CN111755551A - 一种太阳能电池芯片结构及制备方法 - Google Patents

一种太阳能电池芯片结构及制备方法 Download PDF

Info

Publication number
CN111755551A
CN111755551A CN201910251401.7A CN201910251401A CN111755551A CN 111755551 A CN111755551 A CN 111755551A CN 201910251401 A CN201910251401 A CN 201910251401A CN 111755551 A CN111755551 A CN 111755551A
Authority
CN
China
Prior art keywords
layer
solar cell
type gan
ohmic contact
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910251401.7A
Other languages
English (en)
Inventor
罗轶
李琳琳
宋士佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zishi Energy Co.,Ltd.
Original Assignee
Dongtai Hi Tech Equipment Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongtai Hi Tech Equipment Technology Co Ltd filed Critical Dongtai Hi Tech Equipment Technology Co Ltd
Priority to CN201910251401.7A priority Critical patent/CN111755551A/zh
Publication of CN111755551A publication Critical patent/CN111755551A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及太阳能电池领域,具体涉及一种太阳能电池芯片结构及制备方法。其主要改进之处为,在所述背电极和所述电池层之间设有折射层,所述折射层包括折射层,在所述折射层远离光射入方向的一面设有凹陷,所述凹陷的内表面设有反射层I;在所述前电极与所述电池层的接触面上设有反射层II,光线可在所述反射层I与所述反射层II之间进行多次反射。本发明所述的太阳能电池可以与前电极结构形成来回反射的区间,起到很好的陷光作用,能有效反射入射光线,增加光在电池层的传输路径,进而提高了太阳能电池的整体效率。本发明的制备工艺简单,且不影响电池层的晶体生长质量,便于应用与推广。

Description

一种太阳能电池芯片结构及制备方法
技术领域
本发明涉及太阳能电池领域,具体涉及一种太阳能电池芯片结构及制备方法。
背景技术
InxGa1-xN的禁带宽度为0.64-3.4eV,几乎覆盖整个太阳光波段,而受到人们的关注。近年对InxGa1-xN/GaN多量子阱(MQW)结构在太阳能电池领域的研究,显示In组分、势阱宽度、势垒宽度等对电池结构都有显著的影响,可通过调整工艺参数提高太阳能电池的整体效率。但是,就目前的材料生长技术而言,较高厚度、高In组分氮化物薄膜材料的生长还具有很大的挑战性。主要是因为在使用有机金属化学气相沉积(MOCVD)方法在制备高In组分合金材料时,容易出现铟聚集的“铟滴”析出,所以难以制备高In组分的氮化物薄膜。并且生长过厚的InGaN,薄膜外延层的晶体质量会急剧下降。
在现有技术条件下,为保证薄膜外延层的晶体质量,采用MQW结构时,InxGa1-xN吸收层的总厚度一般只有几十纳米左右,和几百纳米的目标厚度仍有较大差距,但是吸收层厚度较薄的话,太阳光不能得到充分的吸收,大大降低了氮化物太阳能电池光电转化效率。因此,为了提高氮化物太阳能电池的光电转化效率,常用做法是在芯片中制作布拉格反射层(DBR),使得透过吸收层的太阳光子被反射回来,再次被吸收,进而提高器件的光电转换效率。InxGa1-xN太阳能电池一般通过MOCVD直接外延生长高质量的AlN/GaN周期DBR反射层,AlN和GaN的折射率差Δn只有0.35,其所组成的AlN/GaN DBR的反射带宽较窄,并且AlN和GaN两者之间有2.5%的晶格失配,难以通过MOCVD直接外延生长高质量的AlN/GaN DBR。常规的AlN/GaN DBR不仅影响后续晶体生长质量,而且生长工艺复杂,本专利提出一种具有折射层的太阳能电池芯片结构及制备方法,制备工艺简单,利用折射层与前电极结构形成来回反射的区间,能有效增加光在吸收层的传输距离,变相提高吸收层厚度,提高入射光线吸收几率。
发明内容
为了解决上述问题,本发明提供了一种陷光效果好的太阳能电池芯片结构及制备方法,即一种具有折射层的太阳能电池芯片结构及制备方法)。
本发明第一目的在于提供一种太阳能电池芯片结构,依次包括层叠设置的前电极、电池层和背电极,其主要改进之处为,在所述背电极和所述电池层之间设有折射层,在所述折射层远离光射入方向的一面设有凹陷,所述凹陷的内表面设有反射层I;在所述前电极与所述电池层的接触面上设有反射层II,光线可在所述反射层I与所述反射层II之间进行反射。
本发明通过折射层、凹陷及其前电极上设置的反射层,使得射入其中的光在前电极与凹陷间进行多次反射,增加了光在电池层中的传输路径,进而提高了入射光线的吸收几率。
本发明中的凹陷可以为多个倒锥形或其他不规则体,也可以是V型槽,以增强反射效果为目的,可以有多种形状,数目可设置多个。所述反射层可以为银,也可以是其他具有较好反射效果的导电材料,在此不做进一步限定。
作为优选,所述前电极与所述凹陷在竖直方向上错位排布。通过上述设置,有利于光线在所述反射层I与反射层II之间进行多次反射,可进一步增加光线在电池中传播的路线的长度,有利于提高电池对光的吸收效率。
作为优选,所述凹陷的顶点的高度是所述折射层高度的1/8~1。上述高度可调整光线在电池中的传播路径,增加光线在电池中传播的路线的长度。
作为优选,所述凹陷为V型槽,设置为V型槽更有利于实现光线的折射。
作为优选,V型槽的顶角为90~170°。
作为优选,所述V型槽与所述前电极在长度方向上平行。
进一步优选,优选所述V型槽的长度与所述前电极长度相等;所述V型槽与前电极的长度相等,可增加折射光线的量,有利于提高电池效率。
作为优选,所述背电极上设有与所述凹陷形状相匹配的凸起。这种情况下折射层与背电池有更好的结合,可增加导电面积。
作为优选,所述折射层为DBR。
作为优选,所述DBR由折射率不同的ITO透明导电膜层交替层叠而成。
作为优选,相邻所述ITO透明导电膜层的折射率差不低于0.45。
当折射率设定如上时,折射效果更好,其与前述的反射效果结合,可以起到很好的陷光作用,进一步增加光在电池层中的传输路径。
作为优选,所述DBR由折射率为1.8的ITO透明导电膜层与折射率为2.3的ITO透明导电膜层交替层叠而成。
作为优选,所述ITO透明导电膜层的厚度为10~20nm。
作为优选,所述ITO透明导电膜层的层数为10~20层。
本发明第二目的在于提供制备太阳能芯片结构的方法,其中,所述折射层的制备方法如下:
在所述电池层远离光射入的一面沉积不同折射率的ITO透明导电膜层以形成DBR,在所述DBR远离所述电池层的表面刻蚀形成凹陷,在凹陷内表面设置反射层。
作为优选,利用PVD进行沉积。
作为优选,优选采用光刻胶结合等离子体刻蚀的方法进行刻蚀。
作为优选,制备方法包括如下步骤:
(1)在蓝宝石衬底临时衬底上,依次生长GaN缓冲层、ZnO牺牲层、n型GaN欧姆接触层、n型GaN掺杂层、MQW多量子阱层InxGa1-xN吸收层、p型GaN掺杂层、p型GaN欧姆接触层;
(2)利用PVD在p型GaN欧姆接触层沉积折射率不同的ITO透明导电膜层,使相邻层的折射率差不小于0.45,层为厚度10-20nm,循环重复沉积5-10次;
(3)在ITO导电层上旋涂光刻胶,经过光刻显影,在ITO上得到预设的图形;采用等离子体刻蚀,得到V型槽,V型槽与前电极平行排布,槽深度50-400nm,V型顶角90-170°,利用HCl溶液进行抛光;
(4)采用PVD在V型槽的孔内,蒸镀填充金属Ag,形成了镜面层;然后在镜面层上,用蒸镀或者电镀的方法,制作Au或者Cu等金属键合层;
(5)在Si衬底上采用蒸镀方式,制作厚度为1000nm的Au或者Cu作为金属键合层;然后将两金属键合层相对,在300-350摄氏度条件下,于6000~8000kg保压5~10min键合;
(6)将键合好的制品放入HCl溶液中反应,去除ZnO牺牲层,剥离临时衬底;
(7)在n型GaN欧姆接触层上旋涂光刻胶,经过光刻显影,图形化后,等离子体刻蚀,并进行抛光;使用PVD在图形化的n型GaN欧姆接触层上蒸镀Ag,形成镜面银,然后再在镜面银上蒸镀正面金属电极Au或者Cu;通过350~400摄氏度氮气氛围退火10~15min,使前电极与n型欧姆接触层形成良好的欧姆接触;
(8)机械减薄Si衬底后,在Si衬底背面采用蒸镀的方式,蒸镀厚度为80~150nm的金属电极,构成背电极。
本发明有益效果如下:
(1)本发明采用设有凹陷的折射层,利用其与前电极结构形成来回反射的区间,起到很好的陷光作用,能有效反射入射光线,增加光在量子阱吸收层传输路径,进而提高了太阳能电池的整体效率。
(2)本发明中的制备工艺简单,且不影响电池层的晶体生长质量,便于应用与推广。
附图说明
图1为实施例1中的太阳能电池芯片结构的示意图;
图中:1、前电极;2、电池层;3、折射层;31、凹陷;4、背电极。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
本实施例涉及一种太阳能电池芯片结构,依次包括层叠设置的前电极1、电池层2、折射层3和背电极4(其结构示意图如图1);
所述折射层3为DBR,所述DBR由折射率为1.8的ITO透明导电膜层与折射率为2.3的ITO透明导电膜层交替层叠而成,所述ITO透明导电膜层的厚度为20nm,层数为20层;
在所述DBR远离光射入方向的一面设有凹陷31,所述凹陷31为V型槽,所述V型槽与所述前电极在竖直方向上错位,在长度方向上平行且长度相等,高度为200nm,顶角为165°,所述凹陷31的内表面设有Ag反射层(反射层I);
在所述前电极1与所述电池层2的接触面上设有Ag反射层(反射层II),光线可在所述凹陷31设有的Ag反射层与所述前电极1设有的Ag反射层之间进行多次反射;
所述前电极1及背电极4的电极金属为Au;所述背电极上设有与所述凹陷形状相匹配的凸起。
所述电池层2依次包括层叠设置的n型GaN欧姆接触层、n型GaN掺杂层、MQW多量子阱层InxGa1-xN吸收层、p型GaN掺杂层和p型GaN欧姆接触层;所述n型GaN欧姆接触层与所述前电极1接触设置,所述p型GaN欧姆接触层与所述折射层3接触设置。
实施例2
制备实施例1中的太阳能电池芯片结构的方法,包括如下步骤:
(1)将蓝宝石衬底临时衬底传入MOCVD设备中,依次生长GaN缓冲层、ZnO牺牲层、n型GaN欧姆接触层、n型GaN掺杂层、MQW多量子阱InxGa1-xN吸收层、p型GaN掺杂层、p型GaN欧姆接触层。冷却到室温后,从设备中取出;
(2)利用PVD在p型GaN欧姆接触层上沉积20nm折射率为1.8的ITO透明导电膜层,再在ITO透明导电膜层上沉积折射率为2.3的ITO透明导电膜层,循环重复沉积10次。
(3)在最后一层折射率为2.3的ITO导电层上涂一层光刻胶(光照后发生交联);
(4)在光刻胶的上方放置掩膜版,掩膜版上带有预设的图案,黑色不透光,其他区域透光;光通过掩膜版均匀照射光刻胶,黑色区域以外的光刻胶发生交联固化,黑色区域的光刻胶不发生变化,采用与光刻胶反应的溶液将未交联的光刻胶清洗掉;
(5)使用等离子体刻蚀,在未交联的部分得到V型槽,v型槽与前电极平行排布,深度200nm,锥角165°,利用HCl溶液进行抛光;
(6)采用PVD在圆锥型的孔内,填充金属Ag层,形成了镜面层;
(7)在整个镜面层上,用蒸镀或者电镀的方法,制作Au金属键合层;
(8)在Si衬底上采用蒸镀方式,制作厚度为1000nm的Au作为金属键合层;
(9)将步骤7和8制成的半制成品分别浸入IPA溶液中,进行超声清洗10min;
(10)然后将俩金属键合层相对,在300-350摄氏度条件下,于7000kg保压5min键合;
(11)将键合好的制品放入HCl溶液中反应,去除ZnO牺牲层,剥离蓝宝石临时衬底;
(12)在n型GaN欧姆接触层上旋涂光刻胶,经过光刻显影后,图形化刻蚀,并进行抛光;
(13)使用PVD在图形化的n型GaN欧姆接触层上蒸镀Ag,形成镜面银;
(14)在银层上蒸镀Au等金属电极;
(15)通过380摄氏度氮气氛围退火12min,使前电极与n型欧姆接触层形成良好的欧姆接触。
(16)机械减薄Si衬底后,在Si衬底背面采用蒸镀的方式,蒸镀厚度为100nm的Au等金属电极,构成背电极,完成器件的制作。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种太阳能电池芯片结构,依次包括层叠设置的前电极、电池层和背电极,其特征在于,在所述背电极和所述电池层之间设有折射层,在所述折射层远离光射入方向的一面设有凹陷,所述凹陷的内表面设有反射层I;在所述前电极与所述电池层的接触面上设有反射层II,光线可在所述反射层I与所述反射层II之间进行反射。
2.根据权利要求1所述的太阳能电池芯片结构,其特征在于,所述前电极与所述凹陷在竖直方向上错位排布。
3.根据权利要求1或2所述的太阳能电池芯片结构,其特征在于,所述凹陷为V型槽。
4.根据权利要求3所述的太阳能电池芯片结构,其特征在于,所述V型槽与所述前电极在长度方向上平行;优选所述V型槽的长度与所述前电极的长度相等。
5.根据权利要求1~4中任一项所述的太阳能电池芯片结构,其特征在于,所述背电极上设有与所述凹陷形状相匹配的凸起。
6.根据权利要求1~5中任一项所述的太阳能电池芯片结构,其特征在于,所述折射层为DBR;优选所述DBR由折射率不同的ITO透明导电膜层交替层叠而成;更优选相邻所述ITO透明导电膜层的折射率差不低于0.45。
7.根据权利要求6所述的太阳能电池芯片结构,其特征在于,所述ITO透明导电膜层的厚度为10~20nm,和/或,所述ITO透明导电膜层的层数为10~20层,和/或,所述凹陷的深度是所述折射层高度的1/8~1,和/或,所述V型槽的顶角为90~170°。
8.根据权利要求1~7中任一项所述的太阳能电池芯片结构,其特征在于,所述电池层依次包括层叠设置的n型GaN欧姆接触层、n型GaN掺杂层、MQW多量子阱层InxGa1-xN吸收层、p型GaN掺杂层和p型GaN欧姆接触层;所述n型GaN欧姆接触层与所述前电极接触设置,所述p型GaN欧姆接触层与所述折射层接触设置。
9.一种制备太阳能电池芯片结构的方法,其特征在于,所述折射层的制备方法如下:
在所述电池层远离光射入的一面沉积不同折射率的ITO透明导电膜层以形成DBR,在所述DBR远离所述电池层的表面刻蚀形成凹陷,在凹陷内表面设置反射层;
优选利用PVD进行沉积;优选采用光刻胶结合等离子体刻蚀的方法进行刻蚀。
10.根据权利要求9所述的方法,其特征在于,包括如下步骤:
(1)在蓝宝石衬底临时衬底上,依次生长GaN缓冲层、ZnO牺牲层、n型GaN欧姆接触层、n型GaN掺杂层、MQW多量子阱层InxGa1-xN吸收层、p型GaN掺杂层、p型GaN欧姆接触层;
(2)利用PVD在p型GaN欧姆接触层沉积折射率不同的ITO透明导电膜层,使相邻层的折射率差不小于0.45,层为厚度10-20nm,循环重复沉积5-10次;
(3)在ITO导电层上旋涂光刻胶,经过光刻显影,在ITO上得到预设的图形;采用等离子体刻蚀,得到V型槽,V型槽与前电极平行排布,槽深度50-400nm,V型顶角90-170°,利用HCl溶液进行抛光;
(4)采用PVD在V型槽的孔内,蒸镀填充金属Ag,形成了镜面层;然后在镜面层上,用蒸镀或者电镀的方法,制作Au或者Cu等金属键合层;
(5)在Si衬底上采用蒸镀方式,制作厚度为1000nm的Au或者Cu作为金属键合层;然后将两金属键合层相对,在300-350摄氏度条件下,于6000~8000kg保压5~10min键合;
(6)将键合好的制品放入HCl溶液中反应,去除ZnO牺牲层,剥离临时衬底;
(7)在n型GaN欧姆接触层上旋涂光刻胶,经过光刻显影,图形化后,等离子体刻蚀,并进行抛光;使用PVD在图形化的n型GaN欧姆接触层上蒸镀Ag,形成镜面银,然后再在镜面银上蒸镀正面金属电极Au或者Cu;通过350~400摄氏度氮气氛围退火10~15min,使前电极与n型欧姆接触层形成良好的欧姆接触;
(8)机械减薄Si衬底后,在Si衬底背面采用蒸镀的方式,蒸镀厚度为80~150nm的金属电极,构成背电极。
CN201910251401.7A 2019-03-29 2019-03-29 一种太阳能电池芯片结构及制备方法 Pending CN111755551A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910251401.7A CN111755551A (zh) 2019-03-29 2019-03-29 一种太阳能电池芯片结构及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910251401.7A CN111755551A (zh) 2019-03-29 2019-03-29 一种太阳能电池芯片结构及制备方法

Publications (1)

Publication Number Publication Date
CN111755551A true CN111755551A (zh) 2020-10-09

Family

ID=72671734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910251401.7A Pending CN111755551A (zh) 2019-03-29 2019-03-29 一种太阳能电池芯片结构及制备方法

Country Status (1)

Country Link
CN (1) CN111755551A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909100A (zh) * 2021-01-18 2021-06-04 中山德华芯片技术有限公司 一种太阳能电池及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909100A (zh) * 2021-01-18 2021-06-04 中山德华芯片技术有限公司 一种太阳能电池及其制备方法
CN112909100B (zh) * 2021-01-18 2022-04-12 中山德华芯片技术有限公司 一种太阳能电池及其制备方法

Similar Documents

Publication Publication Date Title
US8735185B2 (en) Light emitting device and fabrication method thereof
US8729580B2 (en) Light emitter with metal-oxide coating
EP2458653B1 (en) Light emitting diode having vertical topology
US8791480B2 (en) Light emitting device and manufacturing method thereof
CN112542533B (zh) 一种高电光转换率倒装结构深紫外micro-LED及其制备方法
WO2003105243A1 (en) High-efficiency light-emitting diodes
CN101931038A (zh) 一种发光元件及其制造方法
CN109326686A (zh) 一种倒装发光二极管芯片的制作方法
CN103474548A (zh) 半导体结构
CN103474535A (zh) 发光二极管
CN103474534A (zh) 发光二极管
CN103474525A (zh) 发光二极管的制备方法
CN101834251A (zh) 一种发光二极管芯片的制造方法
KR100999713B1 (ko) 발광소자 및 그 제조방법
US20100193810A1 (en) Optical Device and the Forming Method Thereof
CN111200045A (zh) 一种反射镜和P电极相互独立的AlGaInP LED芯片及制备方法
WO2018076901A1 (zh) 一种薄膜发光二极管芯片及其制作方法
CN111755551A (zh) 一种太阳能电池芯片结构及制备方法
CN1812146A (zh) 高光提取效率led电极及其制备方法
CN109786515B (zh) 一种发光二极管芯片的制作方法
KR100650990B1 (ko) 질화물 반도체 발광 다이오드 및 그의 제조 방법
KR102006074B1 (ko) 나노와이어 어레이를 포함하는 태양 전지 및 이의 제조 방법
CN115000810A (zh) 垂直腔面发射激光器及其制备方法
JP2011082248A (ja) 半導体発光素子及びその製造方法、並びにランプ
CN213546346U (zh) 一种多复合层图形化蓝宝石衬底

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210205

Address after: Unit 611, unit 3, 6 / F, building 1, yard 30, Yuzhi East Road, Changping District, Beijing 102208

Applicant after: Zishi Energy Co.,Ltd.

Address before: Room a129-1, No. 10, Zhongxing Road, science and Technology Park, Changping District, Beijing

Applicant before: DONGTAI HI-TECH EQUIPMENT TECHNOLOGY Co.,Ltd.

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination