球蛋白含量、清蛋白含量中的一种或多种)、直链淀粉含量、脂肪含量和/或垩白。本发明通过使用Ghd7基因调节稻米中物质组成,既调节其营养品质,又调节其外观品质,还调节其蒸煮食味品质。
在一个具体实施方案中,所述Ghd7基因编码的蛋白质的氨基酸序列如SEQ ID NO:1-7之一所示。在一个优选实施方案中,所述Ghd7基因编码的蛋白质的氨基酸序列如SEQ IDNO:2所示。
本发明提供了一种调节稻米中蛋白质组分含量的方法,包括导入Ghd7基因、提高Ghd7基因表达水平、降低Ghd7基因表达水平或者突变Ghd7基因使Ghd7基因表达的蛋白功能提高、降低或消失的步骤,所述Ghd7基因的序列如SEQ ID NO:1-7之一所示。
例如,如果目标稻种其他性状优良,但是稻米中蛋白质含量太低,并且该稻种含具有功能的Ghd7基因,可通过敲除或突变目标稻种中的Ghd7基因,使Ghd7基因不表达,或者表达功能减弱或无功能的Ghd7基因,即可提高稻米中的蛋白质含量以及四种主要储藏蛋白的含量。
反之,如果目标稻种其他性状优良,但是稻米中蛋白质含量太高,并且该稻种不含Ghd7基因或含无功能的Ghd7基因,可通过敲入或者导入Ghd7基因,使其能够表达有功能的Ghd7基因,即可降低稻米中的蛋白质以及四种主要储藏蛋白的含量,同时提高直链淀粉含量、降低垩白,提高胶稠度和食味品质。
本发明还提供了Ghd7基因在水稻育种中作为稻米蛋白质含量的筛选标志的应用,所述Ghd7基因的序列如SEQ ID NO:8-14之一所示。
本发明还提供了一种水稻杂交育种方法,包括使用Ghd7基因或其突变体作为筛选标志来选择目标基因型的步骤。
在一个优选实施方案中,所述水稻杂交育种方法包括以下步骤:
S1:鉴定亲本中的Ghd7基因及其突变状态;
S2:选择Ghd7基因或其突变体作为筛选标志;
S3:将所述筛选标志与其他优势性状聚合到一起。
例如,已有稻种的其他性状优良,但稻米中蛋白质含量太低,并且含具有功能的Ghd7基因,要想通过杂交育种的方法提高稻米的蛋白质含量,可选择不含Ghd7基因或者含无功能的Ghd7基因的亲本与该稻种进行杂交,通过将无功能的Ghd7基因或不含Ghd7基因作为分子标志来使该突变基因与其他优势性状聚合到一起。
反之,已有稻种的其他性状优良,但稻米中蛋白质含量太高,并且不含Ghd7基因或含无功能的Ghd7基因,要想通过杂交育种的方法降低稻米的蛋白质含量,可先选择具有功能的Ghd7基因亲本与该稻种进行杂交,通过将该具有功能的Ghd7基因作为分子标志来使该基因与其他优势性状聚合到一起。
由于本研究中营养品质和蛋白质含量呈现正相关关系,而外观品质、蒸煮食味品质以及氮素利用效率与蛋白质含量呈现负相关关系,故上述调节蛋白质组分含量的方法也等同于调节稻米营养品质、外观品质、蒸煮食味品质以及氮素利用效率的方法。
附图说明
图1为Ghd7基因的图位克隆;
图2为通过对533个稻米品种蛋白质含量进行全基因组关联分析后得到的总群体(All)、籼稻(Xian)亚群、粳稻(Geng)亚群的蛋白质含量的曼哈顿图(Manhattan plot);
图3为Ghd7在533份水稻微核心种质资源材料中的自然变异分析结果;
图4为Ghd7四种主要单倍型的蛋白质含量和四种储藏蛋白含量的表型图;
图5为Ghd7未知功能单倍型Hap2和已知强功能单倍型Hap1在三个不同环境下的产量比较;
图6为NYZ和ZS97构建的近等基因系以及转基因株的稻米蛋白质含量以及四种储藏蛋白含量的表型统计图;
图7为NYZ和ZS97构建的近等基因系以及转基因株的稻米胶稠度、食味评分和直链淀粉含量的统计图;
图8为Ghd7近等基因系和转基因材料为期一个月的苗期氮处理实验;
图9为Ghd7近等基因系材料大田氮处理试验的结果;
图10为1892S和RH003构建的近等基因系的稻米垩白率、垩白面积、胶稠度、食味评分和整精米率的统计图;
图11为1892S和RH003构建的近等基因系的稻米总蛋白含量、谷蛋白含量、球蛋白含量、清蛋白含量和醇溶蛋白含量的统计图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
1、样品来源
本发明使用的水稻包括533个栽培稻品种构成的获取群体。获取群体用于全基因组关联分析;
其中,533个栽培稻品种包括50个aus品种(aus)、305个籼稻品种(indica)和178个粳稻品种(japonica)。
NIL(NYZ)和NIL(ZS97)是一对以南洋占(在后续实验中经鉴定,Ghd7基因单倍型为Hap4)为供体、珍汕97(单倍型Hap9,即,缺失Ghd7基因)为受体通过多代连续回交构建的Ghd7位点的近等基因系(NIL)。
MpMc(+)和MpMc(-)是以珍汕97为受体采用农杆菌侵染法构建的Ghd7位点的阳性和阴性互补株,互补使用的Ghd7基因单倍型为Hap1。
OX-Ghd7、Ami-Ghd7是以中花11为受体采用农杆菌侵染法构建的Ghd7位点的过量表达株和抑制株。
珍汕97(ZS97)是由温州市农科所选育的籼型常规稻。南洋占(NYZ)是具有大粒、红米等特点的热带粳稻。中花11(ZH11)是由中国农业科学院作物科学研究所选育的粳型常规水稻。
所有材料均在武汉或者海南陵水的华中农业大学的试验田中栽植生长,成熟收获后的稻谷晾干后室温储藏至少三个月,然后用于实验。
2、样品处理
a)蛋白质含量的测定:
精米和植株的蛋白质含量的测定采用凯氏定氮法,具体步骤如下:首先,在干燥的消化管中依次加入0.5±0.005g精米粉、8.5g催化剂(硫酸钾和五水硫酸铜质量比为9:1)和12ml浓硫酸;然后,将消化管置于通风橱中消化炉FOSS DT208上420℃消化1.5h,冷却至无浓烟冒出;最后,将消化管置于FOSS Kjeltec 8400上进行自动分析。每个单株样品重复测量3次,其平均值即为最终的蛋白质含量。
糙米蛋白质含量的测定采用FOSS XDS近红外快速含量分析仪。
b)直链淀粉含量的测定:
精米粉直链淀粉含量的测定参考国标NY/T2639-2014并做了简单的调整,具体步骤如下:首先,在干燥的15ml玻璃管中依次加入10±0.5mg的精米粉、0.1ml 95%的乙醇和0.9ml 1M的氢氧化钠,依次混匀后拧上盖子,沸水浴10min后冷却至室温,加入9ml单蒸水稀释;然后,将0.5ml稀释液加入一个新的15ml玻璃管,依次加入9.25ml单蒸水、0.2ml 1M乙酸和0.15ml0.2%碘-碘化钾溶液,拧上盖子,上下颠倒充分混匀后静置20min;最后,将0.2ml上述混合液和四个直链淀粉含量的标准样品(0.4%,10.6%,16.2%和26.5%)的相同处理混合液分别加入透明的ELISA平板,利用Tecan Infinite M200型多功能酶标仪在620nm波长处测定吸光度,根据标准样品的吸光度和直链淀粉含量的线性方程计算出每个样品的直链淀粉含量。每个单株样品重复测量3次,其平均值即为最终的直链淀粉含量。
c)垩白的测定:
垩白的评价分为垩白率和垩白度两个指标。使用万深SC-E型大米外观品质检测分析仪,对每个单株的200-300的精米粒扫描得到图像,并对图像分析得到垩白率和垩白度的数值。
d)脂肪酸含量的测定:
将稻谷去壳成糙米,然后在80℃下干燥24h,然后进行脂质提取。准确称取0.2±0.005g糙米加入10ml玻璃管中,加入4.5ml硫酸:甲醇溶液(5:100)和0.1ml内标,混匀。在85℃水浴中孵育2.5h。冷却至室温后,加入2ml超纯水,震荡后再加入2ml正己烷(色谱纯),然后振荡器充分震荡后离心(2500rpm 10min)。最后取上清约1ml并通过GC-MS分析。每个样品设置三个生物学重复。
e)食味值的测定:
每种基因型的材料至少准备150g以上的精米,使用米粒食味计测定颗粒状态下的食味品质。每个样品设置10个生物学重复。
3、本研究实验结果分析
3.1、影响稻米蛋白质含量的基因的定位与鉴定
我们通过图位克隆技术将一个影响稻米蛋白质含量的主效QTL qPC7精细定位至96.6Kb的区间(图1),该区间内含有16个基因,除了先前克隆的产量基因Ghd7和一个表达蛋白基因LOC_Os07g15820以外,其他都是转座子或者反转座子基因(表1)。通过测序确定,Ghd7基因的核酸序列如SEQ ID NO:1所示,所编码的蛋白序列如SEQ ID NO:2所示。
表1 96.6Kb候选区间内的16个基因
Figure BDA0002584632770000071
Figure BDA0002584632770000081
对533份水稻微核心种质资源蛋白质含量的数据进行全基因组关联分析,结果如图2和表2所示,在籼稻亚群7号染色体上检测到三个显著位点均位于Ghd7附近,这进一步佐证了Ghd7基因确实影响蛋白质含量。
表2籼稻亚群蛋白质含量全基因组关联分析中检测到的显著位点
Figure BDA0002584632770000082
3.2、Ghd7基因分型以及不同单倍型对稻米性质的影响
我们根据Ghd7基因外显子区域的变异对533份稻米品种进行单倍型分析,结果如图3所示,根据编码区序列,Ghd7基因总共分成8种单倍型,其中,Hap1、2、4、9是最为主要的四种单倍型,其中Hap1(SEQ ID NO:1和8)、2(SEQ ID NO:2和9)、3(SEQ ID NO:3和10)、4(SEQ ID NO:4和11)、7(SEQ ID NO:6和13)和8(SEQ ID NO:7和14)是有功能基因,Hap6(SEQID NO:5和12)为无功能基因,Hap9完全缺失Ghd7基因。
结合蛋白质含量和储藏蛋白含量数据对这四种主要单倍型进行分析,结果如图4所示,除清蛋白以外,单倍型Hap2在球蛋白含量、醇溶蛋白含量、谷蛋白含量以及总蛋白质含量四个性状上都呈现最低值。另外各种不同单倍型之间的蛋白质含量和储藏蛋白质含量均存在不同程度的差异,可见该位点的不同单倍型可影响稻米中的蛋白质含量,进而影响稻米的营养价值。在三个不同环境(2011年武汉、2012年陵水和2012年武汉)下对Hap1和Hap2两种单倍型产量进行比较,结果如图5所示,Hap2和Hap1在产量上没有统计学上的差异(Hap1在产量调控上是优势基因型)。
上述结果表明,相对于缺失Ghd7基因(Hap9)的水稻品种,含有Hap1、2和4的水稻品种中,储藏蛋白质含量和总蛋白质含量显著降低,该效果在Hap2中更为明显。此外,还能保证产量不受影响,这意味着该单倍型在育种上具有极大的应用价值。
3.3、南洋占与珍汕97构建的近等基因系的比较
对南洋占与珍汕97构成的近等基因系生产的稻米中的蛋白质含量和组成进行进一步研究。结果如图6所示,ZS97近等基因系(Hap9,完全缺失)的总蛋白含量、球蛋白含量、谷蛋白含量、清蛋白含量和醇溶蛋白含量均显著高于NYZ近等基因系(Hap4),进一步说明,Ghd7是一个能够降低蛋白质含量的基因。我们还考察了南洋占与珍汕97构建的Ghd7近等基因系材料和转基因材料的品质性状,结果如图7所示,含有Hap4的NIL(NYZ)生产的稻米中直链淀粉含量升高,垩白减少,脂肪酸的相对组成也与NIL(ZS97)不同,胶稠度和食味值显著提高。这意味着Ghd7能够在降低蛋白质含量的同时提高稻米的外观和蒸煮食味品质。
对南洋占与珍汕97构建的Ghd7近等基因系材料进行水培和大田氮处理的实验均表明,Ghd7能够提高水稻的氮利用效率(图8-9),进而提高水稻产量(图9)。
3.4、RH003与1892S构建的近等基因系的比较
使用RH003(Hap2)为供体,1892S(Hap9,缺失型)为受体,构建近等基因系NIL(1892S)和NIL(RH003)。对该对近等基因系生产的稻米理化性质进行比较,结果如图10和11所示,NIL(RH003)的总蛋白含量、清蛋白含量、醇溶蛋白含量、球蛋白含量和谷蛋白含量均显著低于NIL(1892S),NIL(RH003)的垩白也显著低于NIL(1892S),并且NIL(RH003)的整精米率、胶稠度和食味评分显著高于NIL(1892S)。
4、转基因分析
为了进一步确定Ghd7的功能,采用农杆菌侵染法将Ghd7基因(Hap1)转入ZS97中来获取Ghd7位点的互补材料,得到阳性互补株MpMc(+)和阴性互补株MpMc(-),同时以ZH11为受体,采用农杆菌侵染法构建ZH11的Ghd7基因过表达株(OX-Ghd7)和Ghd7基因的抑制株(Ami-Ghd7),对得到的材料进行表型鉴定。
结果如图6和7所示,与互补阴性株稻米相比,互补阳性株稻米的总蛋白质含量、垩白率、垩白面积显著降低,直链淀粉含量显著升高,胶稠度和食味值显著升高。同样地,与野生型ZH11相比,超表达株的稻米中的总蛋白质含量、三种储藏蛋白质含量、垩白率和垩白面积都显著降低,直链淀粉含量升高,并且胶稠度和食味值显著提高;而相比于野生型ZH11,抑制株的稻米中的总蛋白质含量、四种储藏蛋白质含量、垩白率以及垩白面积均显著升高,但在直链淀粉含量、胶稠度以及食味值上没有差异。
综合上面的实验可知,Ghd7是影响蛋白质含量的主效基因。该基因如果发生导致蛋白功能的增强、降低或消失的突变如果,会使稻米中的蛋白质含量降低或升高,同时引起稻米品质的变化。无论是单倍型1、2还是4型的Ghd7基因表达框,在转入(通过杂交或转基因的方法)到Ghd7基因缺失或失去功能的品系中,都能产生使受体株生产的稻米中的蛋白质含量和垩白降低,并且胶稠度和食味值升高,在Ghd7基因发生功能降低突变的品系中转入强功能Ghd7基因单倍型也能产生类似的效果。使用其他有功能的Ghd7基因也能产生类似效果。反之,将含有有功能的Ghd7基因的水稻品系中的Ghd7基因敲除或敲降,或者使用失能或低能的Ghd7基因替换该Ghd7基因,可使该品系所生产的稻米中的蛋白质含量升高。
此外,与互补阴性株相比,互补阳性株显著提升了氮素吸收和转运能力;与野生型ZH11相比,超表达株也显著提升了氮素吸收和转运能力,相反,抑制株却显著降低了氮素的吸收和转运能力。
由上述实验可知,Ghd7基因的突变如果导致蛋白功能的增强、降低或消失,会使水稻的氮素吸收能力提高和降低。所以对该基因位点的编辑也能够用于调节水稻的氮素吸收能力,进而调节氮利用效率。
以上的实例充分说明了,本领域技术人员在阅读本申请披露的内容后可知,只需要将该基因过表达、导入、敲除、敲降或突变成相关功能增强、降低或无相关功能,即可达到调节稻米蛋白质含量和稻米品质,甚至氮利用效率的目的。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
序列表
<110> 华中农业大学
<120> Ghd7基因在调节和筛选稻米中蛋白质含量的应用
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 257
<212> PRT
<213> 水稻(Oryza sativa)
<400> 1
Met Ser Met Gly Pro Ala Ala Gly Glu Gly Cys Gly Leu Cys Gly Ala
1 5 10 15
Asp Gly Gly Gly Cys Cys Ser Arg His Arg His Asp Asp Asp Gly Phe
20 25 30
Pro Phe Val Phe Pro Pro Ser Ala Cys Gln Gly Ile Gly Ala Pro Ala
35 40 45
Pro Pro Val His Glu Phe Gln Phe Phe Gly Asn Asp Gly Gly Gly Asp
50 55 60
Asp Gly Glu Ser Val Ala Trp Leu Phe Asp Asp Tyr Pro Pro Pro Ser
65 70 75 80
Pro Val Ala Ala Ala Ala Gly Met His His Arg Gln Pro Pro Tyr Asp
85 90 95
Gly Val Val Ala Pro Pro Ser Leu Phe Arg Arg Asn Thr Gly Ala Gly
100 105 110
Gly Leu Thr Phe Asp Val Ser Leu Gly Gly Arg Pro Asp Leu Asp Ala
115 120 125
Gly Leu Gly Leu Gly Gly Gly Gly Gly Arg His Ala Glu Ala Ala Ala
130 135 140
Ser Ala Thr Ile Met Ser Tyr Cys Gly Ser Thr Phe Thr Asp Ala Ala
145 150 155 160
Ser Ser Met Pro Lys Glu Met Val Ala Ala Met Ala Asp Val Gly Glu
165 170 175
Ser Leu Asn Pro Asn Thr Val Val Gly Ala Met Val Glu Arg Glu Ala
180 185 190
Lys Leu Met Arg Tyr Lys Glu Lys Arg Lys Lys Arg Cys Tyr Glu Lys
195 200 205
Gln Ile Arg Tyr Ala Ser Arg Lys Ala Tyr Ala Glu Met Arg Pro Arg
210 215 220
Val Arg Gly Arg Phe Ala Lys Glu Ala Asp Gln Glu Ala Val Ala Pro
225 230 235 240
Pro Ser Thr Tyr Val Asp Pro Ser Arg Leu Glu Leu Gly Gln Trp Phe
245 250 255
Arg
<210> 2
<211> 257
<212> PRT
<213> 水稻(Oryza sativa)
<400> 2
Met Ser Met Gly Pro Ala Ala Gly Glu Gly Cys Gly Leu Cys Gly Ala
1 5 10 15
Asp Gly Gly Gly Cys Cys Ser Arg His Arg His Asp Asp Asp Gly Phe
20 25 30
Pro Phe Val Phe Pro Pro Ser Ala Cys Gln Gly Ile Gly Ala Pro Ala
35 40 45
Pro Pro Val His Glu Phe Gln Phe Phe Gly Asn Asp Gly Gly Gly Asp
50 55 60
Asp Gly Glu Ser Val Ala Trp Leu Phe Asp Asp Tyr Pro Pro Pro Ser
65 70 75 80
Pro Val Ala Ala Ala Ala Gly Met His His Arg Gln Pro Pro Tyr Asp
85 90 95
Gly Val Val Ala Pro Pro Ser Leu Phe Arg Arg Asn Thr Gly Gly Gly
100 105 110
Gly Leu Thr Phe Asp Val Ser Leu Gly Gly Arg Pro Asp Leu Asp Ala
115 120 125
Gly Leu Gly Leu Gly Gly Gly Gly Gly Arg His Ala Glu Ala Ala Ala
130 135 140
Ser Ala Thr Ile Met Ser Tyr Cys Gly Ser Thr Phe Thr Asp Ala Ala
145 150 155 160
Ser Ser Met Pro Lys Glu Met Val Ala Ala Met Ala Ala Val Gly Glu
165 170 175
Ser Leu Asn Pro Asn Thr Val Val Gly Ala Met Val Glu Arg Glu Ala
180 185 190
Lys Leu Met Arg Tyr Lys Glu Lys Arg Lys Lys Arg Cys Tyr Glu Lys
195 200 205
Gln Ile Arg Tyr Ala Ser Arg Lys Ala Tyr Ala Glu Met Arg Pro Arg
210 215 220
Val Arg Gly Arg Phe Ala Lys Glu Pro Asp Gln Glu Ala Val Ala Pro
225 230 235 240
Pro Ser Thr Tyr Val Asp Pro Ser Arg Leu Glu Leu Gly Gln Trp Phe
245 250 255
Arg
<210> 3
<211> 257
<212> PRT
<213> 水稻(Oryza sativa)
<400> 3
Met Ser Met Gly Pro Ala Ala Gly Glu Gly Cys Gly Leu Cys Gly Ala
1 5 10 15
Asp Gly Gly Gly Cys Cys Ser Arg His Arg His Asp Asp Asp Gly Phe
20 25 30
Pro Phe Val Phe Pro Pro Ser Ala Cys Gln Gly Ile Gly Ala Pro Ala
35 40 45
Pro Pro Val His Glu Phe Gln Phe Phe Gly Asn Asp Gly Gly Gly Asp
50 55 60
Asp Gly Glu Ser Val Ala Trp Leu Phe Asp Asp Tyr Pro Pro Pro Ser
65 70 75 80
Pro Val Ala Ala Ala Ala Gly Met His His Arg Gln Pro Pro Tyr Asp
85 90 95
Gly Val Val Ala Pro Pro Ser Leu Phe Arg Arg Asn Thr Gly Ala Gly
100 105 110
Gly Leu Thr Phe Asp Val Ser Leu Gly Gly Arg Pro Asp Leu Asp Ala
115 120 125
Gly Leu Gly Leu Gly Gly Gly Gly Gly Arg His Ala Glu Ala Ala Ala
130 135 140
Ser Ala Thr Ile Met Ser Tyr Cys Gly Ser Thr Phe Thr Asp Ala Ala
145 150 155 160
Ser Ser Met Pro Lys Glu Met Val Ala Ala Met Ala Asp Val Gly Glu
165 170 175
Ser Leu Asn Pro Asn Thr Val Val Gly Ala Met Val Glu Arg Glu Ala
180 185 190
Lys Leu Met Arg Tyr Lys Glu Lys Arg Lys Lys Arg Cys Tyr Glu Lys
195 200 205
Gln Ile Arg Tyr Ala Ser Arg Lys Ala Tyr Ala Glu Met Arg Pro Arg
210 215 220
Val Arg Gly Arg Phe Ala Lys Glu Pro Asp Gln Glu Ala Val Ala Pro
225 230 235 240
Pro Ser Thr Tyr Val Asp Pro Ser Arg Leu Glu Leu Gly Gln Trp Phe
245 250 255
Arg
<210> 4
<211> 287
<212> PRT
<213> 水稻(Oryza sativa)
<400> 4
Met Gly Met Ala Asn Glu Glu Ser Pro Asn Tyr Gln Val Lys Lys Gly
1 5 10 15
Gly Arg Ile Pro Pro Pro Arg Ser Ser Leu Ile Tyr Pro Phe Met Ser
20 25 30
Met Gly Pro Ala Ala Gly Glu Gly Cys Gly Leu Cys Gly Ala Asp Gly
35 40 45
Gly Gly Cys Cys Ser Arg His Arg His Asp Asp Asp Gly Phe Pro Phe
50 55 60
Val Phe Pro Pro Ser Ala Cys Gln Gly Ile Gly Ala Pro Ala Pro Pro
65 70 75 80
Val His Glu Phe Gln Phe Phe Gly Asn Asp Gly Gly Gly Asp Asp Gly
85 90 95
Glu Ser Val Ala Trp Leu Phe Asp Asp Tyr Pro Pro Pro Ser Pro Val
100 105 110
Ala Ala Ala Ala Gly Met His His Arg Gln Pro Pro Tyr Asp Gly Val
115 120 125
Val Ala Pro Pro Ser Leu Phe Arg Arg Asn Thr Gly Ala Gly Gly Leu
130 135 140
Thr Phe Asp Val Ser Leu Gly Glu Arg Pro Asp Leu Asp Ala Gly Leu
145 150 155 160
Gly Leu Gly Gly Gly Gly Gly Arg His Ala Glu Ala Ala Ala Ser Ala
165 170 175
Thr Ile Met Ser Tyr Cys Gly Ser Thr Phe Thr Asp Ala Ala Ser Ser
180 185 190
Met Pro Lys Glu Met Val Ala Ala Met Ala Asp Asp Gly Glu Ser Leu
195 200 205
Asn Pro Asn Thr Val Val Gly Ala Met Val Glu Arg Glu Ala Lys Leu
210 215 220
Met Arg Tyr Lys Glu Lys Arg Lys Lys Arg Cys Tyr Glu Lys Gln Ile
225 230 235 240
Arg Tyr Ala Ser Arg Lys Ala Tyr Ala Glu Met Arg Pro Arg Val Arg
245 250 255
Gly Arg Phe Ala Lys Glu Pro Asp Gln Glu Ala Val Ala Pro Pro Ser
260 265 270
Thr Tyr Val Asp Pro Ser Arg Leu Glu Leu Gly Gln Trp Phe Arg
275 280 285
<210> 5
<211> 52
<212> PRT
<213> 水稻(Oryza sativa)
<400> 5
Met Ser Met Gly Pro Ala Ala Gly Glu Gly Cys Gly Leu Cys Gly Ala
1 5 10 15
Asp Gly Gly Gly Cys Cys Ser Arg His Arg His Asp Asp Asp Gly Phe
20 25 30
Pro Phe Val Phe Pro Pro Ser Ala Cys Gln Gly Ile Gly Ala Pro Ala
35 40 45
Pro Pro Val His
50
<210> 6
<211> 257
<212> PRT
<213> 水稻(Oryza sativa)
<400> 6
Met Ser Met Gly Pro Ala Ala Gly Glu Gly Cys Gly Leu Cys Gly Ala
1 5 10 15
Asp Gly Gly Gly Cys Cys Ser Arg His Arg His Asp Asp Asp Gly Phe
20 25 30
Pro Phe Val Phe Pro Pro Ser Ala Cys Gln Gly Ile Gly Ala Pro Ala
35 40 45
Pro Pro Val His Glu Phe Gln Phe Phe Gly Asn Asp Gly Gly Gly Asp
50 55 60
Asp Gly Glu Ser Val Ala Trp Leu Phe Asp Asp Tyr Pro Pro Pro Ser
65 70 75 80
Pro Val Ala Ala Ala Ala Gly Met His His Arg Gln Pro Pro Tyr Asp
85 90 95
Gly Val Val Ala Pro Pro Ser Leu Phe Arg Arg Asn Thr Gly Ala Gly
100 105 110
Gly Leu Thr Phe Asp Val Ser Leu Gly Gly Arg Pro Asp Leu Asp Ala
115 120 125
Gly Leu Gly Leu Gly Gly Gly Gly Gly Arg His Ala Glu Ala Ala Ala
130 135 140
Ser Ala Thr Ile Met Ser Tyr Cys Gly Ser Thr Phe Thr Asp Ala Ala
145 150 155 160
Ser Ser Met Pro Lys Glu Met Val Pro Ala Met Ala Asp Val Gly Glu
165 170 175
Ser Leu Asn Pro Asn Thr Val Val Gly Ala Met Val Glu Arg Glu Ala
180 185 190
Lys Leu Met Arg Tyr Lys Glu Lys Arg Lys Lys Arg Cys Tyr Glu Lys
195 200 205
Gln Ile Arg Tyr Ala Ser Arg Lys Ala Tyr Ala Glu Met Arg Pro Arg
210 215 220
Val Arg Gly Arg Phe Ala Lys Glu Pro Asp Gln Glu Ala Val Ala Pro
225 230 235 240
Pro Ser Thr Tyr Val Asp Pro Ser Arg Leu Glu Leu Gly Gln Trp Phe
245 250 255
Arg
<210> 7
<211> 257
<212> PRT
<213> 水稻(Oryza sativa)
<400> 7
Met Ser Met Gly Pro Ala Ala Gly Glu Gly Cys Gly Leu Cys Gly Ala
1 5 10 15
Asp Gly Gly Gly Cys Cys Pro Arg His Arg His Asp Asp Asp Gly Phe
20 25 30
Pro Phe Val Phe Pro Pro Ser Ala Cys Gln Gly Ile Gly Ala Pro Ala
35 40 45
Pro Pro Val His Glu Phe Gln Phe Phe Gly Asn Asp Gly Gly Gly Asp
50 55 60
Asp Gly Glu Ser Val Ala Trp Leu Phe Asp Asp Tyr Pro Pro Pro Ser
65 70 75 80
Pro Val Ala Ala Ala Ala Gly Met His His Arg Gln Pro Pro Tyr Asp
85 90 95
Gly Val Val Ala Pro Pro Ser Leu Phe Arg Arg Asn Thr Gly Ala Gly
100 105 110
Gly Leu Thr Phe Asp Ile Ser Leu Gly Gly Arg Pro Asp Leu Asp Ala
115 120 125
Gly Leu Gly Leu Gly Gly Gly Gly Gly Arg His Ala Glu Ala Ala Ala
130 135 140
Ser Ala Thr Ile Met Ser Tyr Cys Gly Ser Thr Phe Thr Asp Ala Ala
145 150 155 160
Ser Ser Met Pro Lys Glu Met Val Ala Ala Met Ala Asp Val Gly Glu
165 170 175
Ser Leu Asn Pro Asn Thr Val Val Gly Ala Met Val Glu Arg Glu Ala
180 185 190
Lys Leu Met Arg Tyr Lys Glu Lys Arg Lys Lys Arg Cys Tyr Glu Lys
195 200 205
Gln Ile Arg Tyr Ala Ser Arg Lys Ala Tyr Ala Glu Met Arg Pro Arg
210 215 220
Val Arg Gly Arg Phe Ala Lys Glu Pro Asp Gln Glu Ala Val Ala Pro
225 230 235 240
Pro Ser Thr Tyr Val Asp Pro Ser Arg Leu Glu Leu Gly Gln Trp Phe
245 250 255
Arg
<210> 8
<211> 774
<212> DNA
<213> 水稻(Oryza sativa)
<400> 8
atgtcgatgg gaccagcagc cggagaagga tgtggcctgt gcggcgccga cggtggcggc 60
tgttgctccc gccatcgcca cgatgatgat ggattcccct tcgtcttccc gccgagtgcg 120
tgccagggga tcggcgcccc ggcgccaccg gtgcacgagt tccagttctt cggcaacgac 180
ggcggcggcg acgacggcga gagcgtggcc tggctgttcg atgactaccc gccgccgtcg 240
cccgttgctg ccgccgccgg gatgcatcat cggcagccgc cgtacgacgg cgtcgtggcg 300
ccgccgtcgc tgttcaggag gaacaccggc gccggcgggc tcacgttcga cgtctccctc 360
ggcggacggc ccgacctgga cgccgggctc ggcctcggcg gcggcagcgg ccggcacgcc 420
gaggccgcgg ccagcgccac catcatgtca tattgtggga gcacgttcac tgacgcagcg 480
agctcgatgc ccaaggagat ggtggccgcc atggccgatg ttggggagag cttgaaccca 540
aacacggtgg ttggcgcaat ggtggagagg gaggccaagc tgatgaggta caaggagaag 600
aggaagaaga ggtgctacga gaagcaaatc cggtacgcgt ccagaaaagc ctatgccgag 660
atgaggcccc gagtgagagg tcgcttcgcc aaagaagctg atcaggaagc tgtcgcaccg 720
ccatccacct atgtcgatcc tagtaggctt gagcttggac aatggttcag atag 774
<210> 9
<211> 722
<212> DNA
<213> 水稻(Oryza sativa)
<400> 9
atgtcgatgg gaccagcagc cggagaagga tgtggcctgt gcggcgccga cggtggcggc 60
tgttgctccc gccatcgcca cgatgatgat ggattcccct tcgtcttccc gccgagtgcg 120
tgccagggga tcggcgcccc ggcgccaccg gtgcacgagt tccagttctt cggcaacgac 180
ggcggcggcg acgacggcga gagcgtggcc tggctgttcg atgactaccc gccgccgtcg 240
cccgttgctg ccgccgccgg gatgcatcat cggcagccgc cgtacgacgg cgtcgtggcg 300
ccgccgtcgc tgttcaggag gaacaccggc ggcggagggc tcacgttcga cgtctccctc 360
ggcggacggc ccgacctgga cgccgggctc ggcctcggcg gcggcagcgg ccggcacgcc 420
gaggccgcgg ccagcgccac catcatgtca tattgtggga gcacgttcac tgacgcagcg 480
agctcgatgc ccaaggagat ggtggccgcc atggccaatg ttggggagag cttgaaccca 540
aacacggtgg ttggcgcaat ggtggagagg gaggccaagc tgatgaggta caaggagaag 600
aggaagaaga ggtgctacga gaagcaaatc cggtacgcgt ccagaaaagc ctatgccgag 660
atgaggcccc gagtgagagg tcgcttcgcc aaagaacctg atcaggaagc tgtcgcaccg 720
cc 722
<210> 10
<211> 774
<212> DNA
<213> 水稻(Oryza sativa)
<400> 10
atgtcgatgg gaccagcagc cggagaagga tgtggcctgt gcggcgccga cggtggcggc 60
tgttgctccc gccatcgcca cgatgatgat ggattcccct tcgtcttccc gccgagtgcg 120
tgccagggga tcggcgcccc ggcgccaccg gtgcacgagt tccagttctt cggcaacgac 180
ggcggcggcg acgacggcga gagcgtggcc tggctgttcg atgactaccc gccgccgtcg 240
cccgttgctg ccgccgccgg gatgcatcat cggcagccgc cgtacgacgg cgtcgtggcg 300
ccgccgtcgc tgttcaggag gaacaccggc gccggcgggc tcacgttcga cgtctccctc 360
ggcggacggc ccgacctgga cgccgggctc ggcctcggcg gcggcagcgg ccggcacgcc 420
gaggccgcgg ccagcgccac catcatgtca tattgtggga gcacgttcac tgacgcagcg 480
agctcgatgc ccaaggagat ggtggccgcc atggccgatg ttggggagag cttgaaccca 540
aacacggtgg ttggcgcaat ggtggagagg gaggccaagc tgatgaggta caaggagaag 600
aggaagaaga ggtgctacga gaagcaaatc cggtacgcgt ccagaaaagc ctatgccgag 660
atgaggcccc gagtgagagg tcgcttcgcc aaagaacctg atcaggaagc tgtcgcaccg 720
ccatccacct atgtcgatcc tagtaggctt gagcttggac aatggttcag atag 774
<210> 11
<211> 864
<212> DNA
<213> 水稻(Oryza sativa)
<400> 11
atggggatgg ccaatgagga gtcgccaaat tatcaggtga aaaaaggcgg ccggattcct 60
ccacctcgat cgagtttgat ttatccgttc atgtcgatgg gaccagcagc cggagaagga 120
tgtggcctgt gcggcgccga cggtggcggc tgttgctccc gccatcgcca cgatgatgat 180
ggattcccct tcgtcttccc gccgagtgcg tgccagggga tcggcgcccc ggcgccaccg 240
gtgcacgagt tccagttctt cggcaacgac ggcggcggcg acgacggcga gagcgtggcc 300
tggctgttcg atgactaccc gccgccgtcg cccgttgctg ccgccgccgg gatgcatcat 360
cggcagccgc cgtacgacgg cgtcgtggcg ccgccgtcgc tgttcaggag gaacaccggc 420
gccggcgggc tcacgttcga cgtctccctc ggcgaacggc ccgacctgga cgccgggctc 480
ggcctcggcg gcggcggcgg ccggcacgcc gaggccgcgg ccagcgccac catcatgtca 540
tattgtggga gcacgttcac tgacgcagcg agctcgatgc ccaaggagat ggtggccgcc 600
atggccgatg atggggagag cttgaaccca aacacggtgg ttggcgcaat ggtggagagg 660
gaggccaagc tgatgaggta caaggagaag aggaagaaga ggtgctacga gaagcaaatc 720
cggtacgcgt ccagaaaagc ctatgccgag atgaggcccc gagtgagagg tcgcttcgcc 780
aaagaacctg atcaggaagc tgtcgcaccg ccatccacct atgtcgatcc tagtaggctt 840
gagcttggac aatggttcag atag 864
<210> 12
<211> 722
<212> DNA
<213> 水稻(Oryza sativa)
<400> 12
atgtcgatgg gaccagcagc cggagaagga tgtggcctgt gcggcgccga cggtggcggc 60
tgttgctccc gccatcgcca cgatgatgat ggattcccct tcgtcttccc gccgagtgcg 120
tgccagggga tcggcgcccc ggcgccaccg gtgcactagt tccagttctt cggcaacgac 180
ggcggcggcg acgacggcga gagcgtggcc tggctgttcg atgactaccc gccgccgtcg 240
cccgttgctg ccgccgccgg gatgcatcat cggcagccgc cgtacgacgg cgtcgtggcg 300
ccgccgtcgc tgttcaggag gaacaccggc gccggcgggc tcacgttcga cgtctccctc 360
ggcgaacggc ccgacctgga cgccgggctc ggcctcggcg gcggcggcgg ccggcacgcc 420
gaggccgcgg ccagcgccac catcatgtca tattgtggga gcacgttcac tgacgcagcg 480
agctcgatgc ccaaggagat ggtggccgcc atggccgatg atggggagag cttgaaccca 540
aacacggtgg ttggcgcaat ggtggagagg gaggccaagc tgatgaggta caaggagaag 600
aggaagaaga ggtgctacga gaagcaaatc cggtacgcgt ccagaaaagc ctatgccgag 660
atgaggcccc gagtgagagg tcgcttcgcc aaagaacctg atcaggaagc tgtcgcaccg 720
cc 722
<210> 13
<211> 774
<212> DNA
<213> 水稻(Oryza sativa)
<400> 13
atgtcgatgg gaccagcagc cggagaagga tgtggcctgt gcggcgccga cggtggcggc 60
tgttgctccc gccatcgcca cgatgatgat ggattcccct tcgtcttccc gccgagtgcg 120
tgccagggga tcggcgcccc ggcgccaccg gtgcacgagt tccagttctt cggcaacgac 180
ggcggcggcg acgacggcga gagcgtggcc tggctgttcg atgactaccc gccgccgtcg 240
cccgttgctg ccgccgccgg gatgcatcat cggcagccgc cgtacgacgg cgtcgtggcg 300
ccgccgtcgc tgttcaggag gaacaccggc gccggcgggc tcacgttcga cgtctccctc 360
ggcggacggc ccgacctgga cgccgggctc ggcctcggcg gcggcagcgg ccggcacgcc 420
gaggccgcgg ccagcgccac catcatgtca tattgtggga gcacgttcac tgacgcagcg 480
agctcgatgc ccaaggagat ggtgcccgcc atggccgatg ttggggagag cttgaaccca 540
aacacggtgg ttggcgcaat ggtggagagg gaggccaagc tgatgaggta caaggagaag 600
aggaagaaga ggtgctacga gaagcaaatc cggtacgcgt ccagaaaagc ctatgccgag 660
atgaggcccc gagtgagagg tcgcttcgcc aaagaacctg atcaggaagc tgtcgcaccg 720
ccatccacct atgtcgatcc tagtaggctt gagcttggac aatggttcag atag 774
<210> 14
<211> 774
<212> DNA
<213> 水稻(Oryza sativa)
<400> 14
atgtcgatgg gaccagcagc cggagaagga tgtggcctgt gcggcgccga cggtggcggc 60
tgttgccccc gccatcgcca cgatgatgat ggattcccct tcgtcttccc gccgagtgcg 120
tgccagggga tcggcgcccc ggcgccaccg gtgcacgagt tccagttctt cggcaacgac 180
ggcggcggcg acgacggcga gagcgtggcc tggctgttcg atgactaccc gccgccgtcg 240
cccgttgctg ccgccgccgg gatgcatcat cggcagccgc cgtacgacgg cgtcgtggcg 300
ccgccgtcgc tgttcaggag gaacaccggc gccggcgggc tcacgttcga catctccctc 360
ggcggacggc ccgacctgga cgccgggctc ggcctcggcg gcggcagcgg ccggcacgcc 420
gaggccgcgg ccagcgccac catcatgtca tattgtggga gcacgttcac tgacgcagcg 480
agctcgatgc ccaaggagat ggtggccgcc atggccgatg ttggggagag cttgaaccca 540
aacacggtgg ttggcgcaat ggtggagagg gaggccaagc tgatgaggta caaggagaag 600
aggaagaaga ggtgctacga gaagcaaatc cggtacgcgt ccagaaaagc ctatgccgag 660
atgaggcccc gagtgagagg tcgcttcgcc aaagaacctg atcaggaagc tgtcgcaccg 720
ccatccacct atgtcgatcc tagtaggctt gagcttggac aatggttcag atag 774

Claims (10)

1.Ghd7基因在调节稻米中的物质组成的应用。。
2.根据权利要求1所述的应用,其特征在于,所述物质组成为蛋白质含量、直链淀粉含量、脂肪含量和/或垩白。
3.根据权利要求2所述的应用,其特征在于,所述蛋白质含量包括总蛋白质含量、谷蛋白含量、醇溶蛋白含量、球蛋白含量、清蛋白含量中的一种或多种的混合。
4.一种调节稻米中物质组成的含量的方法,其特征在于,包括对生产所述稻米的稻种导入Ghd7基因、提高Ghd7基因表达水平、降低Ghd7基因表达水平或者突变Ghd7基因使Ghd7基因表达的蛋白功能提高、降低或消失的步骤。
5.根据权利要求4所述的方法,其特征在于,生产所述稻米的稻种含具有功能的Ghd7基因,敲除或敲降所述Ghd7基因,将所述具有功能的Ghd7基因替换成无功能的Ghd7基因,或者使所述具有功能的Ghd7基因突变成无功能或功能减弱。
6.根据权利要求4所述的方法,其特征在于,生产所述稻米的稻种不含Ghd7基因或者含无功能的Ghd7基因,转入具有功能的Ghd7基因,或使所述具有无功能的Ghd7基因突变成具有功能的Ghd7基因。
7.Ghd7基因在水稻育种中作为稻米蛋白质含量的筛选标志的应用。
8.一种水稻杂交育种方法,其特征在于,包括使用Ghd7基因或Ghd7基因突变体作为筛选标志来选择目标基因型的步骤。
9.根据权利要求8所述水稻杂交育种方法,其特征在于,已有稻种的不含Ghd7基因或含无功能的Ghd7基因,
S1:鉴定含具有功能的Ghd7基因的稻种作为亲本;
S2:使所述已有稻种与所述含具有功能的Ghd7基因的亲本杂交;
S3:以所述具有功能的Ghd7基因作为筛选标记,将所述具有功能的Ghd7基因与所述已有稻种的优势性状聚合到一起。
10.根据权利要求7所述水稻杂交育种方法,其特征在于,已有稻种含具有功能的Ghd7基因,
S1:鉴定含无功能的Ghd7基因或者不含Ghd7基因的稻种作为亲本;
S2:使所述已有稻种与所述含无功能的Ghd7基因或不含Ghd7基因的亲本杂交;
S3:以所述无功能的Ghd7基因或不含Ghd7基因作为筛选标记,将所述无功能的Ghd7基因或不含Ghd7基因与所述已有稻种的优势性状聚合到一起。
CN202010677778.1A 2020-07-15 2020-07-15 Ghd7基因在调节和筛选稻米中蛋白质含量的应用 Active CN111763684B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010677778.1A CN111763684B (zh) 2020-07-15 2020-07-15 Ghd7基因在调节和筛选稻米中蛋白质含量的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010677778.1A CN111763684B (zh) 2020-07-15 2020-07-15 Ghd7基因在调节和筛选稻米中蛋白质含量的应用

Publications (2)

Publication Number Publication Date
CN111763684A true CN111763684A (zh) 2020-10-13
CN111763684B CN111763684B (zh) 2022-07-29

Family

ID=72726453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010677778.1A Active CN111763684B (zh) 2020-07-15 2020-07-15 Ghd7基因在调节和筛选稻米中蛋白质含量的应用

Country Status (1)

Country Link
CN (1) CN111763684B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112899305A (zh) * 2021-02-02 2021-06-04 中国科学院遗传与发育生物学研究所 一种缩短水稻生育期的方法、蛋白质、核酸分子、生物材料及其应用
CN113215175A (zh) * 2021-06-22 2021-08-06 华中农业大学 Flo19基因在提高稻米品质中的应用
CN114573669A (zh) * 2020-11-30 2022-06-03 中国科学院遗传与发育生物学研究所 蛋白质Ghd7在调控植物抗低氮性中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148674A (zh) * 2007-09-12 2008-03-26 华中农业大学 一种控制水稻谷粒产量、抽穗期和株高的多效性基因Ghd7的克隆及应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148674A (zh) * 2007-09-12 2008-03-26 华中农业大学 一种控制水稻谷粒产量、抽穗期和株高的多效性基因Ghd7的克隆及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
徐世龙: "粳稻镉积累基因的遗传效应分析", 《中国优秀硕士学位论文全文数据库农业科技辑》 *
杜雪树等: "利用鄂早18Ghd7基因型改良扬稻6号生育期效应的研究", 《湖北农业科学》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573669A (zh) * 2020-11-30 2022-06-03 中国科学院遗传与发育生物学研究所 蛋白质Ghd7在调控植物抗低氮性中的应用
CN114573669B (zh) * 2020-11-30 2023-09-22 中国科学院遗传与发育生物学研究所 蛋白质Ghd7在调控植物抗低氮性中的应用
CN112899305A (zh) * 2021-02-02 2021-06-04 中国科学院遗传与发育生物学研究所 一种缩短水稻生育期的方法、蛋白质、核酸分子、生物材料及其应用
CN113215175A (zh) * 2021-06-22 2021-08-06 华中农业大学 Flo19基因在提高稻米品质中的应用

Also Published As

Publication number Publication date
CN111763684B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN111763684B (zh) Ghd7基因在调节和筛选稻米中蛋白质含量的应用
CN108794608B (zh) 一种水稻镉低积累突变体lcd1及其应用
CN109750062B (zh) 一种水稻育种方法
Terao et al. Control of grain protein contents through SEMIDWARF1 mutant alleles: sd1 increases the grain protein content in Dee-geo-woo-gen but not in Reimei
US9901047B2 (en) Solanum lycopersicum plants having pink fruits
CN111084096A (zh) 一种高抗性淀粉和低谷蛋白聚合的水稻品种的选育方法
US6143963A (en) Waxy wheat starch type having waxy proteins in granule
JP4068110B2 (ja) 赤かび病抵抗性因子に連鎖する遺伝マーカーおよびその利用
US20170359979A1 (en) Solanum lycopersicum plants having pink glossy fruits
CN108034743A (zh) 用于检测玉米Dek6基因的特异性引物及其应用
Fan et al. Effect of indica pedigree on eating and cooking quality in rice backcross inbred lines of indica and japonica crosses
Luo et al. The physiological genetic effects of 1BL/1RS translocated chromosome in" stay green" wheat cultivar CN17
CN114457091B (zh) 一种影响小麦籽粒品质的基因TaXip及其应用
EP1856968A1 (en) Hybrid corn plant and seed PP59302
CN114921479B (zh) 一种调控抗性淀粉含量的水稻SBEIIb等位基因及其在育种中的应用
CN115786367B (zh) 控制稻米谷蛋白含量基因lgc2及其应用
Xu et al. Quality Evaluation and Important Quality Genes Genotyping of Introduced Rice Germplasm Resources
CN111808865B (zh) Wcr1基因在调节稻米心白率或食味品质中的应用
CN117904125A (zh) 可改善改变水稻米质和产量的wbr7基因等位型及其应用
Palii et al. Combining gene and genome mutations in maize breeding for grain protein content and quality
Huashan et al. Rice Quality Evaluating and Key Quality Genes Genotyping of Rice Germplasm Resources from Africa and Brazil
CN113215175A (zh) Flo19基因在提高稻米品质中的应用
JP4134255B2 (ja) 赤かび病抵抗性イネ科植物の判定キットおよびその利用
CN117487846A (zh) SnRK1a1基因在调节玉米籽粒性状、平衡玉米产量和品质中的用途
CN117660495A (zh) OsMDH基因在提高稻米品质中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant