CN111758056B - 光纤的制造方法及光纤 - Google Patents

光纤的制造方法及光纤 Download PDF

Info

Publication number
CN111758056B
CN111758056B CN201980014209.4A CN201980014209A CN111758056B CN 111758056 B CN111758056 B CN 111758056B CN 201980014209 A CN201980014209 A CN 201980014209A CN 111758056 B CN111758056 B CN 111758056B
Authority
CN
China
Prior art keywords
optical fiber
coating layer
layer
laser light
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980014209.4A
Other languages
English (en)
Other versions
CN111758056A (zh
Inventor
耕田浩
高崎卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of CN111758056A publication Critical patent/CN111758056A/zh
Application granted granted Critical
Publication of CN111758056B publication Critical patent/CN111758056B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/245Removing protective coverings of light guides before coupling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/48Coating with two or more coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/62Surface treatment of fibres or filaments made from glass, minerals or slags by application of electric or wave energy; by particle radiation or ion implantation
    • C03C25/6206Electromagnetic waves
    • C03C25/6208Laser
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2558Reinforcement of splice joint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

一种光纤的制造方法,具有:部分地除去光纤(10)的被覆层(12、13)的除去步骤;将露出来的玻璃纤维(11)的端面熔融连接的连接步骤;以及再次被覆用于覆盖被覆层(11、12)的除去部分和玻璃纤维(11)的露出部分的保护树脂(15)的再次被覆步骤,其中,除去步骤是对被覆层(12、13)照射激光以除去被覆层(12、13)的步骤,激光的脉冲宽度为50fs以上500ps以下。

Description

光纤的制造方法及光纤
技术领域
本公开涉及光纤的制造方法及光纤。
本专利申请要求基于2018年2月22日提出的日本专利申请第2018-030146号的优先权,并且援引上述日本专利申请中所记载的全部记载内容。
背景技术
关于光纤,对应于来自用户的要求,制造了(例如)海底缆线之类的长达几十公里长的长光纤。这样的长光纤通常是通过熔融连接多根光纤而形成的。在这种情况下,要求在保护连接部的保护树脂与初始的被覆树脂之间的界面处不发生剥离或破裂。作为满足这样的要求的技术,已知有(例如)专利文献1和2中所公开的技术。
现有技术文献
专利文献
专利文献1:日本特开平5-80226号公报
专利文献2:日本特开2004-37762号公报
发明内容
根据本公开的一个方面的光纤的制造方法具有:部分地除去光纤的被覆层的除去步骤;将露出的玻璃纤维的端面熔融连接的连接步骤;以及再次被覆用于覆盖所述被覆层的除去部分和所述玻璃纤维的露出部分的保护树脂的再次被覆步骤,其中,所述除去步骤是对所述被覆层照射激光以除去所述被覆层的步骤,所述激光的脉冲宽度为50fs以上500ps以下。
另外,根据本公开的一个方面的光纤是通过将一对光纤的要连接侧的端部的被覆层除去成为锥形形状、使露出来的玻璃纤维的端面彼此熔融连接、并且用保护树脂保护上述玻璃纤维的露出部分的周围而得的光纤,其中,在已除去成为上述锥形形状的被覆层上具有沿圆周方向延伸的凹凸。
此外,根据本公开的一个方面的光纤是通过将一对光纤的要连接侧的端部的被覆层除去成为锥形形状、使露出来的玻璃纤维的端面彼此熔融连接、并且用保护树脂保护上述玻璃纤维的露出部分的周围而得的光纤,其中,已除去成为上述锥形形状的被覆层的杨氏模量大于远离上述表面的上述被覆层在相同径向位置处的部分的杨氏模量。
此外,根据本公开的一个方面的光纤是通过将一对光纤的要连接侧的端部的被覆层除去成为锥形形状、使露出来的玻璃纤维的端面彼此熔融连接、并且用保护树脂保护上述玻璃纤维的露出部分的周围而得的光纤,其中,上述锥形形状的形状是相对于上述光纤的轴而对称的正多棱锥形状。
附图简要说明
[图1]图1是用于说明本公开所制造的光纤的连接部的构成的图。
[图2A]图2A是用于说明光纤的被覆层的除去步骤的一个例子的图。
[图2B]图2B是用于说明光纤的被覆层的除去步骤的一个例子的图。
[图2C]图2C是用于说明光纤的被覆层的除去步骤的一个例子的图。
[图3A]图3A是用于说明光纤的被覆层的除去步骤的另一个例子的图。
[图3B]图3B是用于说明光纤的被覆层的除去步骤的另一个例子的图。
[图3C]图3C是用于说明光纤的被覆层的除去步骤的另一个例子的图。
[图4]是用于说明光纤的被覆层的除去步骤的其他另一个例子的图。
[图5]是用于说明光纤的被覆层的除去步骤的其他另一个例子的图。
[图6]是表示经过了图5所示的除去步骤后的光纤的连接部的构成的图。
[图7]是表示具有2层结构的常规光纤的连接部的构成的图。
[图8]是表示将连接端的被覆层除去端形成为锥形形状后的光纤的例子的图。
[图9A]图9A是用于说明光纤的被覆层的除去步骤的一个例子的图。
[图9B]图9B是用于说明光纤的被覆层的除去步骤的一个例子的图。
[图9C]图9C是用于说明光纤的被覆层的除去步骤的一个例子的图。
[图10A]图10A是用于说明光纤的被覆层的除去步骤的另一个例子的图。
[图10B]图10B是用于说明光纤的被覆层的除去步骤的另一个例子的图。
[图10C]图10C是用于说明光纤的被覆层的除去步骤的另一个例子的图。
[图11A]图11A是用于说明光纤的被覆层的除去步骤的其他另一个例子的图。
[图11B]图11B是用于说明光纤的被覆层的除去步骤的其他另一个例子的图。
[图11C]图11C是用于说明光纤的被覆层的除去步骤的其他另一个例子的图。
[图12A]图12A是用于说明光纤的被覆层的除去步骤的其他另一个例子的图。
[图12B]图12B是用于说明光纤的被覆层的除去步骤的其他另一个例子的图。
[图12C]图12C是用于说明光纤的被覆层的除去步骤的其他另一个例子的图。
具体实施方式
[本公开要解决的课题]
关于光纤,对应于来自用户的要求,制造了(例如)海底缆线之类的长达几十公里长的长光纤。这样的长光纤通常是通过熔融连接多根光纤而形成的。在这种情况下,要求在保护连接部的保护树脂与初始的被覆树脂之间的界面处不发生剥离或破裂。作为满足这样的要求的技术,已知有(例如)专利文献1和2中所公开的技术。
另一方面,卷绕在线轴上时的侧压的影响是光纤的损耗增加的重要原因,为了减少损耗,将光纤的被覆层设为2层结构,在中心侧的一次层中需要使用杨氏模量低(柔性)的树脂。在使用了具有这样的2层结构的被覆层的光纤的海底缆线中,可能会在连接部的保护树脂中产生裂纹。
图7是表示具有2层结构的被覆层的常规光纤的连接部的构成的图,该连接部将光纤10彼此连接,该光纤10设置有玻璃纤维11、以及玻璃纤维周围的由中心侧的一次层12和外周侧的二次层13构成的2层结构的被覆层。从各个光纤10的端部除去被覆层,露出来的玻璃纤维11彼此经由熔融连接部14而熔融连接。示出了以下情况:其中,虽然被覆层被除去成为锥形形状以使得直径朝着熔融连接部14侧而变小,但是只有二次层13被除去成为锥形形状而一次层12没有被除去成为锥形形状。将保护树脂15模塑并再次被覆,以覆盖熔融连接部14和被覆层的整个除去部。
如此地,虽然将短纤维彼此的端部的被覆除去并进行熔融连接,并在连接部处再次被覆保护树脂15,但是,若光纤10的一次层12的杨氏模量低,则在进行筛检(强度试验)时,被覆除去端的一次层12的变形量变大,在一次层12和二次层13的边界与保护树脂15的接触点处应力变为最大,在保护树脂15中产生应变而可能会产生裂纹X。
作为防止在保护树脂中产生裂纹X的措施,例如,为了使一次层12和二次层13的边界与保护树脂15的接触点处的应力分散,如图8所示,期望将一次层12和二次层13的连接端的被覆层除去端制作成为锥形形状T。即,期望将被覆层除去后的一次层12和二次层13的边界形成为具有预定角度的锥形形状T。
然而,需要具有(例如)采用剃刀对细的光纤的被覆层进行切削以形成图8所示的锥形形状的技能。特别地,在一次层12是柔性树脂的情况下,难以很好地对一次层12进行刮削。另外,在采用磨光机等旋转工具来对被覆层进行刮削的情况下,柔性的一次层12附着在砂轮上,难以刮削成所期望的形状。如此地,当使用常规的工具以除去被覆层的情况下,存在有以下课题:由于技能的差异而造成形状的偏差,所制造的缆线的品质不是恒定的。此外,工具可能会对玻璃纤维造成损伤。
因此,本公开的目的在于提供一种防止在用于覆盖被覆层的除去部分和玻璃纤维的露出部分的保护树脂中产生裂纹、且不会对玻璃纤维造成损伤的品质稳定的光纤制造方法以及光纤。
[本公开的效果]
根据本公开,可以得到这样的光纤,该光纤能够防止在用于覆盖被覆层的除去部分和玻璃纤维的露出部分的保护树脂中产生裂纹,并且不会对玻璃纤维造成损伤且品质稳定。
[本公开的实施方式的说明]
首先,列出本公开的实施方式并进行说明。
(1)根据本公开的一个方面的实施方式的光纤的制造方法具有:部分地除去光纤的被覆层的除去步骤;将露出来的玻璃纤维的端面熔融连接的连接步骤;以及再次被覆用于覆盖所述被覆层的除去部分和所述玻璃纤维的露出部分的保护树脂的再次被覆步骤,其中,所述除去步骤是对所述被覆层照射激光以除去所述被覆层的步骤,所述激光的脉冲宽度为50fs以上500ps以下。
根据本实施方式,通过激光加工除去光纤的被覆层,因而在非接触的情况下不会划伤玻璃纤维,可以减少加工的偏差。并且,由于激光的脉冲宽度为50fs以上500ps以下,因而可以以良好的形状和外观进行除去,而不会发生被覆层变形以及加工表面烧焦等劣化。
(2)根据本公开的实施方式的一个方面的光纤的制造方法,在上述(1)的制造方法中,所述激光的波长为340nm以上1100nm以下。
根据本实施方式,可以以良好的形状和外观进行除去,而不会发生被覆层变形以及加工表面烧焦等劣化。
(3)根据本公开的实施方式的一个方面的光纤的制造方法,在上述(1)或(2)的制造方法中,所述激光的脉冲能量密度为10J/cm2以下。
根据本实施方式,即使在对玻璃纤维照射激光的情况下,也可以减少玻璃纤维的光学损伤。
(4)根据本公开的实施方式的一个方面的光纤的制造方法,在上述(1)至(3)中任一项所述的制造方法中,所述激光照射到光纤上的光束的直径为100μm以下。
如本实施方式这样地,若激光的光束直径为100μm以下,则能够进行间隔短的凹凸形状的加工、以及在不照射玻璃纤维的情况下接近直线的锥形形状的加工等以容易地形成优选的加工形状。
(5)根据本公开的实施方式的一个方面的光纤的制造方法,在上述(1)至(4)中任一项所述的制造方法中,所述除去步骤是将所述被覆层的端部加工为直径朝着所述玻璃纤维的露出部分而变小的锥形形状的步骤。
根据本实施方式,可以增大被除去的被覆层与保护被覆的重叠部分。另外,当将被覆层设为2层结构时,可以防止应力集中在中心侧的一次层与外周侧的二次层的边界处。
(6)根据本公开的实施方式的一个方面的光纤的制造方法,在上述(5)的制造方法中,所述除去步骤是使所述光纤以所述光纤的轴为中心而旋转、同时在避开所述光纤的所述玻璃纤维的情况下仅对所述被覆层部分照射所述激光的步骤。
根据本实施方式,可以提供用于防止激光照射到玻璃纤维、同时将光纤的被覆层除去成为锥形形状的具体的一种方法。
(7)根据本公开的实施方式的一个方面的光纤的制造方法,在上述(5)的制造方法中,所述除去步骤是这样的步骤:使所述光纤以所述光纤的轴为中心而旋转,同时仅在预定区域在垂直于所述激光的照射方向且与所述纤维的纵向方向相倾斜的方向上扫描激光,对所述光纤照射所述激光。
根据本实施方式,可以提供用于将光纤的被覆层除去成为锥形形状的具体的一种方法。
(8)根据本公开的实施方式的一个方面的光纤的制造方法,在上述(1)至(7)中任一项所述的制造方法中,所述光纤的所述被覆层是由中心侧的一次层和外周侧的二次层构成的2层结构,所述一次层的杨氏模量为0.5MPa以下。
根据本实施方式,即使是一次层柔软的光纤,也可以以良好的形状进行被覆层的除去和连接,能够减少卷绕在线轴上时的损耗。
(9)根据本公开的实施方式的一个方面的光纤的制造方法,在上述(1)至(8)中任一项所述的制造方法中,在所述除去步骤之后,具有从所述被覆层已被部分除去了的位置处拽出一侧的所述光纤的被覆层以使所述玻璃纤维露出来的露出步骤。
根据本实施方式,由于不必预先在光纤的一端形成玻璃纤维的露出部,因而可以使步骤变得简化。另外,可以防止露出部分的玻璃纤维被激光照射,或者可以防止污垢附着到玻璃纤维的表面上。
(10)根据本公开的实施方式的一个方面的光纤是通过将一对光纤的要连接侧的端部的被覆层加工成锥形形状、使露出来的玻璃纤维的端面彼此熔融连接、并且用保护树脂保护所述玻璃纤维的露出部分的周围而得的光纤,其中,在已被加工成所述锥形形状的被覆层上具有沿圆周方向延伸的凹凸。
根据本实施方式,由于已被除去成为锥形形状的被覆层与保护树脂的粘接面积增加,因而可以增大已熔融连接的光纤的强度以及被覆层与保护树脂的粘接强度。关于沿圆周方向延伸的凹凸,通过使所照射的位置在与纤维纵向相倾斜的扫描方向上不连续,而是以每隔预定间隔的方式调整位置,由此可以容易地实现凹凸形状。这一点对于常规的剃刀或砂轮的加工而言是难以实现的。
(11)根据本公开的实施方式的一个方面的光纤是通过将一对光纤的要连接侧的端部的被覆层加工成锥形形状、使露出来的玻璃纤维的端面彼此熔融连接、并且用保护树脂保护所述玻璃纤维的露出部分的周围而得的光纤,其中,已加工成所述锥形形状的被覆层的杨氏模量大于远离所述表面的所述被覆层在相同径向位置处的部分的杨氏模量。
根据本实施方式,通过使锥形表面部分的杨氏模量大于光纤的被覆层内部的杨氏模量,从而缓和与保护树脂的粘接部分的应力集中,可以使得在保护树脂中难以发生裂纹。特别地,在将被覆层设为2层结构、且将一次被覆设为杨氏模量较小的材料的情况下,由于与被覆树脂的杨氏模量之差在锥形表面部分处较大,因而通过增大锥形表面部分的杨氏模量从而能够抑制裂纹的产生的效果较大。关于使锥形表面部分的杨氏模量大于光纤的被覆层内部的杨氏模量,通过利用激光照射来进行锥形加工,锥形表面部分由于二次老化而在照射前进行树脂的固化,因此可以容易地实现锥形表面的杨氏模量的增大。
(12)根据本公开的实施方式的一个方面的光纤是通过将一对光纤的要连接侧的端部的被覆层除去成为锥形形状、使露出来的玻璃纤维的端面彼此熔融连接、并且用保护树脂保护所述玻璃纤维的露出部分的周围而得的光纤,其中,所述锥形形状是相对于所述光纤的轴而对称的正多棱锥形状。
根据本实施方式,通过形成为正多棱锥形状,对于在沿光纤的中心轴旋转的扭曲方向上的力,可以增大保护树脂与被覆的粘接强度。通过激光照射以除去光纤的被覆层,从而可以得到正多棱锥形状。在常规的剃刀加工中会形成非对称的多棱锥,由扭曲引起的应变集中在特定部分而可能会降低强度。另外,在砂轮加工中无法实现多棱锥的形状。
[本公开的实施方式的细节]
以下,参照附图对根据本公开的光纤的制造方法及光纤的具体例子进行说明。需要说明的是,本发明并不限于以下的示例,而是由权利要求书的范围所表示,并且意图包括与权利要求书的范围等同的含义和范围内的所有变化。另外,只要能够将多个实施方式进行组合,则本发明也包括任意的实施方式的组合。需要说明的是,在以下的说明中,即使在不同的附图中,标注有相同符号的构成也是相同的,并且可能会省略其说明。
图1是用于说明根据本公开所制造的光纤的连接部的构成的图。根据本公开所制造的光纤是通过将多根短光纤10熔融连接而形成的。在光纤的熔融连接中,要相互连接的一对光纤10的端部的光纤10的被覆层被除去,露出玻璃纤维11。通过除去被覆层而裸露出来的玻璃纤维11的端面彼此抵接,采用电弧放电等以使抵接的端面连接而成为熔融连接部14。
由于熔融连接部14及其附近的裸露的玻璃纤维11处于容易损伤且机械性能弱的状态,因此利用保护树脂15再次被覆。保护树脂15使用了与被覆层相同种类的紫外线固化型树脂。保护树脂15的被覆可以通过使用预定的成形用模具并注入树脂而形成。需要说明的是,在本实施方式中,光纤10的被覆层成为了中心侧的一次层12和外周侧的二次层13的双重结构。为了不容易受到卷绕在线轴上时或形成缆线时的侧压的影响,该侧压是光纤10的损耗增加的重要原因,中心侧的一次层12使用了具有0.5MPa以下的低杨氏模量的树脂,外周侧的二次层13使用了杨氏模量比一次层12高的树脂。另外,保护树脂15的杨氏模量大小大于一次层12的树脂的杨氏模量,但是小于二次层13的树脂的杨氏模量。
在本实施方式中,光纤10的端部处的被覆层的被覆残余部被形成为被覆直径朝着端部侧而变小的锥形形状T。然后,将保护树脂15形成为覆盖在已成为该锥形形状的被覆层的部分上。通过该构成,被覆层的被覆残余部的端面被覆盖而没有露出。另外,由于被覆层的被覆残余部为锥形形状T,因此可以增加被覆残余部的保护树脂15所覆盖的重叠部分16的厚度,同时可以增加该部分处的粘接面积,可以提高与保护树脂15的粘接力。此外,可以使一次层12和二次层13的边界与保护树脂15的接触点的应力分散。
图1所示的光纤的制造方法具有:部分地除去2根光纤10的被覆层以使各个被覆残余部成为锥形形状的除去步骤;将露出来的玻璃纤维11的端面彼此熔融连接的连接步骤;以及再次被覆用于覆盖被覆层的除去部分和玻璃纤维11的露出部分的保护树脂15的再次被覆步骤。以下,对于光纤的被覆层的除去步骤进行说明。
(除去步骤的例子1)
图2A至图2C是用于说明光纤的被覆层的除去步骤的一个例子的图。首先,如图2A所示,在C-C位置处对光纤10的端部的被覆层进行切割,拽出并除去端部侧的被覆层,由此使端部侧的玻璃纤维11露出来。以距被覆层的距离成为预定长度的方式,对露出来的玻璃纤维11进行切割,形成熔融连接用的端面。需要说明的是,也可以在形成后述的被覆层的锥形面之后形成熔融连接用的端面。
接下来,如图2B所示,在沿箭头方向移动扫描圆形的激光B的同时,对光纤10的被覆层照射,将被覆层的端部加工成锥形形状。具体而言,从光纤10的上表面侧扫描直径为100μm以下(例如约20μm)的圆形的激光B,以画出倾斜角α约为6°且斜面长度β约为500μm的斜线。在此,作为激光,优选使用脉冲宽度为50fs以上500ps以下、脉冲能量密度为10J/cm2以下且波长为340nm以上1100nm以下的激光。若激光的脉冲宽度为50fs以上500ps以下,则可以在短的实际照射时间内进行加工而不会给被覆层带来由热所引起的损伤。另外,若激光的波长为340nm以上1100nm以下,则通过固态激光器或纤维激光器的基波、二次谐波或三次谐波的稳定振荡,可以以良好的再现性进行加工。需要说明的是,光纤10的直径约为250μm。
如图2B所示,在激光扫描步骤中,以使圆形的激光的被覆侧的外周与锥形形状的斜线重合的方式,从光纤10的上表面侧沿着箭头所示的方向扫描激光,从而使被覆层升华。由此,光纤10的上表面侧的被覆层被除去成为大致锥形形状。
接下来,如图2C所示,在位置改变步骤中,将光纤10如箭头R所示那样旋转预定角度以改变光纤10的激光照射面的位置。然后,再次从光纤10的上表面侧扫描圆形的激光B,将光纤10的上表面侧的被覆层除去成为锥形形状。通过将激光扫描步骤和位置改变步骤重复预定次数,从而可以除去光纤10的被覆层的端部以使其成为多棱锥形状。然后,通过调整光纤10的旋转角度和激光的能量密度以及扫描次数,从而可以使被覆层的端部成为相对于光纤的轴而对称的正多棱锥形状。
作为具体的激光,可以采用脉冲宽度15ps、脉冲能量密度为10mJ/cm2以下、且使用了波长355nm的三次谐波或波长532nm的二次谐波的YAG或YVO4的短波长固态激光器。在使用脉冲宽度长的激光的情况下,被覆层的树脂熔化或者烧焦,因而无法将被覆层除去成为良好的形状。另外,在使用大于10mJ/cm2的激光的情况下,当对玻璃纤维照射激光时,玻璃纤维的光学损伤变大。此外,通过利用激光照射来进行锥形加工,锥形表面部分由于二次老化而在照射前进行树脂的固化,已被加工成锥形形状的被覆层的表面的杨氏模量大于远离上述表面的上述被覆层在相同径向位置处的部分的杨氏模量。
(除去步骤的例子2)
图3A至图3C是用于说明光纤的被覆层的除去步骤的另一个例子的图。在本实施方式中,如图3A所示,在C-C位置处对光纤10的端部的被覆层进行切割,拽出并除去端部侧的被覆层,由此使端部侧的玻璃纤维11露出来。这与在图2A中所说明的内容是相同的。
在本实施方式中,与图2A至图2C中所说明的除去步骤相类似地,以激光B仅倾斜地照射在光纤10的端部的被覆层上的方式,当(例如)从上表面侧观察时,在避开纤维玻璃的情况下对光纤10照射圆形的激光B,但是如图3B所示,对激光的照射位置进行设定,以使得光纤10的被覆层的形状成为凹凸形状B1。由此,通过光纤10的旋转,在光纤10的端部的已加工成锥形形状的被覆层上形成了沿圆周方向延伸的凹凸(在图3C中以锥形形状T’表示)。因此,当在熔融连接玻璃纤维11之后再次被覆保护树脂时,被覆层与保护树脂的粘接面积增加,从而可以增大熔融连接后的光纤的强度、以及被覆层与保护树脂的粘接强度。
(除去步骤的例子3)
图4是用于说明光纤的被覆层的除去步骤的其他另一个例子的图。在本实施方式中,如除去步骤的例子1和2那样在C-C位置处对光纤10的端部的被覆层进行切割、拽出并除去端部侧的被覆层以使端部侧的玻璃纤维11露出来的步骤不是必要的。在本实施方式中,通过上述除去步骤的例子1和2中的任一种方法,部分地除去完全被被覆层所覆盖的光纤10的端部附近的被覆层。由此,除去了图4中所示的C-C位置处的被覆层,玻璃纤维11成为露出来的状态。另外,在光纤10的从C-C位置到相反的端部侧的位置A2的被覆层中形成了锥形形状T。
然后,通过从相反的端部侧的位置A2拽出残留在光纤10的端部侧的位置A1处的被覆层,可以得到熔融连接的玻璃纤维11的露出部分。由此,不必预先在光纤的一端形成玻璃纤维的露出部,因而可以使步骤变得简化。另外,在被覆层的除去步骤中,由于没有玻璃纤维11的露出部分,因而可以使光纤10的操作变得容易,可以防止激光照射到玻璃纤维11。
(除去步骤的例子4)
图5是用于说明光纤的被覆层的除去步骤的其他另一个例子的图。在本实施方式中,在光纤10的从C-C位置到相反的端部侧的位置A2的被覆层中所形成的锥形形状T在二次层一侧的端部Tb处未到达二次层13的外周。由此,如图6所示,保护树脂15的两端部15b具有足够的厚度,因而可以防止Tb部由于纤维弯曲而破损、剥离和脱落。
另外,如图5所示,锥形形状T与C-C的交点Ta虽然到达了一次层12,但未到达玻璃纤维11,一次层12的全部或一部分得以残留。由此,可以防止激光B的照射位置偏移到纤维侧而照射到玻璃纤维11。需要说明的是,即使在这种情况下,由于一次层12的杨氏模量低,因而当从相反的端部侧的位置A2拽出位置A1的被覆层时,一次层12在C-C附近处断裂,可以使A1部分的玻璃纤维11露出来。
需要说明的是,本公开不限于照射到光纤的激光的光束直径为100μm以下的圆形的构成。以下,对于具体的例子进行说明。
(除去步骤的例子5)
图9A至图9C是用于说明光纤的被覆层的除去步骤的一个例子的图。首先,如图9A所示,在C-C位置处对光纤10的端部的被覆层进行切割,拽出并除去端部侧的被覆层,由此使端部侧的玻璃纤维11露出来。以距被覆层的距离成为预定长度的方式,对露出来的玻璃纤维11进行切割,形成熔融连接用的端面。需要说明的是,也可以在形成后述的被覆层的锥形面之后形成熔融连接用的端面。
接下来,如图9B所示,对光纤10的被覆层照射三角形状的激光B,将被覆层的端部加工成锥形形状。具体而言,从光纤10的上表面侧沿径向扫描顶角α约为30°且高度约为500μm的三角形状的激光B。可以通过在激光光源与光纤之间配置具有三角形状开口的掩模而获得三角形状。需要说明的是,光纤10的直径约为250μm。
如图9B所示,在激光扫描步骤中,使三角形状的激光的底边与光纤10的被覆层的端部基本重合,并且顶点位于光纤的与端面相对的那一侧,在该状态下,通过从光纤10的上表面侧沿着箭头S所示的径向扫描预定次数的激光,从而使被覆层升华。关于光纤10的激光照射面,由于三角形状的底边部分处的激光的照射量较多,因而经由升华而被除去的树脂较多,由于顶点部分处的激光的照射量较少,因而经由升华而被除去的树脂较少。由此,光纤10的上表面侧的被覆层被除去成为大致锥形形状。
接下来,如图9C所示,在位置改变步骤中,将光纤10如箭头R所示那样旋转预定角度以改变光纤10的激光照射面的位置。然后,再次从光纤10的上表面侧扫描三角形状的激光B,将光纤10的上表面侧的被覆层除去成为锥形形状。通过将激光扫描步骤和位置改变步骤重复预定次数,从而可以除去光纤10的被覆层的端部以使其成为多棱锥形状。然后,通过调整光纤10的旋转角度以及激光的能量密度和扫描次数,从而可以使被覆层的端部成为相对于光纤的轴而对称的正多棱锥形状。
(除去步骤的例子6)
图10A至图10C是用于说明光纤的被覆层的除去步骤的另一个例子的图。在本实施方式中,如图10A所示,在C-C位置处对光纤10的端部的被覆层进行切割,拽出并除去端部侧的被覆层,由此使端部侧的玻璃纤维11露出来。这与在图9A中所说明的内容是相同的。
接下来,如图10B所示,以激光B仅倾斜地照射在光纤10的端部的被覆层上的方式,确定(例如)从上表面侧观察时避开了纤维玻璃的矩形形状的激光B或三角形状的激光以及光纤10的位置。然后,如图10C所示,一边旋转光纤10一边照射激光B。由此,升华除去了被激光B照射的部分的被覆层的树脂,被覆层端部的形状成为圆锥形的锥形形状。在此,关于激光的种类及能量密度,可以使用与在图9A至图9C中所说明的除去步骤的例子5相同的激光。
(除去步骤的例子7)
图11A至图11C是用于说明光纤的被覆层的除去步骤的其他另一个例子的图。在本实施方式中,如图11A所示,在C-C位置处对光纤10的端部的被覆层进行切割,拽出并除去端部侧的被覆层,由此使端部侧的玻璃纤维11露出来。这与在图9A中所说明的内容是相同的。
接下来,如图11B所示,在使光纤10旋转的同时,使三角形状的激光B的底边与光纤10的被覆层的端部基本重合、且顶点位于光纤的与端面相对的那一侧,在该状态下,从上表面侧照射激光B。光束的形状和种类、以及能量密度与在图9A至图9C中示出的除去步骤的例子5的激光B相同。关于光纤10的激光照射面,由于三角形状的底边部分处的激光的照射量较多,因而经由升华而被除去的树脂较多,由于顶点部分处的激光的照射量较少,因而经由升华而被除去的树脂较少。由于在使光纤10旋转的同时照射激光B,因而光纤10的被覆层的端部被除去成为大致圆锥形的锥形形状。
(除去步骤的例子8)
图12A至图12C是用于说明光纤的被覆层的除去步骤的其他另一个例子的图。在本实施方式中,如图12A所示,在C-C位置处对光纤10的端部的被覆层进行切割,拽出并除去端部侧的被覆层,由此使端部侧的玻璃纤维11露出来。这与在图9A中所说明的内容是相同的。
在本实施方式中,与图10A至10C中所说明的除去步骤类似,以激光B仅倾斜地照射到光纤10的端部的被覆层上的方式,向光纤10照射(例如)从上表面侧观察时避开了纤维玻璃的矩形形状的激光B,但是设定了激光的掩模形状,以使得照射到光纤10的被覆层上的部分的激光B的形状成为凹凸形状B1。由此,通过光纤10的旋转,在光纤10的端部的被加工成锥形形状的被覆层上形成了沿圆周方向延伸的凹凸。因此,在熔融连接玻璃纤维11之后,在再次被覆保护树脂时,被覆层与保护树脂的粘接面积增加,因此可以增加熔融连接后的光纤的强度。
以上对本公开的实施方式进行了说明,但是在本公开的光纤的制造方法中,光纤10的树脂层不限于具有2层结构,也可以适用于由1层或3层以上的树脂层构成的结构。
符号的说明
10···光纤;11···玻璃纤维;12···一次层;13···二次层;14···熔融连接部;15···保护树脂;15b···两端部;16···重叠部分。

Claims (9)

1.一种光纤的制造方法,具有:
部分地除去光纤的被覆层的除去步骤;将露出来的玻璃纤维的端面熔融连接的连接步骤;以及再次被覆用于覆盖所述被覆层的除去部分和所述玻璃纤维的露出部分的保护树脂的再次被覆步骤,其中,
所述除去步骤是对所述被覆层照射激光以除去所述被覆层的步骤,
所述激光的脉冲宽度为50fs以上500ps以下,
所述激光的波长为340nm以上1100nm以下,
所述激光照射到光纤上的光束的直径为100μm以下,
所述光纤的所述被覆层是由中心侧的一次层和外周侧的二次层构成的2层结构,
所述除去步骤是将被覆层除去后的所述一次层和所述二次层的边界加工成为直径朝着所述玻璃纤维的露出部分而变小的锥形形状的步骤,
所述除去步骤是使所述光纤以所述光纤的轴为中心而旋转、同时在避开所述光纤的所述玻璃纤维的情况下仅对所述被覆层部分照射所述激光的步骤,或者,
所述除去步骤是这样的步骤:使所述光纤以所述光纤的轴为中心而旋转,同时仅在预定区域在垂直于所述激光的照射方向且与所述纤维的纵向方向相倾斜的方向上扫描激光,从而对所述光纤照射所述激光。
2.根据权利要求1所述的光纤的制造方法,其中,所述激光的脉冲能量密度为10J/cm2以下。
3.根据权利要求1所述的光纤的制造方法,其中,所述除去步骤是将所述被覆层的端部加工为直径朝着所述玻璃纤维的露出部分而变小的锥形形状的步骤。
4.根据权利要求1至3中任一项所述的光纤的制造方法,其中,所述一次层的杨氏模量为0.5MPa以下。
5.根据权利要求1至3中任一项所述的光纤的制造方法,其中,在所述除去步骤之后,具有从所述被覆层已被部分除去了的位置处拽出一侧的所述光纤的被覆层以使所述玻璃纤维露出来的露出步骤。
6.根据权利要求4所述的光纤的制造方法,其中,在所述除去步骤之后,具有从所述被覆层已被部分除去了的位置处拽出一侧的所述光纤的被覆层以使所述玻璃纤维露出来的露出步骤。
7.一种光纤,其是通过权利要求1至6中任一项所述的光纤的制造方法制造的光纤,其中,
在已被加工成所述锥形形状的被覆层上具有沿圆周方向延伸的凹凸。
8.一种光纤,其是通过权利要求1至6中任一项所述的光纤的制造方法制造的光纤,其中,
已加工成所述锥形形状的被覆层的表面的杨氏模量大于远离所述表面的所述被覆层在相同径向位置的部分的杨氏模量。
9.一种光纤,其是通过权利要求1至6中任一项所述的光纤的制造方法制造的光纤,其中,
所述锥形形状是相对于所述光纤的轴而对称的正多棱锥形状。
CN201980014209.4A 2018-02-22 2019-02-21 光纤的制造方法及光纤 Active CN111758056B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018-030146 2018-02-22
JP2018030146 2018-02-22
PCT/JP2019/006591 WO2019163901A1 (ja) 2018-02-22 2019-02-21 光ファイバの製造方法および光ファイバ

Publications (2)

Publication Number Publication Date
CN111758056A CN111758056A (zh) 2020-10-09
CN111758056B true CN111758056B (zh) 2023-08-29

Family

ID=67687739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980014209.4A Active CN111758056B (zh) 2018-02-22 2019-02-21 光纤的制造方法及光纤

Country Status (5)

Country Link
US (1) US20210096299A1 (zh)
EP (1) EP3757634A4 (zh)
JP (1) JP7310792B2 (zh)
CN (1) CN111758056B (zh)
WO (1) WO2019163901A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580226A (ja) * 1991-09-24 1993-04-02 Furukawa Electric Co Ltd:The 光フアイバ心線の接続補強部
JP2003033893A (ja) * 2001-05-15 2003-02-04 Moritex Corp レーザ加工方法及び加工装置
JP2003043288A (ja) * 2001-07-30 2003-02-13 Nippon Telegr & Teleph Corp <Ntt> 多心光ファイバ一括処理方法及び装置
JP2004037762A (ja) * 2002-07-02 2004-02-05 Fujikura Ltd 光ファイバの露出したクラッド部のリコート方法
JP2011102915A (ja) * 2009-11-11 2011-05-26 Sumitomo Electric Ind Ltd 光ファイバの製造方法および光ファイバ
CN103998963A (zh) * 2012-04-09 2014-08-20 松下电器产业株式会社 光纤部件及激光装置
CN204116658U (zh) * 2013-05-10 2015-01-21 康宁光电通信有限责任公司 光纤的涂层去除系统
CN106233179A (zh) * 2014-05-14 2016-12-14 住友电气工业株式会社 光纤

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169702A (en) * 1981-04-13 1982-10-19 Furukawa Electric Co Ltd:The Eliminating method for coating film of reinforced optical fiber
JPH06186435A (ja) * 1992-12-18 1994-07-08 Japan Energy Corp 光ファイバ−被ふく材除去方法
JPH1068838A (ja) * 1996-08-28 1998-03-10 Sumitomo Electric Ind Ltd 光ファイバ
GB2407055B (en) * 2003-10-13 2006-09-13 Fiberlogix Ltd Method and apparatus for processing optical fibre
JP5203744B2 (ja) * 2008-02-21 2013-06-05 株式会社ディスコ ウエーハの裏面に装着された接着フィルムの破断方法
JP5346666B2 (ja) * 2009-04-17 2013-11-20 株式会社フジクラ ダブルクラッド光ファイバのリコート方法
JP2012163749A (ja) * 2011-02-07 2012-08-30 Hitachi Cable Ltd 被覆付き光ファイバの被覆剥ぎ取り装置およびその方法
JP2015170675A (ja) * 2014-03-06 2015-09-28 株式会社ディスコ 板状物の加工方法
US9791624B2 (en) * 2014-11-07 2017-10-17 Corning Optical Communications LLC Methods for stripping an optical fiber coating using blue or blue-violet radiation
JP6741942B2 (ja) 2016-08-24 2020-08-19 品川リフラクトリーズ株式会社 スプレー造粒法による顆粒状モールドパウダーの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580226A (ja) * 1991-09-24 1993-04-02 Furukawa Electric Co Ltd:The 光フアイバ心線の接続補強部
JP2003033893A (ja) * 2001-05-15 2003-02-04 Moritex Corp レーザ加工方法及び加工装置
JP2003043288A (ja) * 2001-07-30 2003-02-13 Nippon Telegr & Teleph Corp <Ntt> 多心光ファイバ一括処理方法及び装置
JP2004037762A (ja) * 2002-07-02 2004-02-05 Fujikura Ltd 光ファイバの露出したクラッド部のリコート方法
JP2011102915A (ja) * 2009-11-11 2011-05-26 Sumitomo Electric Ind Ltd 光ファイバの製造方法および光ファイバ
CN103998963A (zh) * 2012-04-09 2014-08-20 松下电器产业株式会社 光纤部件及激光装置
CN204116658U (zh) * 2013-05-10 2015-01-21 康宁光电通信有限责任公司 光纤的涂层去除系统
CN106233179A (zh) * 2014-05-14 2016-12-14 住友电气工业株式会社 光纤

Also Published As

Publication number Publication date
EP3757634A4 (en) 2021-11-17
US20210096299A1 (en) 2021-04-01
EP3757634A1 (en) 2020-12-30
JP7310792B2 (ja) 2023-07-19
JPWO2019163901A1 (ja) 2021-02-25
CN111758056A (zh) 2020-10-09
WO2019163901A1 (ja) 2019-08-29

Similar Documents

Publication Publication Date Title
US7264403B1 (en) Optical ferrule having a covering and associated method of ablating an optical fiber
WO2017175414A1 (ja) 光ファイバテープの製造方法、光ファイバテープ及び光ケーブル
JP5902016B2 (ja) 光ファイバ・エンドキャップ接合構造及びその製造方法
CN111758056B (zh) 光纤的制造方法及光纤
JP6163273B1 (ja) 光ファイバテープの製造方法、光ファイバテープ及び光ケーブル
US20120269488A1 (en) Methods for preparation and disposing of an optical fiber(s) into a blind hole(s) and related assemblies and methods of making same
WO2019146713A1 (ja) 光ファイバの製造方法および光ファイバ
JP2011102915A (ja) 光ファイバの製造方法および光ファイバ
US11940595B2 (en) Method for producing optical member and optical member
JP6686332B2 (ja) 光ファイバ接続方法および接続装置
JP3876566B2 (ja) 光ファイバの被覆除去装置及び被覆除去方法
JP7443968B2 (ja) 光ファイバ融着接続方法および光ファイバ線路
JP2012163749A (ja) 被覆付き光ファイバの被覆剥ぎ取り装置およびその方法
JPS6015921B2 (ja) 被覆光フアイバの皮剥ぎ方法
EP3926375A1 (en) Laser cleaving and polishing of doped optical fibers
CN107918171B (zh) 一种大模场保偏光纤切割方法
JP2004347797A (ja) 光ファイバ中間被覆除去方法および光ファイバカプラ製造方法ならびに装置
JP2004037762A (ja) 光ファイバの露出したクラッド部のリコート方法
JP2024010854A (ja) 光ファイバ長尺体およびその製造方法
JPH01284806A (ja) 光ファイバ表面傷の消去方法
FR2803044A1 (fr) Procede de reconstitution locale du revetement polymere d&#39;une fibre optique, prealablement denudee
JP2005010242A (ja) 光ファイバの再被覆形成方法及び再被覆形成装置
JP2003337248A (ja) ポリイミド被覆光ファイバの融着接続方法および融着ファイバ
JPH0766091B2 (ja) 光ファイバの融着接続方法
JP2004045463A (ja) 光ファイバの再被覆装置およびこれを用いた光ファイバの再被覆方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant